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While we have crudely obtained the Fick’s law in Chapter 1, we will
here derive it more precisely, based on radiative transfer theory,
which will also be used to construct a stellar atmosphere model. We
discuss various energy transfer mechanisms in stars: radiative,
convective, and conductive.
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The Diffusion Equation
Central to the discussion of
radiative transfer is the specific
intensity, I(θ), which is the energy
flux per steradian, in the direction
of θ.

Noticing that dz = µds (µ = cos(θ)).

The net change in I(θ) along a path ds
with the mass emissivity (j) and opacity
(κ) is

dI(θ) = [j − κI(θ)]ρds

Defining the optical depth for an
outward-directed ray as

τ(z) ≡ −
∫ z

0
κρdz

in which z = 0 is selected to represent
the “true surface” of the the star where
density is approximately zero, we have

µ
dI(τ, µ)

dτ
− I(τ, µ) = −S(τ, µ),

where the source function S(τ, µ) = j/κ.



Multiplying both sides of the above equation with e−τ/µ/µ and then
integrating lead to

d
dτ

[
e−τ/µI

]
= −e−τ/µ

S
µ
,

I(τ, µ) = e−(τ0−τ)/µI(τ0, µ) +

∫ τ0

τ

e−(t−τ)/µS(t , µ)

µ
dt .

For an outward direction (µ ≥ 0), choosing τ0 →∞ (i.e., the reference
level lies deep within the star) gives

I(τ, µ ≥ 0) =

∫ ∞
τ

e−(t−τ)/µS(t , µ)

µ
dt , (1)

and for an inward direction, adopting I(0, µ < 0) = 0 at the true
surface gives

I(τ, µ < 0) =

∫ 0

τ

e−(t−τ)/µS(t , µ)

µ
dt .

Of course, the above quantities are all energy dependent (i.e., we
have left out the subscript, ν).
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If the deep interior is nearly in LTE, we expect S to be almost
isotropic. Hence its Planck function B can be used, and it is
reasonable to expand S in a Taylor series in τ , to first order
(Eddington approximation):

S(t) = B(τ) + (t − τ)
(∂B
∂τ

)
τ
.

Inserting this into the above equation for I(τ, µ ≥ 0), we have

I(τ, µ ≥ 0) = B(τ) + µ
(∂B
∂τ

)
τ
.

The equation also holds for I(τ, µ < 0) for large τ (i.e., eτ/µ → 0).
The total outward flux is

F =

∫
4π

I(µ)µdΩ = 2π
∫ 1

−1
I(µ)µdµ

where the azimuthal symmetry around the z-direction is assumed.
Note that if I is a constant, then F is zero. Therefore, a net flux, or a
radiative transfer, requires that I(θ) must be anisotropic.
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Using the above I(τ) expression and including the subscript ν, we get

Fν(τν) =
4π
3
∂Bν
∂τν

= −4π
3

1
ρκν

dT
dr

∂Bν
∂T

The total flux is

F (r) = −4π
3

1
ρκ

dT
dr

∫ ∞
0

∂Bν
∂T

dν

where the Rosseland mean opacity, κ, is defined by

1
κ
≡
[∫ ∞

0

1
κν

∂Bν
∂T

dν
][∫ ∞

0

∂Bν
∂T

dν
]−1

Because ∫ ∞
0

∂Bν
∂T

dν =
∂

∂T

∫ ∞
0

Bν(T )dν =
c

4π
dU
dT

,

we then have

F (r) = − c
3ρκ

dU
dr

= −K
dT
dr
, where K ≡ 4caT 3

3ρκ

This version of F is in the Fick’s law form introduced in Chapter 1.



Radiative Opacity Sources
Various processes that are responsible for the dependence of the
opacity on temperature and density:

I Electron scattering:
κ =

σne

ρ
.

In the non-relativistic case (T � 6× 109 K), the Thompson cross
section can be used. Because ne ≈ ρ/(µemA), where
µe = 2/(1 + X ),

κe = 0.2(1 + X ) cm2 g−1

I Free-free absorption (or the inverse of normal bremsstrahlung):

κff = jbrem/B(T )

= 40(X + Y )(1 + X )ρT−3.5
6 cm2 g−1

where hydrogen is assumed to be completely ionized.
I Bound-free absorption:

κbf = 9× 1010(Z/0.02)(1 + X )ρ(T/5000K )−3.5 cm2 g−1

I Bound-bound opacity is more complicated and is typically much
less than κff and κbf .



I H− — the most important opacity source for the solar
atmosphere. Because of the large polarizability of the neutral
hydrogen atom, it is relatively easy to attach an extra electron to
it with an ionization potential of 0.75 eV.

I H− produces a non-negligible contribution to the
bound-free opacity.

I The negative ion H− itself acts as a partner to other free
electrons to provide an unusual kind of free-free opacity.

The formation of H− requires the presence of both the neutral
hydrogens (i.e., not too high temperature) and electrons (mostly
from partially ionized metals).

κH− = 5× 102(Z/0.02)ρ1/2(T/5000K )9 cm2 g−1,

assuming a solar mix of metals and for 3000 ≤ T ≤ 6000 K.
The reduced exponent of the density is presumably due to the
inverse-density dependence of the H−1 and free electron
populations, which is also very sensitive to the temperature (high
positive exponent).
At even lower temperatures, opacity due to the presence of
molecules or small grains becomes important.
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Opacity Summary

This figure is very informative. Please explain the shapes of the
curves!

HKT Fig. 4.2: Plots of the LANL radiative
opacity for the mixture X = 0.7, Y = 0.28,
and Z = 0.02. The dashed line shows the
half-ionization curve for pure hydrogen.

Notice the steep half-ionization
curve for pure hydrogen, which
characterizes the termination
of the the H− opacity region
and starts the Kramer’s law
and then the electron
scattering at higher
temperatures.
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Radiative Opacity and Emissivity
I In general, the opacity is a combination of the absorption and

scattering: κ = κabs + κsca.

I Photons can also be scattered into the beam from other
direction. If the scattering is isotropic, then dI/ds = +ρκscaJ,
where J is the mean intensity: J ≡ 1

4π

∫
IdΩ.

I There is an intimate relationship between the specific opacity
κabs
ν and emission jν (ν is added back again), which is related to

the radiative equilibrium.
I A condition of a steady-state LTE is that the gas does not

gain or lose energy to the radiation, which requires the
balance the emission,

∫
jνdνdΩ, and absorption,∫

κabs
ν IνdνdΩ, or

∫∞
0

(
jν − κabs

ν Jν
)

dν = 0, where we have
assumed jν is isotropic. Under the LTE, we assume that
Kirchhoff’s law, jν = κabs

ν Bν(T ), can be applied.
If κabs

ν is independent of ν, then∫∞
0 Jνdν =

∫∞
0 Bν(T )dν = B(T ) and thus∫∞

0 jνdν = κabsB(T ), as will be used later.
I If, in addition, Jν(T ) = Bν(T ) (a sufficient, but not

necessary, condition for the LTE), we then have a complete
thermodynamic equilibrium.
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Introduction

The transition zone from the stellar interior, which can be described
with the relatively simple physics, to the emptiness of interstellar
space is known as the stellar atmosphere.

A model for stellar atmospheres should achieve the following:
I It provides a stellar surface boundary condition for the stellar

structure modeling, which is much more realistic than just setting
everything to zero at the surface.

I it provides a link to actual light observed from stars (e.g.,
allowing us to define the effective temperature and pressure at
the so-called stellar photosphere, as well as the stellar radiation
spectrum);

Here we will consider the (so-called grey) radiation transfer model for
a simple atmosphere, which characterizes the temperature and
density as a function of the optical depth.
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Complications and Assumptions
Breakdown of the complete thermodynamic equilibrium:

I Moving toward the stellar surface, photons have increasing
probability to escape directly into space without further
interaction with gas.

I This effect is photon-energy dependent, leading the deviation of
the photons energy distribution from the Planck’s law.

I Also the characteristics of the radiation field will no longer be
determined locally, but will depend on the structure solution of
the entire atmosphere.

Basic assumptions used to construct our atmosphere model:
I The LTE for the gas is still a reasonably good approximation;
I Plane parallel slab;
I A constant gravity throughout the atmosphere;
I Energy is carried out by radiation, and there are no sources of

energy within the atmosphere;
I grey atmosphere: the structure is affected by the continuum

opacity only, assumed to be wavelength-independent.
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A grey transfer model
By integrating over all frequencies the radiative transfer equation

µ
dIν
dτν

= Iν − Sν ,where Sν ≡
1
κν

(jν + κsca
ν Jν)

is the source function, and assuming that the atmosphere is “grey”
(i.e., κ is independent of ν), we get

µ
dI
dτ

= I − S,where S = (1− A)B + AJ, (2)

in which A ≡ κsca/κ is the albedo and
∫

jνdν = κabsB (assuming the
steady state condition).

Further averaging over all angles gives

1
4π

dF
dτ

= J − S = (1− A)(J − B) = 0 (3)

which holds because there is no energy sink or source in the
atmosphere (hence F = constant) and even if A 6= 1.
Note that J = B does not necessarily imply that Iν = Bν !
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Now we can integrate the Fick’s law, F = c
3

dU
dτ , to obtain

U =
3
c

F (τ + τ0), (4)

where the integration constant τ0 is to be determined and the drop of
U with decreasing τ is due to the net loss of inward moving photons
due to absorption.

Because J = S = B (see Eqs. 2 and 3), we can
solve the integrated radiation transfer equation to get

I(τ = 0, µ ≥ 0) =

∫ ∞
0

3
4πµ

F (t + τ0)e−t/µdt =
3

4π
F (µ+ τ0). (5)

The flux dependence on the viewing angle explains the limb
darkening (the photosphere edge appears darker than the center).
We can now determine τ0 by placing the above I in the following

F ≡ 2π
∫ 1

0
I(τ = 0, µ ≥ 0)µdµ, (6)

where we have assumed that the star is not irradiated by another
source and hence all of the flux must be outward-directed (µ > 0) at
τ = 0 (i.e., I(µ < 0, τ = 0) = 0).
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3
4πµ

F (t + τ0)e−t/µdt =
3

4π
F (µ+ τ0). (5)

The flux dependence on the viewing angle explains the limb
darkening (the photosphere edge appears darker than the center).
We can now determine τ0 by placing the above I in the following

F ≡ 2π
∫ 1

0
I(τ = 0, µ ≥ 0)µdµ, (6)

where we have assumed that the star is not irradiated by another
source and hence all of the flux must be outward-directed (µ > 0) at
τ = 0 (i.e., I(µ < 0, τ = 0) = 0).



From Eqs. 6 and 5, we get

F = F (
1
2

+
3
4
τ0)→ τ0 = 2/3

.

Now using U = 4σT 4/c and defining an effective temperature by the
relation F = σT 4

eff in Eq. 4, we have

T 4(τ) =
1
2

T 4
eff (1 +

3
2
τ).

Thus the photosphere, where T (τp) = Teff , lies at τp = 2/3. To find
the pressure, one needs to solve the hydrostatic equation

dP
dτ

=
gs

κ

where gs = GM/R2 is a constant at the surface. Thus

P(τ) = gs

∫ τ

0

dτ
κ

+ P(τ = 0)

Consider a simple case where κ is constant (as a version of the
“grey” atmosphere). The pressure at the photosphere is

P(τp) =
2gs

3κ
+ P(τ = 0).
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At the true surface P(τ = 0) should be dominated by the radiation
pressure,

Prad (τ = 0) = 2π
∫ 1

0

I(µ, τ = 0)

c
µ2dµ =

17
24

F
c
,

where the above derived I(µ, τ = 0) = 3
4πF (µ+ 2/3) has been used.

We then have

P(τp) =
2gs

3κ

[
1 +

17
16

L
Ledd

]
.

Here Ledd = 4πcGM
κ is the Eddington limit, above which the radiative

force exceeds the gravitational force, i.e.,

Lκ
4πR2c

>
GM
R2 .

The opacity in such a case (e.g., the photospheres of very massive
stars) is usually due to electron scattering. With a hydrogen mass
fraction of X = 0.7 and hence κe = 0.34 cm2 g−1, the limit is(

Ledd

L�

)
≈ 3.5× 104

(
M

M�

)
.
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Even if the luminosity is only about 10% or so of this limit, the
dynamics of momentum and energy transfer between the radiation
field and matter could still be important.

P(τp) may be balanced by 1
3 aT 4

eff + ρNA
µ kTeff .

We can then find the density (implicitly) at the photosphere (assuming
κ = κ0ρ

nT−s
eff ).

Because
L

Ledd
=
κσT 4

eff

cgs
, P(τp) depends only on gs and Teff .

Realistic atmosphere models (P(τ) or ρ(τ) and T (τ)) are constructed
for a grid of gs and Teff values, which give the boundary conditions
required at the photosphere.

To get the spectral distribution, we need to go back to Eq. 1 and set
τ = 0 and Sν = Bν(T ). We then have

Iν(µ) =
1
µ

∫ ∞
0

e−t/µBν [T (t)]dt . (7)
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Sample Stellar Spectra

Stars are classified according to their luminosities and effective
temperatures. Here are some key features:

Sample spectra of main-sequence
stars (from Sparke/Gallagher 2007).

I The O- and B-stars have strong lines
due to HeI λ4471 and HeII λ4541
(Å).

I The early (e.g., hotter) A-stars show
maximum strength in hydrogen
Balmer lines. F- and G-stars are
week in hydrogen lines, but exhibits
metal lines.

I The “cliff” near 4,000Å is due to the
H and K lines of Ca-II.

I The depression known as the
“G-band” is primarily due to Fe.

I The spectra of the cooler K- and
M-stars are dominated by metallic
lines and molecular bands.



Line Profiles
The properties of a line are intimately related to its profile. For a line
transition at a stellar atmosphere, the natural broadening is small
compared to other broadening factors: e.g., due to pressure
(perturbation due to the encounter with a particle ) and the Doppler
effect (due to stellar rotation and thermal/turbulent motion).

The line profile is typically a convolution of the Lorentz profile (mostly
due to the pressure broadening) and the Doppler effect.
The cross-section for a line transition i → j is

σν =
e2

mec
fijφν

where fij is the oscillator strength contains the quantum mechanical
details, and φν is the Lorentz profile

φν =
γ/4π

(4ν)2 + (γ/4π)2 ,

in which γ is the sum of the damping constants for the two levels
involved and 4ν = ν − ν0. Integrating this profile gives the total
cross-section

σtot =
πe2

mec
fij
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The convolution with an assumed Gaussian velocity distribution
results in

σν = σtot
1√
π4νD

H(a,u),

and H(a,u) is the well-studied ‘Voigt function’

H(a =
γ

4π4νD
,u =

4ν
4νD

) =
a
π

∫ ∞
−∞

e−y2
dy

a2 + (u − y)2 ,

where 4νD = ν0

(
2kT
mec2

)1/2
. The Voigt function has the following basic

properties:

I H(a� 1,u = 0) ≈ 1,
∫∞
−∞H(a,u)du =

√
π

I for small u (line core),

H(a,u) ≈ e−u2 a
π

∫∞
−∞ dy 1

a2+(u−y)2 = e−u2

I for u � 1 (line wind) and a fairly small a,

H(a,u) ≈ a
π

∫∞
−∞ dy e−y2

u2 = a√
πu2

close to a Lorentz profile.



To calculate the line absorption, we need to combine the line opacity
with the continuum opacity and solve the radiation transfer equation.
For simplicity, we are going to assume pure absorption in both the
continuum and the line.
The opacity is given by

κν = κC
ν + κL

ν ,

where κC
ν is the continuum opacity and κL

ν =
κL
ν,0√
π4νD

H(a, µ) is the

line opacity, with
κL
ν,0 =

ni

ρ
σtot (1− e−hν0/kT )

being the line opacity at the line center ν0. The term e−hν0/kT

accounts for the stimulated transition from j → i .
We can usually ignore the variation with ν in κC

ν over the width of the
line. Let us also assume that βν ≡ κL

ν/κ
C
ν is independent of τν . We

can then write dτν = (1 + βν)dτ , where dτ = −ρκC
ν dz.



Finally, assuming that the temperature does not vary much in the line
forming region, we can expand Bν to first order in τ only,

B[T (τν)] ≈ B0 + B1τ,

where B0 and B1 =
(
∂Bν

∂τ

)
0 are constant.

Inserting these approximations into Eq. 7, multiplying by µ and
integrating over outward bound rays gives the flux as,

Fν =2π
∫ 1

0

∫ ∞
0

[B0 + B1τ ] exp
[
− τ
µ

(1 + βν)

]
(1 + βν)dτdµ

=π

[
B0 +

2B1

3(1 + βν)

]
.

Far from the line center, βν → 0, we get the continuum flux as

F C
ν = π

[
B0 +

2B1

3

]
.

Hence the depth of the line is

Aν ≡ 1− Fν
F C
ν

= A0
βν

1 + βν
,where A0 ≡

2B1

3B0 + 2B1
(8)

is the depth of an infinitely opaque (βν →∞) line.
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Curve of Growth

Observing spectral lines with high resolution is not always available.
What is often done is to measure the equivalent width (EW), defined
as

Wν =

∫ ∞
0

(
1− Iν

I0

)
dν. (9)

In a simple case of radiation from a
background source incident on a foreground
slab of an optical depth of τν , the EW of a
spectral line is then

Wν =

∫ ∞
0

(1− e−τν )dν. (10)

While τ is proportional to the column density
of the species that is responsible for the line
transition, the plot of Wν-column density is
called a curve of growth.

The evolution of a spectral
absorption line with
increasing opacity of the
absorbers for a sample
values of β0 (see HKT).



Now placing Eq. 8 in Eq. 9, we have

Wν =

∫ ∞
0

A0
βν

1 + βν
dν = 2A04νD

∫ ∞
0

β0H(a,u)

1 + β0H(a,u)
du,

where β0 = κL
ν,0/(κC

ν

√
π4νD) and the factor of 2 comes from the

change of the variable from ν to u, since H(a,u) is symmetrical about
the line center and the integration now is just over 4ν > 0.

I At small (linear) optical depth (β0 � 1),
Wν ≈ A0

√
π4νDβ0[1− β0√

2
...],

where the first term of Wν is
independent of the Doppler broadening,
since β0 ∝ 4ν−1

D .

I In the intermediate (saturation) region,
Wν ≈ 2A04νD

√
lnβ0.

I At the (damping) extreme (β0 � 1),
Wν ≈

√
πaβ0A04νD,

again independent of the Doppler
broadening because aβ0 ∝ 4ν−2

D .

HKT Fig. 4.11: The curve of
growth corresponding to the line
profiles with two different values of
a (= γ/(4π4νD)).



I By fitting the curve of growth for a set of
lines, one may determine the
abundances of individual species and
the Doppler broadening.

I The data presented in the right figure
was used to determine the temperature
(from the Doppler broadening), as well
as the metal abundances of the sun.

HKT Fig. 4.12: The composite
curve of growth for some 200 lines
of ion (Fe I) and titanium (Ti I) in
the sun. The quantity Xf is
equivalent to our β0 while
Wλ/λ(= Wν/ν) is the equivalent
width divided by the central
wavelength of the line.
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Heat Transfer by Conduction
Energy transport by conduction can be important in some cases:
mostly in white dwarfs or cores of some red supergiants, where
elections are in a degenerate state. Are ions in a degenerate state as
well? Why important in such a state?

Only electrons near the top of
the Fermi sea can participate in the conduction process and are
mostly via Coulomb interactions with the surrounding ions.
The scattering works in the same fashion as radiative transport.
Rewrite Fick’s law of particle diffusion (Chapter 1) into

Fcond = −vλ
3

dU
dr

= −De
dT
dr
,

in which
De =

cV veλ

3
=

cV ve

3σCnI
∝ ρµIT
µ2

eZ 2
C
.

where cV =
(
∂U
∂T

)
V ∝ (ρ/µe)1/3T according to Eq. (3.115) in the HKT

text, the ion number density nI ∼ ρ/µI , the Coulomb scattering cross
section σC ∝ s2, Zce2/s ∼ mev2

e /2, and ve ∝ pF ∝ (ρ/µe)1/3,
assuming non-relativity electrons.
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To account for the conduction, we can formally define the “conductive
opacity” as

κcond ≡
4acT 3

3Deρ
= (4× 10−8 cm2 g−1)

µ2
e

µI
Z 2

c

(T
ρ

)2
.

We then have

Fcond = − 4acT 3

3κcondρ

dT
dr
.

The combined heat flux is

Ftot = Frad + Fcond = − 4acT 3

3κtotalρ

dT
dr

where
1

κtotal
=

1
κrad

+
1

κcond
.

Whichever opacity is the smaller of κrad or κcond , it is also more
important in determining the total opacity and hence the heat flow.
For a typical cool white dwarf with ρ = 106 g cm−3, T ∼ 107 K, and a
composition of carbon (µe = 2, µI = 12, and Zc = 6),
κcond = 5× 10−5 cm2 g−1, compared to κe = 0.2 cm2 g−1, the opacity
due to electron scattering.
In normal stellar material, κcond is too large to be important.
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Simulations of global Sun convection. The
differential rotation stretches and amplifies the
magnetic field, which emerges on the surface,
forms sunspots, and produces the eruptions
of hot solar plasma known as coronal mass
ejections. Gustavo Guerrero

Coronal mass ejection observed by NASA’s
Solar Dynamics Observatory (SDO), in
extreme ultraviolet radiation emitted by
ionized helium atoms. The eruption is caused
by a magnetic field generated by a dynamo
process beneath the surface. NASA/SDO



An Analogy in the Earth’s Atmosphere

Stages of cloud development.



Introduction
I When the temperature gradient in a region of a star becomes too

large (e.g., due to large opacity), the gas may become
convectively unstable.

I But we still don’t have an accurate theory to describe stellar
convection, which is a global and highly non-linear phenomenon.

I The mixing length theory, a local phenomenological model, is
often used to describe the convection:

I The heat transportation is via the rise and fall of “eddies” or
“parcels or “bubbles”.

I They lose their identify or break up and merge with the
surrounding fluid on some characteristic distance, l , the
mixing length.

I Large eddies drive progressively small ones until eventually
very tiny eddies are excited, with sizes λ ∼ ν/w(λ), where
ν and w(λ) are the viscosity and the velocity on scale of λ.
This is related to the Navier-Stockes equation

(∂t + w∂x )w = −∂xP/ρ+ ν∂2
x w

and the Reynolds number Re(λ) ≡ w(l)l
ν

.



Introduction
I When the temperature gradient in a region of a star becomes too

large (e.g., due to large opacity), the gas may become
convectively unstable.

I But we still don’t have an accurate theory to describe stellar
convection, which is a global and highly non-linear phenomenon.

I The mixing length theory, a local phenomenological model, is
often used to describe the convection:

I The heat transportation is via the rise and fall of “eddies” or
“parcels or “bubbles”.

I They lose their identify or break up and merge with the
surrounding fluid on some characteristic distance, l , the
mixing length.

I Large eddies drive progressively small ones until eventually
very tiny eddies are excited, with sizes λ ∼ ν/w(λ), where
ν and w(λ) are the viscosity and the velocity on scale of λ.
This is related to the Navier-Stockes equation

(∂t + w∂x )w = −∂xP/ρ+ ν∂2
x w

and the Reynolds number Re(λ) ≡ w(l)l
ν

.



Key assumptions (part of the so-called Boussinesq approximation)
are made in the Mixing Length theory:

I The characteristic dimension of a parcel is the same order as l .
I l is much shorter than the stellar scale height (e.g., λP).
I The pressure is balanced between the parcel and its

surrounding.
I The temperature difference between the parcel interior and

exterior is small.

We will first determine the criterion for convection, then estimate the
heat flux transported by convection, and finally discuss the
implementation of convection in the modeling of stellar structure.

Considering a typical parcel, which has the interior
temperature T ′, pressure P ′, and density ρ′. Outside
the parcel, the corresponding quantities are denoted by
T ,P, and ρ.
Suppose that T ′ > T , then Archimedes’ principle states
that the parcel will rise because of a net upward
buoyancy force of (ρ− ρ′)gV where g is the local
gravity and V is the volume of the parcel.
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Criteria for Convection
Assuming that there is no heat exchange with the surrounding, T ′ will
vary as the parcel rises:

βS ≡ −
(dT ′

dz

)
S

= −T ′
(d lnT ′

d lnP ′
)

S

d lnP ′

dz
.

The variation of the temperature in the surrounding gas is

β ≡ −dT
dz

= −T
d lnT
d lnP

d lnP
dz

Replacing P ′ with P (pressure balance) and T ′ with T and defining
d lnP/dz ≡ −λ−1

P , as well as ∇ ≡ d lnT
d lnP and ∇S ≡

(
d lnT ′
d lnP′

)
S
, we have

β − βS =
T
λP

(∇−∇S). (11)

When ∇ > ∇S, the fluid is convectively unstable, or the interior
temperature of the parcel drops at a rate slower than that of the
exterior temperature (i.e., β > βS). This is the Schwarzschild criteria,
which holds even when heat exchange and/or viscosity are
considered.



Radiative Leakage
To follow what happens in the parcel as it moves, we consider

dT ′

dt
=

(
∂T ′

∂t

)
P

+ w · ∇T ′,

where w is the parcel velocity.
I The r.h.s. first term takes care of the instantaneous heat change,

ρcP

(
∂T ′
∂t

)
P

= −∇ · Frad = K∇2T . K = 4acT 3

3κρ . Approximating ∇2T = −∆T/l2,

where ∆T = T ′ − T , we have ∂T ′
∂t = − νT

l2
∆T ,where νT = K/ρcP .

I The (adiabatic) advective term, w · ∇T ′ = w ∂T ′
∂z = −wβS , describes how T ′

behaves without the radiative loss.

Correspondingly, the ambient temperature around the moving parcel
changes according to

dT
dt

=
dT
dz

dz
dt

= −βw .

Putting all the above together, we have

d∆T
dt

= −νT

l2
∆T + (β − βS)w . (12)
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Equation of Motion

While the above equation describe the time-dependent temperature
contrast between the parcel and its immediate surroundings as the
parcel moves, the motion caused by the buoyancy force is
approximately

dw
dt

=
(ρ− ρ′)

ρ
g

where we have ignored any viscous effects.

For a small relative density contrast, (ρ−ρ′)
ρ = −Q (T−T ′)

T = Q
T ∆T ,

where Q ≡ −
(

d lnρ
d lnT

)
P

is the coefficient of thermal expansion. Thus,

dw
dt

=
Qg
T

∆T . (13)

Assuming that all the coefficients are constant, Eqs. 12 and 13 can
be solved for ∆T and w as functions of time.
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Convective Efficiencies and Fluxes
The solutions have the form ∝ eσt , where
σ is a complex angular frequency and
must satisfy the characteristic equation

σ2 + σ
νT

l2
+ N2 = 0, (14)

where the Brunt-Väisälä frequency, N, is
defined by

N2 = −Qg
λP

(∇−∇S), (15)

where the last step used Eq. 11. The
solutions of Eq. 14 are

σ± =
1
2

[
− νT

l2
±
√(νT

l2
)2
− 4N2

]
(16)

I If N2 > 0 , with or without an
imaginary part of σ, the parcel’s
motion will be damped out due to
radiative losses (no convection).

I If N2 < 0 [equivalent to
(β − βS) > 0], σ is real with one
positive root, both ∆T and w
may increase exponentially
(convectively unstable).

I If νT/l2 � |N|, then σ = |N|. This
is the case of efficient
convection because the parcel
loses essentially no heat during
its travel until it breaks up.

I Conversely, if
σ = −N2l2/νT � 1, ∆T and w
increase, but slowly.
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Parameters for a model ZAMS sun.



Parameters for a model ZAMS sun.

The dashed line in this schematic HR
diagram divides those stars with active and
efficient outer convection zones from those
that have feeble and inefficient convection.



To estimate the convection flux, we first estimate ∆T from Eq. 13,
assuming w ∼ σl

dw
dt
∼ σ2l =

Qg
T

∆T → ∆T ∼ σ2l
Qg

T .

The convection flux is then

Fconv = wρcP∆T ∼ σ3l2ρcPT
Qg

.

For adiabatic convection, σ =
√
−N2, using Eq. 15, one gets

Fconv =
ρcP l2T (gQ)1/2(∇−∇S)3/2

λ
3/2
P

. (17)

There is no exact way to deal with l . It may be chosen to be a fraction
(α) of the λP (e.g., α ∼ 0.5, which is called the mixing length
parameter and adjusted from comparison of obtained evolutionary
models with observations). The treatment, though rough and not
self-consistent, often does not make much a difference if the
convection is efficient.
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Model convection implementation

I While thus far we have assumed that ∇ (or β) and l are known
so that we can compute σ etc., and finally, Fconv .

I But there is no guarantee that the system is consistent, since the
onset of the convection can substantially change the stellar
structure (hence ∇).

I Thus some sort of iteration is then required.
I Furthermore, the total flux in general is compounded from the

convection (if present) and the radiative flux (which is always
there).

How is this situation handled?
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For simplicity, we consider here only adiabatic convection. To see
whether or not the convection may play a role in the heat transfer, we
first make believe that all the flux is carried by radiation and compute

∇rad =
3

4ac
r2Pκ
T 4

Ftot

GMr
.

This ∇rad , derived from the global quantity (Ftot ) is more reliable than
the local ∇ (from the assumed heat transfer in the present modeling).
So we need to check the consistency.

I If ∇ = ∇rad , then the flux is carried solely by the radiation and
you are done.

I However, if ∇ > ∇rad , the convection must then play a role with

Ftot = Frad + Fconv ,where Frad =
KT
λP
∇.

These two equations, together with Fconv (Eq. 17), allow us to solve
for ∇ and compare it with the present model value. We may need to
iterate to make them converge. When the convection is efficient, it
dominates. It is often reasonable just to assume ∇ = ∇S.
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Review
Key concepts: radiation transfer, Rosseland mean opacity, grey atmosphere, curve of
growth, heat conduction, efficient convection, adiabatic convection.

1. What are the various heat transfer mechanisms? What are the physical
conditions for each of the mechanisms to dominate?

2. What the various physical processes that contribute to the stellar opacity (as a
function of temperature in a plot)?

3. What are the power law exponents of the processes of the opacity when it is
expressed in a power law? Why do they have these particular exponents?

4. What are the relative importance of the opacity processes in various parts from
the stellar center to surface?

5. How may the opacity processes depend on metallicity or He abundance?

6. What is the Eddington limit?

7. Please derive the Schwarzschild criteria for the convective instability by yourself.
What are the underlying assumptions?

8. What is the mixing length theory?

9. Why do main-sequence massive stars tend to have convective cores and
radiative envelops, whereas lower mass stars tend to have the opposite
behaviors?

10. What is the practical way in the stellar modeling to decide on whether or not the
convection is important? How may it be implemented?
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