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Preface

These notes were written while teaching a graduate-level astronomy
course on stars at Michigan State University. The only background
preparation for this course is undergraduate physics and a course on
radiative processes, and so portions of these notes could be useful
for upper-level undergraduates. The text layout uses the tufte-book

(https://tufte-latex.github.io/tufte-latex/) LATEX class: the
main feature is a large right margin in which the students can take
notes; this margin also holds small figures and sidenotes. Exercises
are embedded throughout the text. These range from “reading ex-
ercises” to longer, more challenging problems. In addition, there are
several numerical exercises that use the MESA stellar evolution code,
available from http://mesa.sourceforge.net/. These numerical ex-
ercises are prefaced with the logo , used by kind permission
of the MESA council. Because the exercises are spread throughout
the text, there is a “List of Exercises” in the front matter to help with
looking for specific problems.

The course notes were originally meant as a supplement to the
main text, Hansen et al.1; in some editions of the course I also drew 1 Carl J. Hansen, Steven D. Kawaler,

and Virginia Trimble. Stellar Interiors.
Springer-Verlag, 2d edition, 2004

from Clayton2 and Kippenhahn and Weigert3. These notes therefore

2 Donald D. Clayton. Principles of Stellar
Evolution and Nucleosynthesis. University
of Chicago Press, 1983

3 R. Kippenhahn and A. Weigert. Stellar
Structure and Evolution. Springer-Verlag,
1994

tend to expand upon topics not already covered there. In the sec-
ond half of the course, the students typically gave presentations on
current topics in stellar evolution, and I supplemented those with
readings from the MESA instrument papers4. As a result, however,

4 Bill Paxton, Lars Bildsten, Aaron
Dotter, Falk Herwig, Pierre Lesaffre,
and Frank Timmes. Modules for
experiments in stellar astrophysics
(MESA). ApJS, 192:3, January 2011;
and Bill Paxton, Matteo Cantiello,
Phil Arras, Lars Bildsten, Edward F.
Brown, Aaron Dotter, Christopher
Mankovich, M. H. Montgomery, Dennis
Stello, F. X. Timmes, and Richard
Townsend. Modules for experiments
in stellar astrophysics (MESA): Planets,
oscillations, rotation, and massive stars.
ApJS, 208:4, 2013

my notes on topics of stellar evolution have lagged behind the rest of
the text and are not yet ready for posting.

Some of the material was inspired by three courses at UC-Berkeley
in the mid-90’s: “Stars with Lars”, taught by Professor L. Bildsten;
Statistical Physics, taught by Professor E. Commins, and Fluid Me-
chanics, taught by Professor J. Graham. I am also indebted to the
students who took the MSU stellar physics course for their questions,
feedback, and encouragement. Additional thanks go to MSU gradu-
ate students Dana Koeppe and Wei Jia Ong for reading late stages of
the drafts and testing the numerical exercises.

Please be advised that these notes are under active de-
velopment; to refer to a specific version, use the eight-character
stamp labeled “git version” on the copyright page.

https://tufte-latex.github.io/tufte-latex/
http://mesa.sourceforge.net/
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1
The Sun on a Blackboard

To begin our study of stellar structure, let us first consider the star
that we know best, our sun. The planetary orbits and the gravita-
tional constant G tell us its mass; our knowledge of the earth-sun dis-
tance and observations tell us its radius; measurements of the solar
radiant flux and spectra tell us its luminosity and temperature; and
radiometric dating of meteorites tells us the age of the solar system.
In summary:

M� = 1.99× 1033 g

R� = 6.96× 1010 cm

L� = 3.86× 1033 erg s−1

Teff = 5780 K

τ� = 4.6 Gyr.

Moreover, the composition of the sun is well known1; the five most 1 E. Anders and N. Grevesse. Abun-
dances of the elements - meteoritic
and solar. Geochim. Cosmochim. Acta,
53:197–214, 1989; and M. Asplund,
N. Grevesse, and A. J. Sauval. The Solar
Chemical Composition. In T. G. Barnes,
III and F. N. Bash, editors, Cosmic Abun-
dances as Records of Stellar Evolution and
Nucleosynthesis, volume 336 of Astro-
nomical Society of the Pacific Conference
Series, page 25, September 2005

abundant elements are H, He(−1.07), N(−4.22), O(−3.34), and
C(−3.61), where the number in parentheses is log(nel/nH), the abun-
dance relative to hydrogen.

Another salient feature of our sun is its stability: the power output
is remarkably constant, varying by less than 0.1% over several solar
cycles2, with inferred variations over 2, 000 yr on a similar scale3.

2 R. C. Willson and H. S. Hudson. The
sun’s luminosity over a complete solar
cycle. Nature, 351:42–44, May 1991

3 C. Fröhlich and J. Lean. Solar radiative
output and its variability: evidence and
mechanisms. A&A Rev., 12:273–320,
December 2004

On longer timescales, evidence for liquid water over much of Earth
history suggest that the power output of the sun cannot have varied
greatly over its life. The first task, then, is to investigate the mechani-
cal and thermal stability of a self-gravitating fluid.

E X E R C I S E 1 . 1 — What is the mean density of the sun? What is the
luminous flux (energy/area/time) at 1 AU? What is the orbital period of a
test mass just exterior to the radius of the sun?
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1.1 Fluid equation of motion

We can describe a star by deriving differential equations for the den-
sity, pressure, temperature, luminosity and composition. Over scales
that are large compared to the collisional mean free paths between
particles, we can treat the fluid as a continuous medium. That is, we
suppose that we can find a scale that is infinitesimal compared to the
macroscopic scales, but still much larger than the scales for micro-
scopic interactions. As a consequence, we can define thermodynamic
quantities (which only make sense if we have a large sample of parti-
cles) at a location (which means our sample is small compared to the
macroscopic lengthscales in the star).

Consider such a macroscopically small volume V. Its mass is M =∫
V ρ dV, where ρ is the mass density. If u(x, t) is the velocity, then the

flux of mass into the element is

−
∫

∂V
ρu · dS =

∂

∂t

∫
V

ρ dV

where the right-hand side follows from mass conservation. Using
Gauss’s law to transform the left-hand side into an integral over V
and combining terms, we have∫

V

{
∂ρ

∂t
+∇ · (ρu)

}
dV = 0.

Since this equation holds for any V, the integrand must vanish, and
we have our first equation,

∂tρ +∇ · (ρu) = 0. (1.1)

Our next equation is to get the analog of F = ma. Ignoring viscous
effects, the net force on our fluid element (with volume V) is due to
the pressure over its surface P and the gradient of the gravitational
potential Φ:

∫
V

ρ
d2r
dt2 dV =

∫
V

F dV = −
∫

V
ρ∇Φ dV −

∫
∂V

P dS.

Transforming the second integral on the right-hand side to a vol-
ume integral, and assuming that ∇Φ and ∇P vary on macroscopic
lengthscales, we arrive at an equation for the acceleration,

d2r
dt2 = −∇Φ− 1

ρ
∇P. (1.2)

where r(t) is the position of the particle so that the left-hand side is
the acceleration. Here we must be careful: the velocity of the fluid is
specified by a field u(x, t) that refers to the velocity of the fluid at a
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given point in space and a given instance of time, not to the velocity
of a given particle. A fluid element can still accelerate even if ∂tu = 0
by virtue of moving to a different location. At time t this particle has
the velocity

dr
dt

∣∣∣∣
t
= u(x = r|t, t) (1.3)

where we use the fact that the particle is moving along a streamline
of the fluid. At a slightly later time h, the particle has moved to a
location r(t + h) ≈ r(t) + hu, and its velocity is then

dr
dt

∣∣∣∣
t+h

= u(x = r|t+h, t + h) ≈ u + h(u ·∇u + ∂tu), (1.4)

where we evaluate the derivatives at time t. Subtracting equation (1.3)
from equation (1.4) and dividing by h gives us the acceleration; in-
serting this into Newton’s law and dividing by volume gives us Eu-
ler’s equation of motion,

∂tu + u ·∇u = −∇Φ− 1
ρ
∇P. (1.5)

Equations (1.1) and (1.5) form the first two equations we need to
describe stellar structure.

E X E R C I S E 1 . 2 — Using equation (1.1), show that equation (1.5) can be
written as

∂t(ρui) + ∂j(ρuiuj) = −ρ∂iΦ− ∂iP, (1.6)

where the subscripts i denote components and repeated subscripts are
understood to be summed over. Interpret the terms on the left-hand side in
terms of conservation of momentum.

1.2 Estimates of solar properties

From equations (1.1) and (1.5) we are in a position to estimate, in an
order-of-magnitude sense, many of the stellar properties. First, let’s
consider the scale for each term in equation (1.5),

∂tu︸︷︷︸
I

+ u ·∇u︸ ︷︷ ︸
II

= −∇Φ︸︷︷︸
III

− 1
ρ
∇P︸ ︷︷ ︸
IV

For a “characteristic” velocity U and lengthscale R, we see that terms
I and II are both of order ∼ U2/R (the timescale is R/U). For term
III, we note that GM/R2 = (GM/R)/R ∼ U2

esc/R, where Uesc is the
escape velocity. Finally, for term IV, (P/ρ)/R ∼ c2

s /R, where cs is the
speed of sound. Hence the typical scales of the terms are

I : II : III : IV ∼ U2 : U2 : U2
esc : c2

s
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Unless we are dealing with stellar explosions, the terms on the left-
hand side are quite negligible; in this case we must have the two
terms on the right-hand side balance, and the star is in hydrostatic
balance,

dP
dr

= −ρ
Gm(r)

r2 . (1.7)

Note that this does not mean that u and a are zero; it simply means
that they are not important for establishing the mechanical structure
of the star.

E X E R C I S E 1 . 3 — Equation (1.7) must in general be solved numerically
for a real equation of state P = P(ρ), but it is useful to construct a toy model
to gain insight. Suppose the sun has a density profile

ρ(r) = ρ0

(
1− r

R�

)
where ρ0 is the central density. Further suppose that the equation of state is
that of an ideal gas with mean molecular weight µ. Find the central density,
pressure, and temperature in terms of M�, R�, and µ. How do they compare
with the values for a constant density star? Evaluate them numerically for a
solar composition (hydrogen mass fraction of 0.7). Keeping M and R fixed,
what happens to the central temperature if the composition is transformed to
pure helium? If the nuclear reaction rate depends on temperature, what
would this do the luminosity, in the absence of any other changes?

A side benefit of our argument about the scaling of the terms is
that cs ∼ Uesc ∼ (GM�/R�)1/2. We can use this to get an esti-
mate of the central temperature of the sun in terms of M� and R�:
T�,center ∼ 107 K, assuming that the equation of state is that of an
ideal gas, P = (nion + ne)kBT (see exercise 1.4).

E X E R C I S E 1 . 4 — Use this scaling to get an estimate of the central
temperature of the sun in terms of M� and R�, assuming the composition is
an ideal ionized hydrogen plasma. What is the numerical value of the
temperature?

A worked example: free-fall collapse

It’s worthwhile to imagine what would happen if we suddenly
turned off pressure support in the sun, say by having a demon re-
place each particle with a non-interacting cold particle. For spheri-
cally symmetric collapse, let’s follow the motion of an observer on
the surface. The mass interior to the observer is M = M�, so her
equation of motion is

du
dt

= − GM
r(t)2 . (1.8)
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Multiplying both sides by u = dr/dt and integrating gives

1
2

u2 = GM
(

1
r
− 1

R

)
,

where R = r(t = 0). Defining x = r/R gives

dx
dt

=

[
2

GM
R3

(
1
x
− 1
)]1/2

. (1.9)

Now, GM/R3 has dimension [time−2]; furthermore, M/R3 = 4πρ̄/3,
where ρ̄ is the average density at the start of collapse. Hence, we can For the sun, ρ̄ = 1.4 g cm−3, just a bit

denser than you.define the dynamical timescale as tdyn ≡ (Gρ̄)−1/2. For the sun,
tdyn ≈ 1 hr. Defining τ = t/tdyn in equation (1.9) gives us a math
problem,

dx
dτ

=

(
8π

3

)1/2 ( 1
x
− 1
)1/2

which can be integrated from x = 1 to x = 0 to give

tcollapse =

(
3π

32

)1/2
tdyn ≈ 0.5 hr

as the time for the sun to collapse if all pressure support were re-
moved.

This is another way of looking at the derivation of eq. (1.7): if
terms III and IV are out of balance by even a small amount, the char-
acteristic time for the star to mechanically adjust is very rapid.

E X E R C I S E 1 . 5 — Consider a planar atmosphere, in which
−∇Φ = g = −gez with g constant. Thus the equation of hydrostatic
equilibrium (eq. [1.7]) is

dP
dz

= −ρg. (1.10)

Suppose we have an isothermal ideal gas, P = ρkBT/(µmu), where T is the
temperature, kB is Boltzmann’s constant, and µmu is the mass of particles in
the gas (mu is the atomic mass unit), so that the number of particles per unit
volume is N/V = ρ/(µmu). Show that for such a gas the density decreases
as

ρ(z) = ρ(0) exp (−z/H)

and find an expression for the scale height H. Evaluate H for conditions at sea
level on Earth. Does the value make sense? Now evaluate H under
conditions appropriate for the solar photosphere; in this case what is H/R�?

A closer look at hydrostatic equilibrium

If the center of the sun is indeed at a temperature ∼ 107 K, then most
of the gas should be ionized. Now electrons are much lighter than
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ions, so we might worry that the charges might separate (their scale
heights are different). If that were the case, an electric field would be
established. For a pure hydrogen plasma, then, we would have two
equations of hydrostatic equilibrium, one for the electrons and one
for the protons,

∇Pp = npmpg + npeE (1.11)

∇Pe = nemeg − neeE. (1.12)

Here g = −ger is the gravitational acceleration and E is the electric
field. Notice that if we presume that the plasma is charge-neutral, then
∇(Pp + Pe) = ρg, and we can solve for the electric field E. Of course, we must have some charge

separation in order to establish the
electric field in the first place, but one
can show that the fractional charge
separation needed is self-consistently
small.

E X E R C I S E 1 . 6 — Consider a fully ionized hydrogen plasma in a
gravitational field in planar geometry. You may assume that both the protons
and electrons each have an ideal, non-degenerate equation of state.

1. Argue that in the absence of an electric field, the protons would sink to
the bottom of the atmosphere. Show that if the atmosphere is to remain
charge neutral, then an electric field

E = −1
2

mu

e
g,

must be present. Compare this field to that between the proton and
electron in an atom. Could this external field be detectable, by Stark effect
for example?

2. Suppose a trace ion of charge Z′e and mass A′mu is introduced. What is
the net force on this ion?

3. In order to have an electric field, there must be some charge separation.
Quantify this: define a parameter

δ ≡
ne − np

ne + np

and estimate its magnitude. Hint: Use Poisson’s equation for both the
gravitational and electrostatic potentials, and the results of part (1).

1.3 Energy considerations

For a spherically symmetric gaseous body in hydrostatic equilib-
rium, the mass enclosed by radius r satisfies the differential equation
dm/dr = 4πr2ρ. Solving for ρ, substituting into the equation for
hydrostatic balance, eq. (1.7), and rearranging terms gives

4πr3 dP
dr

= −Gm(r)
r

dm
dr

.
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Integrating both sides from r = 0 to r = R, and changing variables on
the right hand side from r to m gives∫ R

0
4πr3 dP

dr
dr = −3

∫
V

P dV = −
∫ M

0

Gm
r(m)

dm = Egrav, (1.13)

where we integrated the left-hand side by parts, used the fact P(R)�
P(0), and replaced 4πr2 dr with dV. Now the pressure is related to
the internal thermal (kinetic) energy per unit volume U. For a non-
relativistic ideal gas, P = 2U/3; for a relativistic gas, such as photons,
P = U/3. Defining γ = (P + U)/U, we can write the total energy of
our gaseous sphere as

E = Eth + Egrav =
∫

U dV − 3
∫

P dV

=
1− 3 (γ− 1)

γ− 1

∫
P dV =

3(γ− 1)− 1
3(γ− 1)

Egrav. (1.14)

This is the just an application of the virial theorem to our star.
As a first example, consider a star with the pressure provided by a

non-relativistic ideal gas. Then γ = 5/3 and the total energy is4 4 This is true even if the matter is
degenerate.

E =
1
2

Egrav < 0.

The star is bound. As a second example, consider a star that is so
luminous that radiation pressure dominates. In this case, the pressure
is that of a relativistic ideal gas. Then γ = 4/3 and E = 0: the
star is marginally bound. We must worry about the stability of very
luminous stars!

Now suppose the sun were to slowly contract, such that we can
still assume hydrostatic equilibrium. How long would this take? The
time needed to radiate away the thermal energy defines the Kelvin-
Helmholtz timescale,

tKH ≡
Eth
L
≈

GM2
�

2R�L�
= 16 Myr. (1.15)

We have written “approximately” because we made the approxima-
tion that Egrav = −GM2

�/R�; in reality, the density profile of the
sun is such that Egrav is closer to −(3/2)GM2

�/R�. The estimated
timescale is much less than the age of the earth, and fossils indicate
that the sun has not changed dramatically on this timescale. Hence
there is an energy source needed to maintain the star’s interior in
thermal steady-state. To estimate the scale of energy released per,
integrated over the lifetime of the sun, is

∆E
N
≈ L� × 4.6 Gyr

N
≈ 0.2 MeV.

This is much larger than chemical reactions5 could provide. The sun 5 typical energy scale is 1 eV

must be powered by nuclear reactions.
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1.4 Some analytical limits

We can use the virial theorem of the previous section to set a few
limits on the interior pressure and temperature of any star. First, the
mass m(r) inside a volume of radius r is

m(r) = 4π
∫ r

0
ρr2 dr,

so dm/dr = 4πr2ρ. Combining this with the equation of hydrostatic
equilibrium gives,

dP
dm

= − Gm
4πr4 .

Integrating this equation from the center, where P = Pc, to some
radius r gives

Pc − P(r) =
G

4π

∫ r

0

m dm
r4 . (1.16)

Now, the average density enclosed in a sphere of radius r is ρ̄(r) =

3m(r)/(4πr3); solving for r and inserting in equation (1.16) gives

Pc − P(r) =
(

4π

3

)4/3 G
4π

∫ m(r)

0
ρ̄(r)4/3m−1/3 dm. (1.17)

Now, the density must decrease outward if the system is to be sta-
ble (you can’t have heavy fluid on top of light!) and so the average
density ρ̄(r) must also decrease outward. Hence,

ρc ≥ ρ̄(r) ≥ ρ̄(R) =
3M

4πR3 .

Inserting this inequality into equation (1.17) and evaluating at r = R
gives a constraint on the central pressure,

3
8π

GM2

R4 ≤ Pc ≤
1
2

(
4π

3

)1/3
ρ4/3

c GM2/3. (1.18)

The critical point here is to notice the order-of-magnitude scale: Pc ∼
GM2/R4. The only assumption in setting the limits (eq. [1.18]) is that
the density decreases outward.

E X E R C I S E 1 . 7 — Compute the mean kinetic (thermal) energy per
hydrogen nucleus in the sun, and express it in electron volts. How does this
compare to the gravitational binding energy of a hydrogen atom?

1.5 Transport of energy

We derived that at the current luminosity, the sun would take ∼
16 Myr to radiate away its internal (thermal) energy. This raises an



the sun on a blackboard 9

interesting question: what sets the luminosity? To develop this idea
further, let us write the luminosity as

luminosity ∼ (radiation energy stored in sun)/(photon escape time).

To get the radiation energy stored in the sun, we multiply the energy
density of a thermal distribution of photons, at the central tempera-
ture of the sun, by the volume of the sun:

Eγ = aT4
c ×

4π

3
R3
�. (1.19)

What about the photon escape time? As a first try, suppose the sun
were transparent, so that photons could freely stream out. Then the
escape time would simply be R�/c. This gives a ridiculously large
luminosity. Of course, a transparent sun would also

not produce a thermal spectrum, since
there would be no way for the photons
to come into thermal equilibrium with
the matter.

Suppose now instead that each photon can only travel a short dis-
tance ` before it is scattered into some random direction. In a random
walk, the total distance the photon travels to escape is R�(R�/`). In
this case, the flux from the sun would be

F =
L�

4πR2
�
∼

(4π/3)R3
�aT4

c

4πR2
�

c`
R2
�

=
1
3
`c

aT4
c

R�
. (1.20)

This is very crude, but we can use it to estimate that ` ∼ 10−3 cm.
The average distance a photon can travel before being absorbed or
scattered is called its mean free path. Given this value of ` esti-
mated from eq. (1.20), we can estimate the total number of scatterings
a photon must suffer in escaping; it is a very large number, and the
sun is quite opaque.

E X E R C I S E 1 . 8 — If we regard the sun as a large cavity filled with
photons, estimate the total energy stored in the radiation field. If the sun
were suddenly to become completely transparent, what would be the
resulting luminosity?

1.6 Summary

In summary, we’ve taken the observed gross properties of the sun,
the equation of motion for a fluid, and the ideal gas equation of state;
from these we’ve deduced that the sun is in hydrostatic balance,
that its interior temperature is of order 107 K, and that it would ra-
diate away its thermal energy and contract within about 10 Myr if
there were no nuclear reactions in its core. We have developed now a
crude picture of the sun: it is a mass of plasma that is in hydrostatic
equilibrium, with pressure gradients supporting the inward pull
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of gravity. It is very opaque, and thus it acts as a reservoir for pho-
tons with a thermal, Planckian distribution. Because it is opaque, the
photons leak out very slowly. This slow leakage represents a loss of
thermal energy; the thermal energy is replenished by heat liberated
from nuclear reactions.

What comes next is fleshing out the detailed physics implied by
these considerations: an equation of state to relate the pressure to the
density and temperature; photon scattering and absorption cross sec-
tions to compute the heat transport; nuclear reaction rates to deter-
mine the thermal steady-state and the gradual change in composition
of the interior.

Experiment 1.1— A contracting pre-main-sequence star

Setting up your workspace

To install MESA on your personal linux or mac computer do the fol-
lowing.

1. Download and install the appropriate SDK, available from http:

//www.astro.wisc.edu/~townsend/static.php?ref=mesasdk.

2. Use svn to checkout the latest release verion of MESA. Instructions
are available from http://mesa.sourceforge.net.

3. From a terminal window, go into the top-level MESA directory and
execute the following command: ‘./install’. This may take some
time as MESA will be building fairly large datasets for the equation
of state and opacity. If all goes well, you will get a message at the
end indicating that MESA installation was successful. For a full list
of instructions, see the documentation at https://docs.mesastar.
org/en/latest/index.html.

Once you have MESA installed, you then set up your work environ-
ment. To do this, you create a project directory and set environment
variables so that your FORTRAN compilers can find the MESA libraries.

Running your first MESA project

You are now ready to compile and run your first MESA project for this
course. This is a model of a 1 M� pre-main-sequence star. The code
stops when the luminosity from hydrogen fusion first exceeds 0.95 of
the luminosity from the surface.

Download the folder 1M-pms and place it into your projects folder.
Now execute ‘./mk’. This will call the fortran compiler to build the

executable.

http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
http://mesa.sourceforge.net
https://docs.mesastar.org/en/latest/index.html
https://docs.mesastar.org/en/latest/index.html
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If everything compiles okay, then an executable file called ‘star’
will be placed in the directory. To run MESA, type ‘./rn’ at the prompt.
If all goes well, after some time a window should appear with an an-
imated plot looking something like Figure 1.1. Note that during the
first 300 steps of the run, MESA is relaxing an initial guess for the
stellar structure into hydrostatic equilibrium. After that the star is
allowed to start contracting, and it quickly settles into a fully convec-
tive, contracting, pre-main-sequence star.

Figure 1.1: Graphical output from a
MESA run of a 1 M� PMS star.

The large plot labeled ‘TRho_profile’ shows the run of tempera-
ture T versus density ρ in the star, with the various colors indicating
mixing and energy generating regions. The small plot labeled ‘HR’
traces the history of luminosity L, in units of the solar luminosity L�,
versus effective temperature Teff. The other small plot labeled ‘TRho’
traces the history of the central temperature Tc versus the central
density ρc.

E X E R C I S E 1 . 9 —

1. How long did the star take to contract to the main sequence?

2. What are L, Teff, Tc, and ρc when the star begins H burning?

3. Describe how the fraction of the star that is convective changes during the
run.

A peak under the hood

To understand what just happened, we start with the command
‘./rn’. This is just a script—you can open it with a text editor—
containing the following.
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1 #!/bin/bash

2

3 rm -f restart_photo

4

5 date "+DATE: %Y-%m-%d%nTIME: %H:%M:%S"

6 ./star

7 date "+DATE: %Y-%m-%d%nTIME: %H:%M:%S"

This just gets some information about the version of MESA being used
(the ‘svn info’ directive), removes any pre-existing file with restart
information, prints the date, runs star, and then prints the date again.

The command ‘star’ is built from the source code in ‘src/run.f90’.
This is a very short program. The relevant lines

11 inlist_fname = ’inlist’

12

13 call do_read_star_job(inlist_fname, ierr)

14 if (ierr /= 0) stop 1

15

16 call do_run_star(inlist_fname)

direct the program to read in parameters from a file ‘inlist’ and
then hand control to a subroutine, ‘do_run_star’, within the MESA

library.
The file ‘inlist’, is divided into five sections (each section be-

gins with an ‘&’ followed by the section name and ends with a ‘/’):
‘star_job’, ‘eos’, ‘kap’, ‘controls’, and ‘pgstar’. The bang ‘!’ denotes
the start of a comment. This list is rather simple. The first section

7 &star_job

8

9 read_extra_star_job_inlist1 = .true.

10 extra_star_job_inlist1_name = ’inlist_1M_pms’

11

12 / ! end of star_job namelist

tells MESA to read another file, ‘inlist_1M_pms’. Sections 2–4, ‘&eos’,
‘&kap’, and ‘&controls’, are similar and also tell MESA to read in
‘inlist_1M_pms’. It is in ‘inlist_1M_pms’ that all of the non-default
settings are placed.

The third section of ‘inlist’

39 &pgstar

40

41 read_extra_pgstar_inlist1 = .true.

42 extra_pgstar_inlist1_name = ’inlist_pgstar’

43
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44 read_extra_pgstar_inlist2 = .true.

45 extra_pgstar_inlist2_name = ’inlist_track_central_vars’

46

47 / ! end of pgstar namelist

reads in the parameters for the plot from ‘inlist_pgstar’. There is
another parameter file, ‘inlist_track_central_vars’, but the flag
to read that file is ‘read_extra_pgstar_inlist2 = .false.’ As you
might guess, you’ll be using this later on in the assignment.

Question: There is a reason for nesting the parameter inlist files.
Can you discern what that reason is?

In inlist_1M_pms’, within section ‘&star_job’, the lines

12 create_pre_main_sequence_model = .true.

13 pre_ms_relax_to_start_radiative_core = .false.

triggers MESA to start with initial star with too low a central temper-
ature to begin hydrogen fusion, and to let that model contract. The
next set of instructions

15 ! save model 100, which is when the star is roughly 100 yrs old and

16 ! has settled onto the Hayashi track

17 save_model_when_terminate = .false.

18 save_model_number = 100

19 save_model_filename = ’1M_PMS.mod’

tells MESA not to save a model
6 when it finishes, but to save model 6 A model refers to a snapshot of the

star at a given time. The saved file can
be used to start a new MESA run.

number 100. When MESA constructs a pre-main-sequence model, the
first steps (default is the first 300) are used to relax the star into hy-
drostatic equilibrium; and then the model numbers reset. By setting
save_model_number = 100, we are asking MESA to save the state of the
star 100 timesteps after this initial relaxation. The model 100 is saved
in the file ‘1M_PMS.mod’, which we will use in subsequent exercises.
The next set of lines

21 ! helpful to pause before ending

22 pause_before_terminate = .true.

23 ! display on-screen plots

24 pgstar_flag = .true.

tell MESA to pause and wait for the user to hit ‘return’ before ending
the run, and to activate the graphical output.

In section ‘&controls’ of ‘inlist_1M_pms’, the lines

49 initial_mass = 1.0 ! in Msun units

50 initial_z = 0.02
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tell MESA the initial mass and metallicity of the star, while the lines

53 Lnuc_div_L_zams_limit = 0.95

54 stop_near_zams = .true.

tell MESA to stop when the total power from nuclear burning, Lnuc,
exceeds 0.95L, where L is the total surface luminosity.

Now that you’ve seen the code in action, we are going to look a bit
more at the architecture of MESA. If you do ‘ls $MESA_DIR’, you will
see that MESA is divided into modules: ‘eos’ computes the equation of
state, ‘kap’ computes the opacity, and so forth. Within each module
are two folders, ‘public’ and ‘private’. The ‘public’ folder contains
the interface of that module. The source file ending with ‘_def.f90’
contains the data structures used by that module, and the source file
ending with ‘_lib.f90’ contains the routines for that module. The
private directory contains the inner machinery of the module.

While all of these modules can be used by themselves, the ‘star’
module puts everything together to simulate stellar evolution. What
star does is to evolve a stellar model—a complete description of a
star at a given instant of time—forward in time by some amount ∆t.
String together a sequence of such models and you have a represen-
tation of the star’s evolution. These models are not evenly spaced in
time; rather, MESA adjusts ∆t to keep the models accurate within spec-
ified tolerances. The star module contains, in addition to the public

interface and private machinery, additional routines in the folder
job for starting a run from some initial model and stopping that run
when a specified condition is met.

A MESA project

The MESA code that you installed is a library, a collection of routines
that when combined simulate the evolution of a stellar-like object.
To put everything together, you create a directory, such as ‘1M-pms’. A
template for such a directory is contained in ‘$MESA_DIR/star/work’—
consult the ‘README.rst’ file there for instructions.

The working directory is organized into several sub-directories.
The ‘make’ folder contains the ‘makefile’ script for compiling the
code. The ‘src’ folder contains, in addition to the top-level ‘run.f90’
code, a collection of customizable routines in the file ‘run_star_extras.f90’.
In addition to these folders, the working directory contains a set of
inlist files; these, as mentioned above, contain all of the parameters
necessary to control the MESA run and its output. The complete list-
ings of parameters and their default settings are contained in the
directory ‘$MESA_DIR/star/defaults’ in the three files ‘*.defaults’.
The inlists in the work directory only need to contain those parame-
ters that differ from the defaults.
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The final components of the working directory are sub-directories
to hold the output of MESA. The names of these are customizable and
can be set in the inlists; by default, the main two are called ‘LOGS’
and ‘photos’. Within ‘LOGS’ are the file ‘history.data’ and the files
‘profiledd.data’. The ‘history.data’ file contains the time evolu-
tion of global stellar properties, such as luminosity, radius, surface
effective temperature, and so on. The ‘profiledd.data’ files contain
“snapshots” of the star’s structure: the run of temperature, density,
pressure, and so on with location within the star.

Exercise: customizing MESA output

After that brief overview of the MESA architecture, let’s do some-
thing concrete: we shall customize MESA to have it generate a plot
of a variable that we define. In this chapter, we’ve argued that the
central pressure of a star should scale as Pc ∝ GM2/R4. We also
found that the central density should scale as the mean density,
ρc ∝ ρ̄ = 3M/(4πR3). Exercise 1.4 asks you to find the central
temperature in terms of M, R, and mean molecular weight µ. What
the derivation in the chapter doesn’t tell us is the coefficient ρc/ρ̄

and its counterparts for pressure and temperature. We can use MESA,
however, to test these scalings and extract these coefficients.

To do this, we modify the code in ‘src/run_star_extras.f90’.
What we want is for MESA to calculate Pscale = GM2/R4, ρscale = ρ̄,
and Tscale, and then write out the values of Pc/Pscale, ρc/ρscale, and
Tc/Tscale in the file ‘history.data’. To do this, we first tell MESA how
many extra columns in ‘history.data’ we need:

121 integer function how_many_extra_history_columns(id)

122 integer, intent(in) :: id

123 integer :: ierr

124 type (star_info), pointer :: s

125 ierr = 0

126 call star_ptr(id, s, ierr)

127 if (ierr /= 0) return

128 how_many_extra_history_columns = 1

129 end function how_many_extra_history_columns

Here I am adding one column, which will be Pc/Pscale. When you im-
plement the other scalings, you’ll change the variable how_many_extra_history_columns

to reflect that we need three columns.
Next, we need to compute the data for these columns. We there-

fore modify the following routine.

132 subroutine data_for_extra_history_columns(id, n, names, vals, ierr)

133 integer, intent(in) :: id, n
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134 character (len=maxlen_history_column_name) :: names(n)

135 real(dp) :: vals(n)

136 integer, intent(out) :: ierr

137 type (star_info), pointer :: s

138 real(dp) :: G, M, R, mu, Pscale, rhoscale, Tscale

139

140 ierr = 0

141 call star_ptr(id, s, ierr)

142 if (ierr /= 0) return

143

144 ! note: do NOT add the extras names to history_columns.list

145 ! the history_columns.list is only for the built-in history column options.

146 ! it must not include the new column names you are adding here.

147 names(1) = ’Pc_scaled’

148 ! names(2) = ’Tc_scaled’

149 ! names(3) = ’rhoc_scaled’

150

151 ! Newton’s constant, defined in module const_def (which

152 ! is included at the top)

153 G = standard_cgrav

154 ! baryonic mass of the star, in gram; s is a data structure and is

155 ! described in $MESA_DIR/star_data/public/star_data.inc

156 M = s% mstar

157 ! log_surface_radius is in units of Rsun, so we convert; Rsun

158 ! is in const_def

159 R = Rsun*exp10(s% log_surface_radius)

160 ! central mean molecular weight

161 mu = s% center_mu

162 ! scalings for pressure, density, and temperature

163 Pscale = G*M**2/R**4

164 ! Tscale = ?

165 ! rhoscale = ?

166 ! ***HINT***: the combination kB*NA, where kB = Boltzmann’s

167 ! constant and NA = Avogadro’s number, is defined in const_def is

168 ! given the name cgas. You will need this to compute Tscale.

169 !

170

171 vals(1) = exp10(s% log_center_pressure) / Pscale

172 ! vals(2) = ?

173 ! vals(3) = ?

174

175 end subroutine data_for_extra_history_columns

In detail, we first declare the extra variables we need.
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138 real(dp) :: G, M, R, mu, Pscale, rhoscale, Tscale

Next, we give each column a name.

147 names(1) = ’Pc_scaled’

148 ! names(2) = ’Tc_scaled’

149 ! names(3) = ’rhoc_scaled’

Notice that the latter two are commented out (‘!’); for this example;
you’ll need to uncomment them to print out the other variables.

We are then ready to compute our values. Note that MESA defines
many physical constants in ‘$MESA_DIR/const/public/const_def.f90’,
so we should use those values. For example, we load the value of
Newton’s gravitational constant in line 153, and you can read the hint
in lines 166ff for loading kBNA. Next, we need to get the values of M,
R, µc, Pc, ρc, and Tc. These are provided in an internal data structure,
which the routine loads into a pointer named ‘s’

141 call star_ptr(id, s, ierr)

with the data structure being tagged with the variable id that is
passed to the routine. To see a complete list of what is in this data
structure, look at ‘$MESA_DIR/star_data/public/star_data.inc’.
I’ve already taken care of computing M, R, µc, and Pscale for you. For
example,

159 R = Rsun*exp10(s% log_surface_radius)

takes the stored variable ‘log_surface_radius’, which is log10(R/R�),
according to ‘$MESA_DIR/star_data/public/star_data.inc’; it then
uses the ‘exp10’ intrinsic and the value of R�—which is defined in
‘const_def.f90’—to get the surface radius in cgs. Finally, the charac-
teristic pressure scaling is computed

163 Pscale = G*M**2/R**4

and this is used to scale the pressure and store it in the array ‘vals’:

171 vals(1) = exp10(s% log_center_pressure) / Pscale

You will fill in the second and third members of the array for the
scaled central density and temperature.

If you look in ‘LOGS/history.data’, you should see that the last
column is indeed ‘Pc_scaled’, as expected. Of course, we’d like
to display it graphically, and MESA does predefine plots that can
display values in ‘history.data’. We customized the output in
‘inlist_track_central_vars’:

1 &pgstar

2
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3 History_Panels2_win_flag = .false.

4 History_Panels2_win_width = 6

5 History_Panels2_win_aspect_ratio = 0.75 ! aspect_ratio = height/width

6

7 History_Panels2_title = ’Scaled central values’

8

9 History_Panels2_num_panels = 1

10

11 History_Panels2_file_flag = .false.

12 History_Panels2_file_dir = ’frames’

13 History_Panels2_file_prefix = ’scaled_center_vals_’

14

15 ! History_Panels2_xaxis_name = ’log_star_age’

16 History_Panels2_yaxis_name(1) = ’Pc_scaled’

17 ! History_Panels2_yaxis_name(2) = ?

18 ! History_Panels2_yaxis_name(3) = ?

19

20 / ! end of pgstar namelist

To use this, we activate the window by setting the flag in line 3

to ‘.true.’, and we set ‘read_extra_pgstar_inlist2 = .true.’
in the top-level inlist. If we want to save our output, we can set
‘History_Panels2_file_flag = .true.’ in ‘inlist_track_central_vars’.
We’ll need to have the directory ‘frames‘ created (see line 12) to hold
these. For a history plot, the default x-axis is the model number of
the star. You can change this, for example, by uncommenting the line

15 ! History_Panels2_xaxis_name = ’log_star_age’

in ‘inlist_track_central_vars’. Finally, to plot the scaled central
density and temperature, you’ll need to change the number of panels
and declare them, lines 17–18.



2
The Lagrangian Equations of Stellar Structure

2.1 The conservation laws

After our rapid overview, we now gather the tools needed to tackle
stellar evolution. The first is to get the macroscopic equations for
stellar structure. We will start from the equations expressing con-
servation of mass1, momentum, and energy. We already derived the 1 In a relativistic system, we would

instead start from conservation of
baryon number, since mass is not
invariant.

continuity (conservation of mass) equation,

∂tρ +∇ · (ρu) = 0, (2.1)

and the Euler equation,

∂tu + u ·∇u = −∇Φ− 1
ρ
∇P. (2.2)

Note that if we multiply eq. (2.2) by ρ, we can rewrite it, using
eq. (2.1), as

∂t(ρu) +∇ · [u(ρu)] = −ρ∇Φ−∇P. (2.3)

The left-hand side is interpreted as expressing the conservation of
momentum (ρu) in the absence of forces, analogous to eq. (2.1) for the
conservation of mass (ρ).

Note the general form of a conservation equation:

∂t(conserved quantity)

+∇ · (flux of conserved quantity) = (sources)− (sinks).

Because the momentum density ρu is a vector, its flux is a tensor:
[u(ρu)]ij ≡ ρuiuj. By ρuiuj, we mean the momentum

along direction i being transported
along direction j.

The next equation is that of energy conservation. Here
we must consider both the internal energy per unit volume E/V =

ρε and the kinetic energy per unit volume ρu2/2. In this section ε

represents the internal energy per unit mass of the fluid. In a fixed
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volume of the fluid the total energy is thus∫
V

(
ρ

1
2

u2 + ρε

)
dV.

The flux of energy into this volume will clearly include

−
∫

∂V

(
1
2

ρu2 + ρε

)
u · dS.

But wait, there’s more! In addition, we have a conductive heat flux F;
the total heat conducted through the surface ∂V is

−
∫

∂V
F · dS.

Moreover, the pressure acting on fluid flowing into our volume does
work on the gas at a rate

−
∫

∂V
Pu · dS.

As a result, the net change of energy in our volume is

∂t

∫
V

(
1
2

ρu2 + ρε

)
dV =

−
∫

∂V
dS ·

[
u
(

1
2

ρu2 + ρε + P
)
+ F

]
+
∫

V
(ρu · g + ρq)dV. (2.4)

On the right-hand side we’ve added in the work done by gravity
and the heating evolved by nuclear reactions (this could also involve
sinks, such as neutrinos with a long mean free path). Expressed in
differential form, equation (2.4) is

∂t

(
1
2

ρu2 + ρε

)
+∇·

[
ρu
(

1
2

u2 + ε +
P
ρ

)]
+∇· F = ρq+ ρu · g. (2.5)

You are possibly wondering why I didn’t put gravity, which can
be expressed as a potential, on the left hand side of this equation.
The reason is that the gravitational stresses cannot be expressed in
a locally conservative form; it is only when integrating over all space
that the conservation law appears.

Equations (2.1), (2.3), and (2.5) are supplemented by an

equation of state, which allows one to get from the pressure P,
the temperature T, and the mass fractions Xi of the species present,
the remaining thermodynamical quantities, such as mass density ρ

and specific energy ε. In addition, Poisson’s equation

∇2Φ = 4πGρ, (2.6)



equations of stellar structure 21

specifies the gravitational acceleration g = −∇Φ. We then need
one more equation to specify the heat flux F. We argued in §1.5 that
the typical length over which a photon travels before scattering is
very small compared to the lengthscale over which the macroscopic
properties of the star vary. In this case, we expect the flux to obey a
conduction equation of the form

F = −K∇T. (2.7)

This assumption is clearly questionable near the stellar surface, and
we have left unspecified the form of K. Such an equation does, how-
ever, close the system of equations; all of the physics is then con-
tained in the equation of state P(ρ, T, {Xi}), the rate of heating
from nuclear reactions q(ρ, T, {Xi}), and the thermal conductivity
K(ρ, T, {Xi}). Here {Xi} are the mass fractions of the isotopes com-
posing the solar plasma. We will also need a system of equations
to describe how the Xi change as a result of nuclear reactions and
diffusion.

2.2 Thermodynamics of a mixture: A digression

Specifying the composition

In this section we’ll look at how one describes the composition for a
multi-component plasma. To make things concrete, let’s imagine a
box containing a mixture of nuclei, of many different isotopes, and
electrons. (To keep things simple, we’ll assume complete ionization.)
Each isotope species i has Ni nuclei present, and is characterized by
charge number Zi and nucleon number Ai. Charge neutrality then
specifies the number of electrons,

Ne = ∑
i

Zi Ni. (2.8)

The total mass of the box is

M = meNe + ∑
i

mi Ni, (2.9)

where me and mi are respectively the mass of an electron and a nu-
cleus of species i. Now what is mi? Breaking a nucleus i into Zi pro-
tons and Ai − Zi neutrons takes a certain amount of energy, the
binding energy Bi. We can therefore write mi = Zimp + (Ai − Zi)mn −
Bi/c2, where mp and mn are respectively the proton and neutron rest
masses.

Inserting our expression for mi into equation (2.9), dividing by
the volume of the box V, and rearranging terms gives us the mass
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density,

ρ =
M
V

= ∑
i

ni

[
(Ai − Zi)mn + Zi

(
mp + me

)
− Bi/c2

]
. (2.10)

Here ni is the number density of isotope species i, and we have used
equation (2.8) to eliminate Ne. The numbers ni are, of course, fantas-
tically2 large, so we scale the numbers by Avogadro’s constant, 2 astronomically?

NA = 6.0221367× 1023 mol−1. (2.11)

If we multiply and divide the right-hand side of equation (2.10) by Recall that a mole is an amount of
something: in 1 mol there are NA items.NA, we then have

ρ = ∑
i

(
ni
NA

)
Ai, (2.12)

where

Ai =
[
(Ai − Zi)mn + Zi

(
mp + me

)
− Bi/c2

]
× NA (2.13)

is the gram-molecular weight of species i with dimensions [A] ∼
[g ·mol−1]. Strictly speaking, the gram-molecular weight actually
refers to the mass of a mole of the isotope in atomic form; the right-
hand side of eq. (2.13) is the gram-molecular weight neglecting the
electronic binding energy.

Now you may wonder where the numerical value of NA came
from. It is not pulled out of thin air, but rather is defined so that
1 mol of 12C has a mass of exactly 12 g. In other words, for 12C
A ≡ A g mol−1. In fact for all nuclei, A ≈ A g mol−1 to better than
about 1%, as demonstrated in Table 2.1. Because in CGS A ≈ A, it is
customary to write A = A× (1 g mol−1), so that equation (2.12) is

ρ = ∑
i

(
ni
NA
× 1

g
mol

)
Ai. (2.14)

This only works if our unit of mass is the gram: in SI units 12C has
a mass of 0.012 kg mol−1. Equation (2.14) would be exact if A were a
real number, but the custom is to just keep it as the nucleon number,
which introduces an error of order one percent. Astronomers typi-
cally then redefine NA to mean NA(astronomy) ≡ NA/(1 g mol−1) =

6.0221367 × 1023 g−1. Alternatively, one can use the atomic mass
unit (symbol u) defined as 1/12 the mass of an atom of 12C, so that
1 u = (1 g mol−1)/NA = 1.66054× 10−24 g. This puts equation (2.14)
into the more obvious form ρ = ∑ ni × Aimu, with mu having a mass
of 1 u.

With the redefinition of NA, equation (2.14) can be rewritten as

1 = ∑
i

(
ni

NAρ

)
Ai ≡∑

i
Yi Ai (2.15)
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nuclide A A (|A − A|/A)× 100

n 1 1.00865 0.865

1H 1 1.00783 0.783

4He 4 4.00260 0.065

16O 16 15.99491 0.032

28Si 28 27.97693 0.082

56Fe 56 55.93494 0.116

Table 2.1: Selected gram-molecular
weights.

where Yi ≡ ni/(ρNA) is the molar fraction. It is customary to call Yi Ai

the mass fraction Xi, with ∑ Xi = 1. We can then define the mean
atomic mass number,

Ā =
∑ AiYi

∑ Yi
=

1
∑ Yi

, (2.16)

and mean charge number

Z̄ =
∑ ZiYi

∑ Yi
= Ā ∑ ZiYi. (2.17)

The molar fraction of electrons is

Ye = ∑ Zi
ni

ρNA
= ∑ ZiYi =

Z̄
Ā

. (2.18)

In stellar structure work, it is common to use the mean molecular
weight, defined so that the total number of particles, including elec-
trons, per unit volume is

∑
i

ni + ne ≡
ρNA

µ
. (2.19)

Yes, this is still the redefined NA: µ is dimensionless. From the defini-
tion,

µ =

(
∑

i
Yi + Ye

)−1

=

[
∑

i
(Zi + 1)Yi

]−1

;

sometimes astronomers also define the mean ion molecular weight,
µI = (∑ Yi)

−1, and the mean electron weight, µe = Y−1
e .

E X E R C I S E 2 . 1 — Consider a gas of 1H and 4He with molar hydrogen
fraction YH. Derive expressions for the molar fraction of 4He, YHe, Ā, Z̄, and
µ. What are the numerical value of these quantities for YH = 0.7, i. e., solar?

E X E R C I S E 2 . 2 — Assume that we can describe this plasma as an ideal
gas. What is the sound speed and the average kinetic energy of a particle, for
a given mass density and temperature?
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Thermodynamical quantities

In most textbooks on thermodynamics and statistical mechanics, the
thermodynamics are formulated in terms of some sample of fixed
size. For example, in the first law,

dE = TdS− PdV, (2.20)

the energy E and entropy S are extensive quantities that scale with
the number of particles N in our sample. In a fluid, however, these
quantities are all functions of position. By S(r), we mean that we
can define a small portion of the star about the coordinate r that is
large enough particles to ensure that quantities such as pressure and
temperature are well-defined, but small enough that we can treat S(r)
as a continuous function of position when integrating over the whole
star.

Using extensive quantities in fluid mechanics is cumbersome, so
we instead use quantities like the energy per unit mass ε = E/(ρV)

or the entropy per unit mass s = S/(ρV). Since a fixed mass of
fluid M occupies a volume V = M/ρ, we can divide the first law,
eq. (2.20), by M to obtain

dε = Tds− Pd
(

1
ρ

)
= Tds +

P
ρ2 dρ. (2.21)

The other extensive variables can be re-defined into mass-specific
forms in a similar fashion.

2.3 The equations in Lagrangian form

The fluid equations (2.1), (2.3), and (2.5) are in Eulerian form; that
is, they describe everything in terms of spatial coordinates and time.
This is not necessarily the most convenient form for practical calcu-
lations. For example, the star can expand and contract, making the
radius a function of time. Moreover, the velocity u is not the veloc-
ity of a given fluid element, which is why the equation of motion
(eq. [1.5]) is non-linear. It is often desirable to put the fluid equations
into Lagrangian form, in which the coordinates are some label for
a fluid element and time.

In one-dimension, the transformation to Lagrangian equations is
easy. At some reference time, we label the mass enclosed by a shell of
radius r

m(r, t) =
∫ r

0
ρ(r′, t)4πr′2 dr′, (2.22)

as a Lagrangian coordinate m; we then transform coordinates from
(r, t) to (m, t). To do this, differentiate eq. (2.22) w.r.t. r,

∂rm = 4πr2ρ,
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and substitute for ρ in the equation of continuity (eq. [2.1]). The first
term becomes

∂tρ = ∂t

(
1

4πr2 ∂rm
)
=

1
4πr2 ∂r(∂tm),

while the second term becomes

1
4πr2 ∂r (u∂rm) ;

the equation of continuity therefore becomes

1
4πr2 ∂r (∂tm + u∂rm) = 0. (2.23)

We can integrate this over r to find that ∂tm + u∂rm = f (t), where
f (t) is some as-yet-unspecified function; to fix f (t), we note that
since m(0, t) = 0, ∀t, we must have f (t) = 0. Now ∂tm + u∂rm =

Dm/Dt = 0, so along a streamline, m is a constant. We can therefore
transform from coordinates (r, t) to (m, t) by setting

∂

∂t

∣∣∣∣
r
+ u

∂

∂r

∣∣∣∣
t

=
∂

∂t

∣∣∣∣
m
≡ D

Dt
(2.24)

∂

∂r

∣∣∣∣
t

= 4πr2ρ
∂

∂m

∣∣∣∣
t
. (2.25)

Here D/Dt ≡ (∂/∂t)m is the Lagrangian time derivative. In deriving
this change, we used the equation of continuity, which becomes

∂r
∂m

=
1

4πr2ρ
. (2.26)

Our equation for momentum (eq. [2.2]) becomes

∂P
∂m

= − Gm
4πr4 −

1
4πr2

Du
Dt

. (2.27)

In hydrostatic balance the second term on the right-hand side is
negligible. The flux equation, (eq. [2.7]) can be transformed to

∂T
∂m

= − 1
16π2r4ρK

Lr (2.28)

Here Lr is the luminous flux at a radius r.
The energy equation (eq. [2.5]) is more complicated. We can ex-

pand the time derivative as

∂t

(
1
2

ρu2 + ρε

)
=

(
1
2

u2 + ε

)
∂tρ + ρ∂t

[
1
2
(u · u) + ε

]
= −

(
1
2

u2 + ε

)
∇ · (ρu) + ρu∂tu + ρ∂tε,
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using equation (2.1) to substitute for ∂tρ. We then use equation (2.2)
to replace ∂tu, and recognizing that u(u · ∇)u = u · ∇[(1/2)u2],
rewrite equation (2.5) as

ρ (∂t + u · ∇) ε + P∇ · u = −∇ · F + ρq. (2.29)

We’ve canceled all common factors here. Finally, we once again use
equation (2.1) to set

P∇ · u = −(P/ρ)(∂tρ + u · ∇ρ) = ρP (∂t + u · ∇)

(
1
ρ

)
.

Substituting this into the left-hand of equation (2.29) and using the
first law of thermodynamics (see eq. [2.21]), we obtain

ρ (∂t + u · ∇) ε + P∇ · u = ρT (∂t + u · ∇) s. (2.30)

For the right-hand side of equation (2.29), we expand the divergence
operator in spherical symmetry and use equation (2.25) to obtain

−∇ · F = − 1
r2

∂(r2F)
∂r

= −ρ
∂Lr

∂m
.

Putting everything together, we finally have our heat equation in
Lagrangian form,

∂Lr

∂m
= q− T

Ds
Dt

. (2.31)

This has a simple interpretation: the change in luminosity across a
mass shell is due to sources or sinks of energy and the change in the
heat content of the shell.

E X E R C I S E 2 . 3 — Show that equation (2.31) can be written as

∂Lr

∂m
= q−

cρT
χT

{
D ln P

Dt
−
[
χρ + χT (Γ3 − 1)

] D ln ρ

Dt

}
(2.32)

= q− P
ρ(Γ3 − 1)

D
Dt

ln
(

P
ρΓ1

)
, (2.33)

where

χT ≡ T
P

(
∂P
∂T

)
ρ

,

χρ ≡ ρ

P

(
∂P
∂ρ

)
T

,

Γ1 ≡ (∂ ln P/∂ ln ρ)s , and

Γ3 − 1 ≡
(

∂ ln T
∂ ln ρ

)
s

are defined in Appendix A.1.
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It is more useful, however, to work with temperature and pressure
instead of entropy. Write

T
Ds
Dt

= T
(

∂s
∂T

)
P

DT
Dt

+ T
(

∂s
∂P

)
T

DP
Dt

,

and use the identity (see Appendix A.1)(
∂s
∂P

)
T
= −

(
∂s
∂T

)
P

(
∂T
∂P

)
s

to obtain
∂Lr

∂m
= q− cP

[
DT
Dt
−
(

∂T
∂P

)
s

DP
Dt

]
. (2.34)

Equations (2.26), (2.27), (2.28), and (2.34), when supplemented by an
equation of state, a prescription for the thermal conductivity, and
the equations for nuclear heating and neutrino cooling, form the
equations for stellar structure and evolution in spherical symmetry.





3
Convection

Hot air rises, as a glider pilot or hawk can tell you. The fluid veloci-
ties in question are very subsonic, so we have hydrostatic equilibrium
to excellent approximation. But the fluid motions make an enormous
difference for heat transport! This state of fluid motions induced
by a temperature gradient is known as convection. You can perform
the following demonstration of the onset of convection. Brew tea,
and pour the hot tea into a saucepan that is on an unlit burner. Use
a straw with your thumb over the top to insert a layer of cold milk
under the warm tea in the saucepan. The temperature difference be-
tween the tea and milk will inhibit their mixing. Light the burner,
and watch for the development of convection—you will know it
when you see it.

Figure 3.1: Onset of convection in a
tea-milk mixture.

3.1 Criteria for onset of convection

To understand this process, let’s consider a fluid in planar geometry
and hydrostatic equilibrium,

dP
dr

= −ρg. (3.1)
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Now, imagine moving a blob of fluid upwards from r to r + h. We
move the blob slowly enough that it is in hydrostatic equilibrium
with its new surroundings, Pb(r + h) = P(r + h), where the subscript
b refers to “blob.” We do move the blob quickly enough, however,
that it does not remain in thermal equilibrium with its surroundings;
that is, we move the blob adiabatically. The entropy of the blob is
therefore constant, Sb(r + h) = Sb(r) = S(r), and is therefore not, in
general, equal to the entropy of the surrounding gas at r + h: Sb(r +
h) 6= S(r + h).

As the blob rises, it displaces some of the surrounding fluid.
Archimedes tells us that if the displaced fluid is less massive than
the blob, then the blob will sink. We can rephrase this in terms of the
volume occupied by a unit mass of fluid V: if the volume occupied
by the blob is less than the volume of an equal mass of background,
then the blob will sink. Translating this into an equation: if

V[P(r + h), S(r + h)]−Vb[Pb(r + h), Sb(r + h)] =

V[P(r + h), S(r + h)]−V[P(r + h), S(r)] > 0 (3.2)

then the blob will sink. If condition (3.2) is violated, the blob will
continue to rise, and the system is unstable to convection. Figure 3.2
has a cartoon of this process. P(r)

P(r+h)

S(r+h) S(r+h)S(r) S(r)> <

stable convective

dS
/d
r =

 0

dS
/d
r =

 0

Figure 3.2: Illustration of criteria for
convective instability. On the left, rais-
ing a blob a distance h adiabatically and
in pressure balance with its surround-
ing results in a higher density Vb < V.
This is stable: the blob will sink back.
On the right, the blob is less dense and
hence buoyant: it will continue to rise.

Taking h to be an infinitesimal displacement and expanding the
left-hand side of equation (3.2) gives us a local condition for stability:

V[P(r + h), S(r)] +
(

∂V
∂S

)
P

dS
dr
−V[P(r + h), S(r)] =

(
∂V
∂S

)
P

dS
dr

> 0.

(3.3)
Noting that (

∂V
∂T

)
P

=

(
∂V
∂S

)
P

(
∂S
∂T

)
P

=
CP
T

(
∂V
∂S

)
P

,

we can rewrite equation (3.3) as

T
CP

(
∂V
∂T

)
P

dS
dr

> 0.

Now, (∂V/∂T)P is positive (gas expands on being heated), so our
condition for stability is simply

dS
dr

> 0. (3.4)

In a convectively stable star, the entropy must increase with radius.
if dS/dr < 0, then convection occurs and carries high-entropy
material outward, where it will eventually mix with the ambient
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medium. As a result, convection drives the entropy gradient toward
the marginally stable configuration dS/dr = 0. If a star is fully con-
vective and mixes efficiently, then the interior of the star lies along an
adiabat.

We can derive a condition for convective stability in terms
of the local gradients of temperature and pressure. Writing S =

S[P(r), T(r)] we expand equation (3.4) to obtain

dS
dr

=

(
∂S
∂P

)
T

dP
dr

+

(
∂S
∂T

)
P

dT
dr

. (3.5)

Now, P is a monotonically decreasing function of r, which means we
can use it as a spatial coordinate and write,

dT
dr

=
dT
dP

∣∣∣∣
?

dP
dr

. (3.6)

Here dT/dP|? is the slope of the T(P) relation for the stellar inte-
rior. In particular, this is not a thermodynamic equality. Substituting
equation (3.6) into equation (3.5), using hydrostatic equilibrium to
eliminate dP/dr, and recognizing that (∂S/∂T)P = CP/T, we obtain

dS
dr

= −ρg
[(

∂S
∂P

)
T
+

CP
T

dT
dP

∣∣∣∣
?

]
. (3.7)

Finally, we can use the identity (see Appendix A.1)(
∂S
∂P

)
T

(
∂T
∂S

)
P

(
∂P
∂T

)
S
= −1 (3.8)

to simplify equation (3.7),

dS
dr

= −ρg
P

CP

[
P
T

dT
dP

∣∣∣∣
?
− P

T

(
∂T
∂P

)
S

]
= −ρg

P
CP [∇−∇ad] . (3.9)

Here we have introduced the shorthand notation ∇ ≡ d ln T/d ln P|?
and ∇ad ≡ (∂ ln T/∂ ln P)S. A mixture of uniform composition is unstable
to convection if the local temperature gradient is steeper than an adiabat, i.e.,
if ∇ > ∇ad.

E X E R C I S E 3 . 1 — Assuming that ∇ ≈ ∇ad in a convective region,
sketch a plot of temperature as a function of pressure for the following cases.

1. A star with a stable inner layer and a convective outer layer;

2. A star with a convective inner layer and and a stable outer layer.

Indicate on both of these plots an adiabat.
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3.2 A second look at convective instability

Here we’ll take a second-look at the convection by imagining we have
a background state with velocity u = 0; we then perturb this state by
displacing fluid elements a distance δr, and obtaining an equation of
motion for δr̈. This requires a bit of careful thought on what we are
perturbing.

f0(r,t)

f(r,t)

Figure 3.3: An Eulerian perturbation:
we compare fluid quantities at corre-
sponding locations.

There are two types of perturbations. We may change a fluid
quantity f at a fixed location r and time t (Fig. 3.3):

∆ f ≡ f (r, t)− f0(r, t), (3.10)

where the subscript “0” denotes the unperturbed quantity. We call
∆ f an Eulerian perturbation.

We may also change a fluid quantity f for a given fluid element;
the position of this fluid element in the perturbed system is not nec-
essarily at the same position as in the unperturbed case, however
(Fig. 3.4):

δ f ≡ f (r, t)− f0(r0, t). (3.11)

We call δ f a Lagrangian perturbation.
f0(r0,t)

f(r,t)

Figure 3.4: A Lagrangian perturba-
tion: we compare fluid quantities for
corresponding fluid elements.

Since the fluid element is displaced δr = r − r0, we can add and
subtract f0(r, t) to eq. (3.11) and expand f0(r, t) to first order in δr to
obtain a relation between the two types of perturbations:

δ f = ∆ f + (δr · ∇) f0. (3.12)

There are a few useful commutation relations that are easily proved:

∂t∆ f = ∆ (∂t f ) , (3.13)

∇∆ f = ∆∇ f , (3.14)
D
Dt

δ f = δ
D f
Dt

. (3.15)

And there are operations that do not commute:

∂tδ f 6= δ (∂t f ) , (3.16)

∇δ f 6= δ∇ f , (3.17)
D
Dt

∆ f 6= ∆
D f
Dt

. (3.18)

One can further show that δu = (D/Dt)δr. Finally if the fluid has
unperturbed velocity u = 0, then ∆u = δu.

Armed with these relations, let us perturb the momentum

equation by adiabatically displacing a fluid element a distance δr.
We will do this in such a way that the pressure at a fixed location
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does not change, i.e., ∆P = 0. Of course, the pressure and density of
a given fluid element will change according to the relation

δP
P

= Γ1
δρ

ρ

with Γ1 ≡ (∂ ln P/∂ ln ρ)s. We’ll also assume that the gravitational
force does not change, ∆g = 0. Our perturbed momentum equation
then becomes

D2δr
Dt2 = − 1

ρ + ∆ρ
∇P + g.

Since in the unperturbed fluid ∇P = ρg, this equation simplifies to

D2δr
Dt2 =

∆ρ

ρ
g. (3.19)

Expanding,

∆ρ

ρ
=

δρ

ρ
− 1

ρ
(δr · ∇)ρ =

1
Γ1

δP
P
− 1

ρ
(δr · ∇)ρ

=
1
Γ1

∆P
P

+ (δr · ∇)

[
1
Γ1

ln P− ln ρ

]
.

Since by assumption ∆P = 0, the radial component of equation (3.19)
becomes

δr̈ = g
[

d ln ρ

dr
− 1

Γ1

d ln P
dr

]
δr ≡ gAδr. (3.20)

The quantity A is called the Schwarzschild discriminant: if A < 0, then
the motion is oscillatory with frequency N = (−gA)1/2; N is called
the Brunt-Väisälä frequency. The condition A > 0 implies that the
fluid is convectively unstable; and indeed, one can show that A > 0
is equivalent to dS/dr < 0. The utility of using A rather than

dS/dr is that ρ and P appear in the
equations of stellar structure.

3.3 Efficiency of Heat Transport

A superadiabatic temperature gradient, ∇ > ∇ad, induces convec-
tive motions. A rising blob will be hotter than its surroundings and
heat will therefore be conducted from the blob to its surroundings as
it rises. The efficiency by which the heat is transported determines
by how much convection is able to drive the temperature gradient
towards an adiabat. Clearly the gradient must be super-adiabatic to
drive the convection in the first place. We shall see, however, that in
stars the difference between the gradient and the adiabat are typi-
cally exceedingly small. In other words, convection is extraordinarily
efficient at transporting heat.

To understand this, let’s go back to equation (3.19). Write ∆ρ as
stemming from differences in temperature between rising and falling
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blobs (recall that ∆P = 0). With this substitution, we have

(∂tu + u · ∇u) =
∆ρ

ρ
g =

(
∂ ln ρ

∂ ln T

)
P

∆T
T

g. (3.21)

Our goal is to estimate the velocity of convective motions u, the de-
parture of the temperature gradient from an adiabat ∆T, and the
fraction of the total heat flux carried by convective motions from
these equations.

First, the velocity. The left-hand side of equation (3.21) has a char-
acteristic scale ∼ U2/L, whereas the right-hand side has a scale
g∆T/T. (Recall that in an ideal gas, (∂ ln ρ/∂ ln T)P = −1.) If we
take L ∼ c2

s /g, a pressure scale height, than we get an estimate of the
convective velocity,

U
cs
∼
(

∆T
T

)1/2
. (3.22)

What is the heat flux carried by convection? Hot fluid rises and
carries an excess of heat, per gram, of cP∆T, giving a heat flux
≈ ρucP∆T. Thus to carry a given flux F, we have

csρcPT
(

∆T
T

)3/2
∼ F. (3.23)

Note that in order of magnitude, cPT ∼ c2
s , so

U
cs
∼
(

∆T
T

)1/2
∼
(

F
ρc3

s

)1/3
.

For conditions in the solar interior, F � ρc3
s , and therefore the con-

vective velocities are very subsonic. Indeed,

F
ρc3

s
∼ L�

4πR2
�

4πR3
�

3M�

(
R�

GM�

)3/2

∼ L�
GM2

�/R�

(
R3
�

GM�

)1/2

∼
tdyn

tKH
� 1.

That is, the ratio of the solar flux to what could be carried for near-
sonic convective motions is of the order of the dynamical timescale to
the Kelvin-Helmholtz timescale. We therefore expect that in a convec-
tive region, slow circulation will produce a temperature gradient that
is very nearly adiabatic. This argument breaks down near the surface,
where the cooling time of a fluid layer (the “local” Kelvin-Helmholtz
timescale) can be small.
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3.4 Turbulence

From the discussion of the previous section, it might seem possible,
given the boundary conditions, of solving for the flow planform, that
is, the velocity profile u(x, t). This is decidedly not the case, however:
the flow is turbulent, with intermittent velocity fluctuations seen over
a large dynamical range of spatial and temporal scales. Modeling of
such flows is a vexing problem in fluid dynamics.

To explore this topic a bit further, we need to introduce the con-
cept of dynamical similarity. Suppose you want to optimize a wing
shape for an aircraft, and you wish to test its performance in a wind
tunnel. Why should you expect that the behavior of a model wing
will have any relation to the full-scale one?

To see how this works, start with the Navier-Stokes equation (for
simplicity, we’ll keep it in one dimension):

(∂t + u · ∂x)u = −1
ρ

∂xP + ν∂2
xu. (3.24)

Here ν is the coefficient of kinematic viscosity, with dimensions [ν] ∼
[length]2 · [time]−1. Let’s recast equation (3.24) into dimensionless
form by scaling our variable: let L and U represent the characteristic
length and velocity scales, and define the dimensionless variables
x̃ = x/L and ũ = u/U. This choice then implicitly defines the time
variable, t̃ = t ·U/L. Upon changing to the variables x̃, ũ, and t̃, and
writing the equation of state as P = c2

s ρ (appropriate for adiabatic
flow—we are ignoring heat conduction), we obtain the equation

(∂t̃ + ũ · ∂x̃)ũ = −
{

c2
s

U2

}
∂x̃ ln ρ̃ +

{ ν

UL

}
∂2

x̃ũ. (3.25)

Each term in this equation is dimensionless. The physical character-
istics of the fluid and the scales involved are described by just two
dimensionless parameters:

Ma ≡ U
cs

Mach number (measure of compressibility)

Re ≡ UL
ν

Reynolds number (measure of viscous forces)

So, if we build a model wing at a certain scale and place it in a wind
tunnel with a certain velocity, then by adjusting the density and
temperature (and hence the sound speed and viscosity) to the desired
Ma and Re, the flow pattern in our model will faithfully replicate the
flow in the actual system.

For stellar convection, Ma � 1. What about Re? In typical as-
trophysical plasmas, the large lengthscales make Re ludicrously
large. Terrestrial experiments and simulations cannot approach this
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regime. Experimentally, when Re & 103, then flow becomes turbu-
lent: the velocity has strong intermittent fluctuations across a wide
range of lengthscales and timescales. How to characterize the flow
in such a case? It is useful to describe the flow in terms of correlated
velocities—an “eddy”—which have some lengthscale.

u

L

Figure 3.5: A simple mechanism for
generating turbulence. A flow of
water in a pipe (upstream velocity U)
flows through a mesh (spacing L). If
Re = UL/ν is sufficiently large, the
downstream flow becomes turbulent.

Suppose we pass water through a pipe that has an embedded
mesh screen (Fig. 3.5). For sufficiently large Re = UL/ν, where
L is the mesh spacing, the downstream flow becomes turbulent.
The turbulent eddies are damped. Now an eddy of size λ has an
effective Reynolds number Re(λ) = U(λ)λ/ν; if this is very large,
then molecular viscosity cannot be the reason for damping fluid
motions on that scale. Instead what happens is that an eddy with
lengthscale λ and velocity scale U(λ) drives eddies on a smaller scale
λ′ < λ. These in terms drive still smaller eddies, which in turn drive
still smaller eddies, and so on, until eventually very tiny eddies are
excited, with size λν ∼ ν/U(λν); and these eddies are damped by
viscosity!

Kolmogorov argued that in steady-state, intermediate-sized eddies
(i.e., those with lengthscales ν/U(λ) � λ � L) are neither losing or
gaining energy and hence were transferring energy to smaller scales
at the same rate as they were being driven; further, this rate at which
energy is being transferred to smaller scales is just the net rate of
dissipation in the fluid (which is done by the smallest eddies). The
huge dynamic range in lengthscales implies that the velocity of the
eddy should not depend on either L or ν, and hence U(λ) can only
be a function of λ (length) and the rate of energy dissipation per unit
mass ε (energy/mass/time ∼ length2/time3). There is only one way
to combine these quantities to form something with a dimension of
length/time, and so

U(λ) ∼ ε1/3λ1/3. (3.26)

This is seen experimentally: in flows with a large dynamic range of
scales, the velocity spectrum follows a power-law with this slope,
over an intermediate range of scales, the inertial range. A good exam-
ple is the flow in a tidal channel1. 1 H. L. Grant, R. W. Stewart, and

A. Moilliet. Turbulence spectra from a
tidal channel. Journal of Fluid Mechanics,
12:241–268, 1962

Experiment 3.1— Convection in a pre-main-sequence star

For this exercise, we’ll use the setup from MESA Experiment 1.1,
namely a contracting, pre-main-sequence star of mass 1 M�. Down-
load the folder convection/1M-convection and place it into your
projects folder.

For this exercise, we don’t need any custom output, so we are
just using the standard ’run_star_extras.f90’ file. We still need
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to compile the code, however, so do ‘./mk’. We will also need a
starting model. We created a model of a fully convective pre-main-
sequence star with M = 1 M� in Experiment 1.1. Copy the saved file
‘1M_PMS.mod’ into your work folder ‘1M-convection’.

The first thing we want to plot is the entropy in the star. If we
look at the file ‘$MESA_DIR/star/defaults/pgstar.defaults’, we
notice that Profile_Panels1 is close to what we want: its first panel
plots both log(T/K) and S/(NAkB). We don’t need the second panel,
though, so we’ll make the following changes to ‘inlist_pgstar’.
We’ll swap out the ‘TRho’ plot for ‘Profile_Panels1’, and then
we’ll set the number of panels to be just 1. The following lines of
inlist_pgstar accomplish this:

36 Grid1_plot_name(3) = ’Profile_Panels1’

37 ! following are specific settings for that plot

38 Profile_Panels1_title = ’thermal profile’

39 Profile_Panels1_num_panels = 1

The defaults for the rest of the settings for ‘Profile_Panels1’ are
fine, so we don’t need to set them explicitly. Now when you do ‘./rn’
the window will have a plot of both entropy and temperature as
functions of enclosed mass in the lower left panel.

E X E R C I S E 3 . 2 —

1. Compare the entropy profile when the star is fully convective, and when a
radiative region develops as it approaches the main sequence. Does the
profile match your expectation given in the warm-up exercise?

2. Look at log[T(m)]. In Ch. 1 of the notes, we discuss estimates of the
interior temperature, and we often use the central value as a
representative value. Is this reasonable? Make this quantitative: at the
point when the star joins the main sequence, find the mass at which
log[T(m)] = log[Tc]− 0.5 and log[T(m)] = log[Tc]− 1.0.

Convective efficiency

We argued in § 3.3 that convection was very efficient in the solar
interior. By efficient, we mean that a very slow convective velocity
vconv is sufficient to carry the flux. As a result, the difference between
the temperature gradient and the adiabatic one is also expected to
be very small: ∇−∇ad � 1, where ∇ ≡ d ln T/d ln P and ∇ad =

(∂ ln T/∂ ln P)s. We also worked through a linear stability analysis
in § 3.2 and found (eq. 3.20) the Brunt-Väisälä frequency N2. This
is the oscillation frequency for a fluid element that is adiabatically
displaced in the radial direction; N2 < 0 in a region with ∇ > ∇ad

and therefore unstable to convection.
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For this project, you are going to examine ∇ad, ∇ad −∇, N2, and
vconv/cs. In the first assignment, we had to customize ‘run_star_extras.f90’
to output specific quantities, but in this case the information we want
is already computed by MESA. A complete listing of the quantities
available for each zone is in ‘$MESA_DIR/star/defaults/profile_columns.list’.
Browsing this list, we see that ‘grada’ (≡ ∇ad) and ‘conv_vel_div_csound’
(≡ vconv/cs) are both written by default to ‘profiledd.data’; the
other two variables are computed by MESA, but are not, by default,
written to file (in ‘profile_columns.list’ they are commented out,
i.e., preceded by a bang ‘!’). To enable the printing of these two vari-
ables, we set, in the ‘star_job’ section of the ‘inlist_1M_convection’,
the flag

20 profile_columns_file = ’convection_variables.list’

which loads a list of profile variables from the file ‘convection_variables’.
This file first loads the defaults

18 ! first we’ll include the standard set of lines

19 include ’’

and then loads a useful coordinate (used later) ‘logxq’, defined as
log(1− q) with q = m(r)/M.

22 logxq ! log10(1-q)

The file finally loads the remaining four variables ∇ad, ∇ad −∇, N2

(scaled), and vconv/cs:

24 ! now we’ll include some variables that control convection

25 ! first, the adiabatic gradient, and its difference with the radiative temperature gradient

26 grada ! dlnT_dlnP at constant S

27 grada_sub_gradT

28

29 ! the Brunt frequency, scaled to a dimensionless number

30 brunt_N2_dimensionless ! N2 in units of 3GM/R^3

31

32 ! convection velocity divided by sound speed

33 conv_vel_div_csound

With these four quantities now being written to the profile data,
we can plot them. I’ve copied a template for this, which uses the
‘Profile_Panels6’ variables, into the file ‘inlist_convection_vars’.
You will need to customize this to produce the desired plot. There
are many ways to plot the four variables. Figure 3.6 shows one; see if
you can duplicate it! Note that in making this plot you might have to
set the minima and maxima for the plots; for some of these quantities
the values near the surface are at a very different scale than through-
out the bulk of the star. We will look in more detail at what happens
near the photosphere in the next exercise.
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Figure 3.6: Snapshot of convective
variables throughout the star.

Tip:—Unlike the parameters in ‘&controls’ and ‘&star_job’,
the settings in ‘&pgstar’ are reread at each step. This means you can
change parameters, such as the minimum and maximum values for
axes, while the program is running! To pause the program execu-
tion during an interactive run, type ‘ctrl-z’; you should then get a
message such as

1 ^Z

2 [1]+ Stopped ./rn

To restart, type ‘%1’ (where the ‘1’ is whatever number precedes the
word ‘Stopped’).

E X E R C I S E 3 . 3 —

1. How does the value of ∇ab ≡ (∂ ln T/∂ ln P)s compare with the value
expected for an ideal gas?

2. The Brunt frequency N2 that is plotted is actually in units of 3GM/R3;
explain from the derivation in the notes why the factor GM/R3 is
sensible. What is a characteristic value of N (when the star has
approached the main sequence and most of the star is not convective)?
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Approaching the photosphere

As you will notice from these plots, there is a lot happening for
m(r) > 0.99 M�, but all of the action is compressed against the
right-hand side of the plot. Wouldn’t it be nice to rescale the x-axis to
zoom in on this region? Fortunately, there is an easy way to do this.
MESA defines a variable q = m(r)/M, and one of the variables written
out by default is ‘logxq’, defined as log(1− q). Since q ranges from
0 at the stellar center to 1 at the surface, ‘logxq’ is 0 at the center and
goes to a very large, negative number near the surface. This means
that the surface will be at the left-hand edge of the plot and the cen-
ter at the right, so the orientation is opposite to plots using ‘mass’ or
‘radius’ on the x-axis. You can switch the orientation of the x-axis by
setting ‘Profile_Panels6_xaxis_reversed = .true.’.

E X E R C I S E 3 . 4 —

1. Re-run the evolution, this time setting the x-axis to ‘logxq’ for the plots of
N2, vconv/cs, ∇ad, and ∇ad −∇. Setting

1 Profile_Panels6_xmin = -12

2 Profile_Panels6_xaxis_reversed = .true.

is a good choice here. You will notice that ∇ad behaves in an interesting
fashion in the outer regions of the star. Do ρ and T take on any
characteristic values at the location of the feature? Hypothesize about
what may be happening there.

What to turn in

Make plots for models when the center of the star first becomes ra-
diatively stable, and when the star reaches the main sequence. To
have the plots written to a file, set ‘Grid1_file_flag = .true.’ and
’Profile_Panels6_file_flag = .true.’. Make sure that the flags
‘Grid1_file_dir’ and ‘Profile_Panels6_file_dir’ are both set to
‘frames’. There is no need to generate a plot for each timestep; you
can set the interval between plots via ‘Grid1_file_interval’ and
‘Profile_Panels6_file_interval’ (I set them to be 10).
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Polytropes and the Lane-Emden Equation

In the previous chapters, we derived the basic equations of stellar
structure. To construct detailed models is clearly an involved task
because there are many linked physical variables. For example, the
equation of hydrostatic balance, eq. (1.7), contains both ρ and P; in
order to connect these two variables we have to know the tempera-
ture, so in general we need in include an equation for heat transport
and heat flux. Before diving into all that, however, we’ll take a little
digression to solve some simplified stellar models known as poly-
tropes; these are useful not only for historical reasons, but they also
allow for quick analytical calculations.

4.1 Historical Background

To understand where the term polytropic comes from, let’s first con-
sider an ideal gas in hydrostatic equilibrium, and furthermore sup-
pose that the temperature and density lie along an adiabat. In that
case we have the following relations:

Tρ1−γ = const; Pρ−γ = const; TP(1−γ)/γ = const, (4.1)

which you will recall from elementary thermodynamics. Here γ =

CP/Cρ is the ratio of specific heats. The equation of state is

P =

(
NAkB

µ

)
ρT, (4.2)

where µ is the mean molecular weight and the quantity in paren-
thesis is CP − Cρ = NAkB/µ. We might imagine, for example, a
rising plume of hot air in Earth’s atmosphere. There is one snag
with this analysis for the troposphere, however: the condensation of
water vapor means that one cannot hold dS = 0 in a rising plume
of hot, moist air. Attempting to model this moist convection in the
Earth’s troposphere motivated work in the early 1900’s by Kelvin,
Lane, Emden, and others to consider a more general problem, in
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which TdS = CdT, where C is a constant. A configuration for which
this is true is called polytropic. An adiabat is a special case of a
polytrope with C = 0. Writing the first law of thermodynamics as
TdS = CρdT − (P/ρ2)dρ, substituting for TdS, and using equa-
tion (4.2), we obtain

(
Cρ − C

) dT
T

=
(
CP − Cρ

) dρ

ρ
.

This equation has a solution T ∝ ρ(CP−Cρ)/(Cρ−C). Comparing this
solution with equation (4.1), we can define a polytropic exponent, γ′ =

(CP − C)/(Cρ − C). Then equation (4.1) holds with γ replaced by
γ′. The advantage of this approximation is that it relates density to
pressure so that one can solve the equation of hydrostatic equilibrium
without simultaneously having to solve for T(r).

4.2 The Lane-Emden Equation and Solution

To use the polytropic equation of state, write the pressure P as

P(r) = Kρ1+1/n(r) (4.3)

where n and K are constants. Further define the dimensionless vari-
able θ via

ρ(r) = ρcθn(r), (4.4)

where the subscript c denotes the central value at r = 0. Note that
since

P(r) ∝ ρ× ρ1/n ∝ ρθ,

the quantity θ plays the role of a dimensionless temperature for an
ideal non-degenerate gas.

Substitute equations (4.3) and (4.4) into Poisson’s equation,

∇2Φ = 4πGρ, (4.5)

and the equation for hydrostatic equilibrium,

∇P = −ρ∇Φ, (4.6)

to obtain the Lane-Emden equation for index n,

ξ−2 d
dξ

(
ξ2 dθ

dξ

)
= −θn. (4.7)

Here ξ = r/rn is the dimensionless coordinate, and

rn =

[
(n + 1)Pc

4πGρ2
c

]1/2

(4.8)
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is the radial length scale.
For a stellar model described by a single polytropic relation, the

appropriate boundary conditions are

θ(ξ)|ξ=0 = 1, (4.9)

θ′(ξ)
∣∣
ξ=0 = 0. (4.10)

From the form of equation (4.7), it follows that θ(−ξ) = θ(ξ), that is,
the solution is even in ξ. A power-series solution of θ out to order ξ6

is

θ(ξ) = 1− 1
6

ξ2 +
n

120
ξ4 − n(8n− 5)

15120
ξ6 +O(ξ8) (4.11)

There are analytical solutions for n = 0, 1, and 5:

θ0(ξ) = 1− ξ2

6
(4.12)

θ1(ξ) =
sin ξ

ξ
(4.13)

θ5(ξ) =

(
3

3 + ξ2

)1/2
. (4.14)

Finally, the radius of the stellar model is determined by the loca-
tion of the first zero, ξ1, where θ(ξ1) = 0. For example, if n = 0
(eq. [4.12]), ξ1 =

√
6. Note that if n = 5 there is no root; θ5(ξ) >

0, ∀ξ > 0. A sample of Lane-Emden solutions for various indices is
shown in Figure 4.1.
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Lane-Emden Solutions Figure 4.1: Solutions of the Lane-Emden
equation for selected values of the
index n.

4.3 Some Useful Relations

First, let’s get the mass of our polytropic sphere. To do this, we write
the integral

M =
∫ R

0
4πr2ρ dr
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and make the substitutions r = rnξ, R = rnξ1, and ρ = ρcθn(ξ) to
obtain

M = 4πr3
nρc

∫ ξ1

0
ξ2θn(ξ)dξ.

Using equation (4.7) , the integrand can be written as a perfect differ-
ential, so we get

M = 4πr3
nρc

(
−ξ2

1θ′1

)
. (4.15)

Here I define the shorthand θ′1 ≡ [dθ(ξ)/dξ]ξ=ξ1
. Substituting rn =

R/ξ1 and dividing by 3 allows us to get a formula relating the central
density to the mean density,

ρc =
3M

4πR3

(
− ξ1

3θ′1

)
. (4.16)

For the solutions shown in Figure 4.1, we have the following values
of ρc/ρ̄, as shown in Table 4.1. As the index n increases, the configu-
ration becomes more and more concentrated toward the center.

n 0 1.0 1.5 2.0 3.0 4.0

ξ1 2.449 3.142 3.654 4.353 6.897 14.972

−θ′1 0.8165 0.3183 0.2033 0.1272 0.04243 0.008018

ρc/ρ̄ 1.00 3.29 5.99 11.41 54.18 622.4

Table 4.1: Properties of the Lane-Emden
solutions.

Starting from equation (4.15), we can substitute for rn using equa-
tion (4.8) and ρc using equation (4.16) to get an equation for the cen-
tral pressure,

Pc =
GM2

R4
1

4π(n + 1)(−θ′1)
2 . (4.17)

For an ideal gas, Pc = (NAkB/µ)ρcTc with µ being the mean molecu-
lar weight, we can solve for the central temperature,

Tc =

(
µ

NAkB

)(
GM

R

)
1

(n + 1)ξ1(−θ′1)
. (4.18)

Finally, starting from equation (4.17), substituting for Pc using equa-
tion (4.3), and eliminating ρc using equation (4.16), we obtain a rela-
tion between mass and radius in terms of K and n,

M1−1/n =

[
K(n + 1)
G(4π)1/n ξ1+1/n

1
(
−θ′1

)1−1/n
]

R1−3/n. (4.19)

Alternatively, one could use this equation to fit K to a star of known
M and R.

E X E R C I S E 4 . 1 — Derive equations (4.15)–(4.19). Explain what the
mass-radius relation, eq. (4.19), means for the cases n = 1 and n = 3.
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Finally, we can derive a formula for the gravitational energy of our
polytropic sphere. First, we can integrate the equation for the energy,

Egrav = −G
∫ M

0

m
r

dm,

by parts to obtain

Egrav = −GM2

2R
− 1

2

∫ R

0

Gm2

r2 dr = −GM2

2R
− 1

2

∫ R

0

dΦ
dr

m dr. (4.20)

If we define our zero of energy to be such that Φ(R) = 0, then we can
integrate by parts again to obtain

Egrav = −GM2

2R
+

1
2

∫ R

0
Φ dm. (4.21)

We can rewrite the equation of hydrostatic equilibrium as

dP
dr

= −dΦ
dr

ρ

and use equation (4.3) to eliminate P to obtain

dΦ
dr

= (1 + n)Kρ1/n.

Integrating from a point in the star r to R, and again using choosing
Φ(R) = 0, we obtain

Φ(r) = −(1 + n)Kρ(r)1/n = −(1 + n)
P(r)
ρ(r)

. (4.22)

Inserting equation (4.22) into equation (4.21), we have

Egrav = −GM2

2R
− 1 + n

2

∫ M

0

P
ρ

dm = −GM
2R

+
1 + n

6
Egrav, (4.23)

where we used equation (1.13) to relate the integral of P/ρ to Egrav.
Solving equation (4.23) for Egrav gives us the desired result,

Egrav = − 3
5− n

GM2

R
. (4.24)

Note that solutions with n > 5 have a positive gravitational energy.
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E X E R C I S E 4 . 2 — For a fully convective star with S(r) = const and an
ideal gas equation of state, how is the polytropic constant K related to the
entropy? Derive a formula for R in terms of M and s in this case. What
happens to the star if the entropy increases, i.e., heat is added to it?

Hint: Recall from thermodynamics that the entropy per unit mass of an
ideal gas is

s =
kBNA

µ

{
5
2
+ ln

[
µ

ρNA

(
µkBT

2πNAh̄2

)3/2
]}

. (4.25)

Use the Lane-Emden solution to compute the specific entropy, per unit
mass, in terms of the central temperature T and the stellar mass M:
s = s(Tc, M). From this expression, compute the “gravothermal” specific heat

c? = Tc
∂s(Tc, M)

∂Tc
, (4.26)

and comment on its physical significance.

Experiment 4.1— Entropy, radius, and gravithermal spe-
cific heat

Download the folder ‘Lane-Emden/0.3M-entropy’ and place it into
your projects folder. This project evolves a 0.3 M� through its pre-
main-sequence phase and the first 3 Gyr of its main-sequence life. A
star with initial mass M . 0.35 M� remains fully convective, so that
the entire star lies along an adiabat and has a single value of entropy
s at a given instant. This star therefore makes a good test case for
checking your work in the exercise 4.2.

You now have analytical expressions for how the radius scales
with entropy, and for the “gravithermal” specific heat c?. As you
evolve the low-mass star through its pre-main-sequence phase, its ra-
dius and entropy change. Make a plot that demonstrates the scaling
of radius with entropy. Make a second plot that shows the scaling of
entropy with central temperature Tc and from this plot obtain an esti-
mate of c?. Compare your findings against the results of exercise 4.2.

NB.—It is unnecessary to modify ‘run_star_extras.f90’ for
this project. Although MESA computes the central entropy, it does
not print it to the ‘history.data’ file by default. In the ‘&star_job’
section of ‘inlist_0.3M’ we therefore set

22 history_columns_file = ’entropy_vars.list’

and make the file ‘entropy_vars.list’:

37 include ’’

38
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39 log_star_age ! log10(star_age/yr)

40 log_center_T ! temperature

41 log_center_Rho ! density

42 log_center_P ! pressure

43 center_entropy ! in units of kerg per baryon

This gives us a history of s/(NA kB)—and other central thermody-
namical quantities—as the star evolves. Note that the list provided is
just a start and is not necessarily complete. To see what else is avail-
able for output, look at ‘$MESA_DIR/star/defaults/history_columns.list’.

Finally, you will note that in the top-level inlist, there is the follow-
ing reference:

44 read_extra_pgstar_inlist2 = .false.

45 extra_pgstar_inlist2_name = ’inlist_entropy’

You will need to create the file ‘inlist_entropy’ to make these plots.
I recommend using a custom version of the ‘History_Track’ plots, a
complete description of which you can find in ‘$MESA_DIR/star/defaults/pgstar.defaults’.
Don’t forget to set ‘read_extra_pgstar_inlist2 = .true.’ when you
are ready to generate these plots.





5
The Equation of State

In statistical equilibrium, we can describe a system of particles by a
distribution function f (p, x)d3 p d3x, such that the number of parti-
cles is

N =
∫

d3 p d3x f (p, x), (5.1)

where the integration is over the phase spaces of momentum and po-
sition coordinates (p, x). In an ideal gas, the particles do not interact.
In such a case, the distribution function f = f (p) does not depend on
position. The integration over d3x just gives a factor of the volume,
so the number density is n =

∫
d3 p f (p). From equation (5.1), we can

get our other thermodynamic quantities: for example.

E
V
≡ u =

∫
ε(p) f (p) d3 p energy per unit volume;(5.2)

P =
∫
(p · ez)(v · ez) f (p) d3 p pressure. (5.3)

Here ε is the particle energy and v the velocity.

E X E R C I S E 5 . 1 — For an isotropic momentum distribution, show that

P =
1
3

∫
|p||v| f (p)d3 p.

Then show that for a non-relativistic gas, P = (2/3)E/V, and that for a
relativistic gas, P = (1/3)E/V.

5.1 Connection to thermodynamics

Once we have the distribution functions, we can get all of the other
thermodynamic properties from the thermodynamic relations: in
what follows let N = nV be the total number of particles, with V
being the volume of the system. The total energy is then E = uV, and
the entropy is S, and we have

F = E− TS, Helmholtz free energy, (5.4)
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H = E + PV, Enthalpy, (5.5)

µN = G = F + PV, Gibbs free energy. (5.6)

For example, we have in the non-degenerate limit that

µ = kBT ln K = kBT ln

n
g

(
2πh̄2

mkBT

)3/2
 , (5.7)

and so we could write the entropy per unit mass as

s ≡ S
Nm

=
1

Nm
E + PV − µN

T

=
kB

m

{
5
2
+ ln

[
g
n

(
mkBT
2πh̄2

)3/2
]}

. (5.8)

In this equation I have used the ideal non-degenerate values E =

(3/2)NkBT, PV = NkBT and have denoted the mass per particle as m
and the degeneracy of the spin-states as g.

E X E R C I S E 5 . 2 — In an external field (i.e., gravitational) the chemical
potential, which is the change in energy when the number of particles is
increased, must include the potential. Consider an ideal gas in a planar
atmosphere of constant gravitational acceleration g. Write the chemical
potential as µ(z) = µid + Φ, where µid is the chemical potential for an ideal
gas in the absence of gravity, and Φ is the gravitational potential. For an
atmosphere in complete equilibrium (µ = const, T = const), calculate the
pressure as a function of position, P = P(z), and show that it agrees with
considerations from hydrostatic balance, equation (1.10).

5.2 An ideal Fermi gas

For fermions, particles with half-integer spin, it can be shown that

f (p) =
g

(2πh̄)3

[
exp

(
ε− µ

kBT

)
+ 1
]−1

. (5.9)

In this equation ε(p) is the energy of a particle, µ is the chemical poten-
tial, T is the temperature, and g denotes the number of particles that
can occupy the same energy level (for spin-1/2 particles, g = 2). The
connection to thermodynamics is via the relations

1
T

=

(
∂S
∂E

)
N,V

, − µ

T
=

(
∂S
∂N

)
E,V

,

and
TS = PV − µN + E;

these are derived in standard texts. Let’s explore what happens in
various limits.
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Non-degenerate, non-relativistic limit

First, let’s take K ≡ exp(µ/kBT) � 1. (In the literature, K is called
the fugacity.) Then in equation (5.9), we see that the exponential term
dominates. If our system is isotropic, then d3 p = 4πp2dp, and we’ll
use this substitution from now on. We then have for the number
density

n(µ, T) =
gK

2π2h̄3

∫ ∞

0
exp

(
− ε

kBT

)
p2dp. (5.10)

To do the integral, notice that since 2mε = p2, we have p2 dp =

m(2mε)1/2 dε; making the substitution x = ε/(kBT), we get

n(µ, T) =
gK

2π2h̄3

√
2(mkBT)3/2

∫ ∞

0
x1/2e−x dx. (5.11)

You have all struggled with this integral in your past, but to avoid
unpleasant flashbacks, I will just tell you that it is

√
π/2. So, we have

our first result (but we still don’t know what it means),

n(µ, T) = K

[
g
(

mkBT
2πh̄2

)3/2
]

. (5.12)

Let’s forge on a little further, though, and try to get the energy
per unit volume u. Once we have u, we know we can get the pres-
sure from the relation for a non-relativistic gas, P = 2/3 u. Using
equations (5.2) and (5.9),

u(µ, T) =
gK

2π2h̄3

∫ ∞

0
exp

(
− ε

kBT

)
εp2dp. (5.13)

Let’s repeat our trick of changing variables from p to x = ε(p)/kBT;
we then have

u(µ, T) =
gK

2π2h̄3

√
2kBT(mkBT)3/2

∫ ∞

0
x3/2e−x dx. (5.14)

Did you notice that if we integrate by parts,∫ ∞

0
x3/2e−x dx =

3
2

∫ ∞

0
x1/2e−x dx =

3
4
√

π,

we get the integral we already solved in equation (5.11)? Putting
everything together and using the expression for n (eq. [5.12]), we
have

u(µ, T) =
3
2

{
K

[
g
(

mkBT
2πh̄2

)3/2
]}

kBT =
3
2

nkBT. (5.15)

which gives us the pressure,

P =
2
3

u = nkBT. (5.16)
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Whoo-hoo! We’ve rediscovered the ideal gas.
Now we have to understand this chemical potential µ. We can

solve equation (5.12) for µ,

exp
(

µ

kBT

)
= K = n

[
g
(

mkBT
2πh̄2

)3/2
]−1

. (5.17)

Now K is dimensionless, a number, so the thing in [ ] must have di-
mensions of number density. Let’s call it nQ. Our chemical potential
is then µ = kBT ln(n/nQ). To understand the significance of nQ, let’s
calculate the uncertainty in position of a particle having energy kBT;
from Heisenberg, we have

∆x ≈ h̄
∆p
∼ h̄√

mkBT

where I am dropping numerical factors and I’ve made the substitu-
tion ∆p ∼ p ≈

√
mkBT. Now what happens if I pack the particles so

that on average there are g particles per box of volume (∆x)3? In that
case the density would be n = g(

√
mkBT/h̄)3 ≈ nQ. So, what appears

in the chemical potential is the ratio of the density to that density at
which the particles are packed so closely that the uncertainty in their
positions is the same size as the typical inter-particle spacing. In the
ideal-gas limit K � 1, which makes sense: n � nQ, so the particles
are very far apart compared to their thermal de Broglie wavelengths,
and quantum effects ought to be unimportant.

E X E R C I S E 5 . 3 — Get the first order corrections to the
Maxwell-Boltzmann gas. Take the fugacity K � 1, and expand the
Fermi-Dirac distribution (eq. [5.9]) to lowest order in K exp[−ε/(kBT)]. Show
that

n(K, T) = n0

(
1− 2−3/2K

)
u(K, T) =

3
2

n0kBT
(

1− 2−5/2K
)

,

where n0 is the density in the limit K → 0. Then derive the equation of state
P = P(n, T) to lowest order in K. For a given (n, T), is the pressure larger or
smaller than that of the ideal Maxwell-Boltzmann limit?

Degenerate, non-relativistic limit

When n & nQ, we can no longer use the approximation K � 1, so
let’s go to the opposite limit, for which µ � kBT. In this case, notice
from equation (5.9) that

f (p) ≈ g
(2πh̄)3

{
1 ε < µ

0 ε > µ
. (5.18)
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We can think of this as inserting g particles in each energy level,
starting with the lowest energy level and continuing until all of the
particles are used. The last particle is inserted with energy ε ≈ µ.
The only levels that will be partially filled will be those lying in a
thin band ε ≈ µ± kBT. If that is the case, we can make the following
approximation. Let’s take the limit T → 0, and define the Fermi
energy by εF = µ|T→0 and the Fermi momentum by pF =

√
2mεF. We

can then write equation (5.1) as

n(µ) =
1

π2h̄3

∫ pF

0
p2dp, (5.19)

since the integrand is zero for p > pF. The main application is for
electrons, which are spin one-half, so we substitute g = 2. Now this is
an easy integral,

n(µ) =
p3

F

3π2h̄3 =
(2mεF)

3/2

3π2h̄3 , (5.20)

or µ ≈ εF = (3π2n)2/3h̄2/(2m). Let’s get the energy per unit volume
and the pressure,

u(µ) =
1

π2h̄3

∫ pF

0

p2

2m
p2 dp =

p5
F

5π2h̄3 . (5.21)

Comparing this with equation (5.20), we have

u =
3
5

nεF, (5.22)

P =
2
5

nεF. (5.23)

To lowest order, neither u nor P depend on T. Substituting for εF in
equation (5.23) gives us the equation of state,

P =
2
5

(
3π2

)2/3 h̄2

2m
n5/3. (5.24)

Notice that in equation (5.17), nQ ∝ m3/2. This means that at any
given temperature, nQ for electrons is 18363/2 = 80, 000 times smaller
than it is for protons, not to mention helium or heavier nuclei. As a
result, the electrons will become degenerate (n & nQ) at a much lower
mass density than the ions. A common circumstance, then, is to have
a mixture of degenerate electrons and ideal ions (we will deal with
non-ideal corrections due to electric forces later).

Now, let’s estimate the boundary between the non-degenerate and
degenerate regimes. At a given temperature, we know in the low-
density limit that the electrons obey the ideal gas law (eq. [5.16]) and
in the high-density limit the electrons are degenerate (eq. [5.24]). So,
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let’s extrapolate our two limiting expressions for the pressure and see
where they meet,

nekBT = Pe,ideal ∼ Pe,deg. =
2
5

neεF, (5.25)

or εF ≈ kBT. No surprise here. Notice that the ratio

εF

kBT
∼ (3π2)2/3h̄2

2mekBT
n2/3

e ∼
(

ne

nQ

)2/3
, (5.26)

so marking the onset of degeneracy with εF ∼ kBT also makes sense
from that aspect as well. Our boundary in the density-temperature
plane between the non-degenerate and degenerate regimes is then
determined by setting kBT = εF,

T =
(3π2)2/3h̄2

2mekB

(
Yeρ

mu

)2/3
= 3.0× 105 K (Yeρ)2/3 . (5.27)

If the temperature falls below this value, the electrons will be degen-
erate. Here Ye is the electron molar fraction, or electron abundance
and mu is the atomic mass unit; consult §2.2 for details.

E X E R C I S E 5 . 4 — Repeat the derivation of equation (5.22) and (5.23) for
a relativistic Fermi gas. What is the expression for the temperature at which
the gas becomes degenerate (cf. eq. [5.27]) in this case?

5.3 Fermi-Dirac integrals

This condition for the onset of degeneracy, eq. (5.27), is only a rule-
of-thumb; in any serious calculation we would want to calculate the
electron thermal properties from the exact integrals

n(µ, T) =

√
2(mkBT)3/2

π2h̄3

∫ ∞

0

x1/2 dx
exp(x− ψ) + 1

(5.28)

P(µ, T) =
(2mkBT)3/2(kBT)

3π2h̄3

∫ ∞

0

x3/2 dx
exp(x− ψ) + 1

, (5.29)

where ψ = µ/(kBT). These integrals cannot be done analytically, but
they occur so frequently that there are many published tables and
numerical approximation schemes1. Specifically, the non-relativistic 1 F. X. Timmes and F. D. Swesty. The

Accuracy, Consistency, and Speed of
an Electron-Positron Equation of State
Based on Table Interpolation of the
Helmholtz Free Energy. ApJS, 126:501,
2000

Fermi-Dirac integral of order ν is defined as

Fν(ψ) =
∫ ∞

0

xν dx
exp(x− ψ) + 1

. (5.30)

One can (numerically) invert equation (5.28) to solve for the chemical
potential ψkBT.

The general case for a relativistic Fermi gas is left as an exercise.
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5.4 Relativistic photon gas

Photons are bosons—they have spin 1. For bosons, the distribution
function is similar to that in equation (5.9), but with the +1 replaced
by −1 in the denominator. In addition, photon number is not con-
served: one can freely create and destroy photons. This implies that
their chemical potential is zero. Also, g = 2 for photons: there are
two independent polarization modes. Putting all of these together,
we can write energy per unit volume as

u =
1

π2h̄3

∫ ∞

0
εp2
[

exp
(

ε

kBT

)
− 1
]−1

dp. (5.31)

Now, use the fact that p = ε/c and change variables to x = ε/(kBT)
to get

u =
k4

BT4

π2c3h̄3

∫ ∞

0

x3 dx
ex − 1

.

This integral is a classic and is equal to π4/15. Hence the energy per
unit volume and the pressure are

u =

(
k4

Bπ2

15c3h̄3

)
T4 = aT4 (5.32)

P =
1
3

aT4. (5.33)

In CGS units, a = 7.566× 10−15 erg cm−3 K−4. With this energy and
pressure, we can compute the other thermodynamical quantities.

E X E R C I S E 5 . 5 — Show that the entropy of a blackbody radiation is

Srad =
4
3

aT3V.

Now consider a mixture of blackbody radiation and an ideal gas. For the
ideal gas, the entropy is just

Sgas = Nµmus,

where s is given by Eq. (4.25). Along an adiabat, dS = d(Srad + Sgas) = 0; use
this to find an expression for ∇ad in terms of

β ≡
Pgas

P
,

where P = Pgas + Prad.
Show that the expression for ∇ad has the correct limiting values for β→ 0

and β→ 1.



56 stellar astrophysics

5.5 Chemical Equilibrium: The Saha Equation

Consider a reaction, A + B + . . . → C + D + . . .. When this reaction
comes into equilibrium, we are at a maximum in entropy, and the
condition for equilibrium is that the energy cost, at constant entropy
to run the reaction in the forward direction is the same as to run
the reaction in reverse. This can be expressed in terms of chemical
potentials as

µA + µB + . . .→ µC + µD + . . . (5.34)

Note in this formalism that a reaction 2A → B would be expressed as
2µA = µB.

As a worked example, we consider the ionization equilibrium of
hydrogen,

H+ + e→ H.

To use equation (5.34), we need to have both sides on the same en-
ergy scale. The reaction in the exothermic direction; that is, heat is
evolved if the reaction proceeds as written. This means that the right-
hand side is more bound, and its minimum energy is less than that
of the right-hand side. To get both sides on the same energy scale, we
must subtract the binding energy, Q = 13.6 eV, from the right-hand
side:

µ+ + µ− = µ0 −Q. (5.35)

Another way to see why Q appears is to add the rest mass for each
species to its chemical potential; collecting all terms on the right, we
would then have a term (m0 − m+ − m−)c2 = −Q. Some ionization
potentials, along with the half-ionization temperature for a given
electron number density ne, are given in Table 5.1.

element H− Na H He

Q/(eV) 0.75 5.14 13.6 24.6
T1/2(ne = 1013 cm−3)/K 600 3300 8 000 13 900

T1/2(ne = 1016 cm−3)/K 900 5 000 11 800 20 200

Table 5.1: Selected ionization potentials
and half-ionization temperatures

For a non-degenerate plasma, we can insert eq. (5.7) into eq. (5.35),
divide through by kBT, and take the exponential to obtain

n+n−
n0

=
g+g−

g0

(
m−kBT
2πh̄2

)3/2
exp

(
− Q

kBT

)
. (5.36)

The number density of all hydrogen in the gas is n0 + n+ = nH.
Denote the ionized fraction by x = n+/nH = ni/nH, so that the left-
hand side of equation (5.36) is nHx2/(1− x). In the hydrogen atom
ground state, the electron spin and proton spin are either aligned or
anti-aligned. These states are very nearly degenerate, so that g0 = 2.
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Both the proton and electron have spin 1/2; there are really only two
available states, however, because of the freedom in choosing our
coordinate system. As a result, g+g− = 2 as well.

Inserting these factors into equation (5.36), and using kB = 8.6173×
10−5 eV/K, we obtain

x2

1− x
=

2.41× 1021 cm−3

nH

(
T

104 K

)3/2
exp

(
−15.78× 104 K

T

)
. (5.37)

This equation defines a set of points in the ρ− T plane for which x =

1/2. We may take this set of points to mark the boundary between
neutral and ionized hydrogen. At fixed density, the transition from
neutral to fully ionized is very rapid.

E X E R C I S E 5 . 6 —

1. Solve equation (5.37) for a density of 1016 cm−3 (a fiducial value for the
solar photosphere) and find the half-ionization temperature, i.e., the
temperature at which x = 0.5. Explain the reason for the discrepancy
between the half-ionization temperature and kBT = 13.6 eV.

2. At this half-ionization temperature, what is the occupancy of the excited
levels of the hydrogen atom? Do we need to worry about corrections to
the ionization from these excited states?

5.6 Coulomb interactions

Under the conditions in a stellar interior, most of the atoms are ion-
ized, and the stellar matter consists of positively charged nuclei and
ions and negatively charged electrons. A plasma is defined as a gas
of charged particles in which the kinetic energy of a typical particle
is much greater than the potential energy due to its nearest neigh-
bors. To make this quantitative, consider a gas with only one species
present, with charge q. Let the mean spacing between particles be a;
clearly the number density of such particles is n = (4πa3/3)−1. We
may then take the quantity

Γ ≡ q2

akBT
(5.38)

as indicating the relative importance of potential to kinetic energy. In
a classical plasma, Γ � 1. Note, however, that systems with Γ > 1
are often (confusingly) called strongly coupled plasmas. The meaning is
usually clear from context.
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E X E R C I S E 5 . 7 — Show that for a non-relativistic plasma, the magnetic
interaction between two charged particles is much less than the electrostatic
interaction.

Debye shielding

Imagine a typical charged particle in a plasma. Very close to the
particle, we expect the electrostatic potential to be that of an isolated
charge Φ = q/r. Far from the particle, there will be many other
particles surrounding it, and the potential is screened. For example, a
positive ion will tend to attract electrons to be somewhat, on average,
closer to it than other ions: we say that the ion polarizes the plasma.
As a result of this polarization, the potential of any particular ion
should go to zero much faster than 1/r due to the “screening” from
the enhanced density of opposite charges around it.

Let’s consider a plasma having many ion species, each with charge
Zi, and elections. About any selected ion j, particles will arrange
themselves according to Boltzmann’s law,

ni(r) = ni0 exp
[
−ZieΦ(r)

kBT

]
. (5.39)

Here ni0 is the density of particle i far from the charge j, and r is the
distance between particles i and j. (A similar equation holds for the
electrons, with Z replaced by −1.) To solve for the potential, we can
use Poisson’s equation,

∇2Φ = −4π ∑
i

Zieni(r) + 4πene(r). (5.40)

Our assumption is that the term in the exponential of equation (5.39)
is small, so we may expand it to first order in Φ and substitute that
expansion into equation (5.40) to obtain in spherical geometry

1
r

∂2

∂r2 (rΦ) = −4πe

[
∑

i
ni0Zi

(
1− ZieΦ

kBT

)
− ne0

(
1 +

eΦ
kBT

)]
.

The overall charge neutrality of the plasma implies that ne0 =

∑i Zini0; using this to simplify the above equation gives

1
r

∂2

∂r2 (rΦ) =

[
4πe2

kBT ∑
i

ni0

(
Z2

i + Zi

)]
Φ ≡ λ−2

D Φ. (5.41)

The quantity in [ ] has dimensions of reciprocal length squared and
we define it as (1/λD)

2 with λD being called the Debye length.
Multiplying equation (5.41) by r, integrating twice, and determin-

ing the constant of integration from the condition that as r → 0,
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Φ→ Zje/r gives the self-consistent potential

Φ =
Zje
r

exp
(
− r

λD

)
. (5.42)

The Debye length λD determines the size of the screening cloud
around the ion.

In order for the above derivation to be valid, we require that λD �
a, where a is the mean ion spacing; otherwise, there won’t be any
charges in our cloud to screen the potential! Equivalently, we require
the number of particles in a sphere of radius λD to be large,

4π

3
λ3

D ∑
i

ni � 1. (5.43)

This condition must hold if we are to treat the gas as a plasma.
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E X E R C I S E 5 . 8 —

1. Show that equation (5.43) is equivalent to Γ� 1 for a single species
plasma.

2. Show that the net charge in the shielding cloud about an ion of charge Ze
is −Ze; the shielding cloud cancels out the ion’s charge.

Corrections to the ideal gas EOS

In a plasma the particles are not independent: shake one particle and
other nearby particles will shake as well. In statistical mechanics, this
requires introducing correlation functions to derive the equation of
state. We’ll adopt the more intuitive approach of Debye and Hückel
to get the lowest-order correction to the ideal gas EOS. First, the total
electrostatic energy in a volume V is

ECoul =
1
2

V ∑
j

ZjenjΦj. (5.44)

Here Φj is the potential at a particle j due to all the other particles in
the plasma. Now, we computed the total potential around a particle
(eq. [5.42]); expanding and subtracting off the self-potential of par-
ticle j gives Φj = −Zje/λD. Inserting this into equation (5.44) and
expanding gives

ECoul ≈ −V
(

π

kBT

)1/2
e3

[
∑

i
ni0

(
Z2

i + Zi

)]3/2

. (5.45)

This energy is to be added to the kinetic energy of the gas. The effect
of the electrostatic interactions is to decrease the energy in the gas,
that is, to make it more bound.

We can’t directly get the pressure from equation (5.45) because
the equation isn’t in terms of S and V (recall that P = −(∂E/∂V)S)
but rather in terms of T and V. In order to get the pressure, we first
must find the Helmholtz free energy F. To do this, we integrate the
thermodynamical identity

E = −T2
(

∂

∂T

)
V

(
F
T

)
and then take P = −(∂F/∂V)T,N to obtain

PCoul ≈ −
e3

3

(
π

kBT

)1/2
[(
〈Z2〉+ 〈Z〉

)
ρ

〈A〉mu

]3/2

. (5.46)

The effect of Coulomb interactions is to decrease the pressure below
the ideal gas value.
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Coulomb corrections when the electrons are degenerate

The above discussion holds only when both the electrons and ions
are non-degenerate. What happens when the electrons are degen-
erate? In that case the kinetic energy is of order the Fermi energy,
not the temperature. We might think to replace kBT with εF in equa-
tion (5.38). Recalling the formula for εF from § 5.2, we have the condi-
tion for the Coulomb interactions to be weak,

e2

aεF
=

(
4πn

3

)1/3 (mee2

h̄2

)
2

(3π2n)2/3 < 1. (5.47)

Here me and n denote, respectively, the electron mass and number
density. Do you recognize the quantity h̄2/(mee2)? It is the Bohr
radius, aB. What is aB doing in this equation? Well, we are looking
for a quantum mechanical system in which the Coulomb interaction
is comparable to the non-relativistic kinetic energy. Does that sound
like any system you’ve seen before?

Cleaning up equation (5.47), our condition for the electrons to be
weakly interacting when degenerate is(

25/3

3π

)(
na3

B

)−1/3
< 1, (5.48)

or, in terms of mass density ρ and electron fraction Ye, (Yeρ) >

0.4 g cm−3. As the density increases, the electron gas becomes more
ideal, that is, the electrostatic interaction matters less and less.

Just to complete the discussion on electrons, what if the electrons
are relativistic? In this case, εF = pFc = (3π2n)1/3h̄c, and

e2

aεF
=

(
4

9π

)1/3 ( e2

h̄c

)
= 3.8× 10−3. (5.49)

In this case εF ∝ n1/3 so the density dependence cancels. You will
note the appearance of the fine structure constant αF = e2/(h̄c), as
you might have expected when dealing with relativistic electrons and
electrostatics.

Under astrophysical conditions, we can almost always regard de-
generate electrons as being ideal. What about the ions? They are not
usually degenerate under conditions of interest. We can get a sim-
ple expression if we go to the opposite limit, in which the electrons
are very degenerate. In that case, the electrons are an ideal gas and
hence have uniform density. If the temperature is low enough, the
ions will have Z2e2/(akBT)� 1; in this case we might expect the ions
will arrange themselves into a lattice that maximizes the inter-ionic
spacing.

To get an estimate of the electrostatic energy, let’s compute the en-
ergy of a charge-neutral sphere centered on a particular ion of charge
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Zi. Because the electrons have a uniform density, Yeρ/mu, we can
find the radius of the sphere a by requiring it to have Zi electrons,

4π

3
a3
(

Ye
ρ

mu

)
= Zi, (5.50)

or a = [3Zimu/(4πYeρ)]1/3. The potential energy of this sphere has
two components. The first is due to electron-electron interactions,

Eee =
∫ a

0

q(r)dq
r

=
3
5

Z2
i e2

a
, (5.51)

where q(a) = Zie(r/a)3 is the charge in a sphere of radius r < a. The
second component of the potential energy is due to the ion-electron
interaction,

Eei = −Zie
∫ a

0

dq
r

= −3
2

Z2
i e2

a
. (5.52)

Combining equations (5.51), (5.52), and (5.50) gives the total electro-
static energy for a single ion-sphere,

E = − 9
10

Z2
i e2

a
= − 9

10
Z5/3

i e2
(

4π

3
Yeρ

mu

)1/3
. (5.53)

Multiplying this by ni = Yiρ/mu, summing over all ion species i,
and defining 〈Z5/3〉 = n−1 ∑ Z5/3

i ni where n = ∑ ni, gives the total
Coulomb energy per volume,

ECoul = −
9

10
nkBT

[
〈Z5/3〉e2

kBT

(
4π

3
Yeρ

mu

)1/3
]

. (5.54)

Notice that the quantity in [ ] reduces to Γ for a single-species plasma.
If we therefore define Γ ≡ [ ] for a multi-component plasma, we
have ECoul ≈ −0.9nkBTΓ; the pressure is then PCoul = ECoul/3 =

−0.3nkBTΓ. This holds in the limit Γ� 1.
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E X E R C I S E 5 . 9 —

1. In the zero-temperature limit (electrons are fully degenerate) use the
charge-neutral sphere approximation (p. 62) to calculate the density at
which completely ionized 56Fe has zero pressure.

2. Estimate the pressure that would be required to compress 56Fe at the
density found in part 1.

3. Compute the mass-radius relation for a cold object (“a rock”). Write the
total pressure as the sum of electron (zero-temperature limit) and
Coulomb pressure (use the charge-neutral sphere approximation,
eq. [5.54] and following text). To make this easier, use the virial scalings
for density and pressure to obtain a relation between mass and radius.
Find the mass having the largest radius, and express this mass in terms of
fundamental physical constants. How does it compare with the mass of
Jupiter? Scale the mass and radii to that of Jupiter, and plot R(M) for
objects composed of pure 1H, pure 4He, and pure 12C. Also indicate on
this plot the masses and radii of the Jovian planets for comparison.





6
Radiation Transport

The sun is very opaque. Were photons able to stream freely, they
would exit in ∼ R�/c = 2.0 s. Given the luminosity of the sun,
however, we derived that the time for the sun to radiate away its
stored thermal energy is instead millions of years (see eq. [1.15]). As
a result, we can regard the sun as a cavity filled with photons with
a very slight leakage. This is the description commonly invoked to
describe blackbody radiation, and we expect that in the interior of
the sun, the radiation can be described by a photon gas in thermal
equilibrium at the ambient temperature.

6.1 Description of the Radiation Field

Consider a cavity containing a gas of photons. In general we can
describe the mean number of photons in this cavity as

N =
∫

f (p, x)d3x d3 p. (6.1)

Here f is a distribution function, as described in Chapter 5; if we are
in thermal equilibrium, f is of course the Bose-Einstein distribution
(cf. eq. [5.31]), but our discussion here will be more general. Consider
a small opening on our cavity with area dA and unit normal n̂. The
energy incident on this area in a time dt having propagation vector
along n̂ and propagating into solid angle dΩ (see Fig. 6.1) is found by
integrating equation (6.1) over a volume d3x = cdt dA,

dE = dA cdt
(

p2dp dΩ
)

hν f .

Since the photon momentum is p = hν/c, we have

Iν ≡
dE

dt dA dΩ dν
=

h4ν3

c2 f . (6.2)

This defines the specific intensity Iν. It is easy to show that in the
absence of interactions with matter, Iν is conserved along a ray (see,
e.g., Rybicki & Lightman).
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If the photons are in thermal equilibrium, then f is the Bose-
Einstein distribution, f = (2/h3)(exp[hν/kBT]− 1)−1, and the specific
intensity becomes

Bν ≡
2hν3

c2

[
exp

(
hν

kBT

)
− 1
]−1

. (6.3)

Here Bν is called the Planck function.

dA

dΩ

n

cd
t

Figure 6.1: Schematic of a pencil of
radiation propagating into an angle dΩ.

The energy density per frequency uν can be defined as dE/(cdt dA dν),
that is, the energy per unit frequency that is in a cylinder of length
c dt and cross-sectional area dA; comparing uν with the definition of
Iν, we see that

uν =
1
c

∫
Iν dΩ.

For a blackbody, Iν = Bν doesn’t depend on angle, and we can inte-
grate over dΩ,

uν =
8πhν3

c3

[
exp

(
hν

kBT

)
− 1
]−1

. (6.4)

The total energy density can then be found by integrating over all
frequencies, giving

u =

[
8π5k4

B
15h3c3

]
T4 ≡ aT4

in agreement with what we derived from statistical mechanics, §5.4.
The next quantity to define is the flux of energy, along direction

k̂, per unit time dt, per unit area dA, and per frequency interval dν.
We multiply Iν by a direction vector k̂ and integrate over dΩ:

Fν =
∫

k̂Iν dΩ. (6.5)

Note that Fν is a vector; the net flux along a direction n̂ is

Fν =
∫

Iν(n̂ · k̂)dΩ.

If we take our polar angle with respect to k̂, then (n̂ · k̂)dΩ =

cos θ sin θ dθ dφ; defining the direction cosine µ = cos θ, this becomes

Fν =
∫

Iν(n̂ · k̂)dΩ =
∫ 2π

0

∫ 1

−1
Iνµ dµ dφ.

Note that if the radiation field is isotropic then Fν = 0: there must be
some anisotropy in the radiation field to generate a net flux.

For blackbody radiation, if we only integrate over outgoing direc-
tions, 0 ≤ µ ≤ 1, as would be the case for thermal radiation emerging
from a hohlraum,

Fν = πBν.
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Integrating this Fν over all frequencies, we recover the Stefan-Boltzmann
formula,

F =
( ac

4

)
T4 ≡ σSBT4,

where σSB is the Stefan-Boltzmann constant.
Finally, let’s look at the momentum flux along direction ̂ being

transported along direction k̂, per unit time dt, per unit area dA, and
per unit frequency interval dν. Since for a photon, E = pc, we divide
the energy flux by c. This is a tensor,

Pν =
1
c

∫
̂k̂IνdΩ. (6.6)

The net (isotropic) momentum flux along a direction n̂ is then

Pν =
1
c

∫
(n̂ · k̂)(n̂ · k̂)Iν dΩ =

2π

c

∫ 1

−1
Iνµ2 dµ.

For blackbody radiation,

Pν =
4π

3c
Bν =

1
3

uν

and we may integrate this over frequency to obtain P = u/3, the
standard result from thermodynamics.

6.2 Some simple estimates

We argued in the previous section that the solar interior is quite
opaque. Naively, we might imagine some radiative transition, e.g.
bremsstrahlung, emitting a photon. The photon speeds away at c, but
it doesn’t get very far before being absorbed or scattered by another
particle. A new photon, either due to emission or scattering, will be
emitted at some random direction, and the whole process repeats.
This is just a description of a random walk.

For some simple estimate, let’s assume that the hop is the same
for all photons, regardless of frequency or ambient temperature. If
the hop length is `, then we know that the total path length to get
from the center to the surface is R�(R�/`) and the time for this to
occur is R2

�/`/c. What is a good estimate for `? Consider a planar
electromagnetic wave incident on a collection of scatterers. If these
scatterers are uncorrelated, then the probability of scattering is just
the number of scatterers times the probability for scattering from a
single scatterer. Define the probability of scattering as

P = N ×
(

energy scattered per unit time by one scatterer
energy incident per unit time per unit area

)
1
A (6.7)

where A is the area normal to the propagation direction k̂ of the
volume containing the N scatterers. The quantity in parenthesis
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is just the definition of the cross-section σ. Furthermore, if we set
P = 1, then the total number of scatters is just N = n×A× `, where
n is the number density of scatterers. Thus we define the mean free

path,

` =
1

nσ
. (6.8)

In stellar work, it is more convenient to use mass density rather than
number density. Writing n = Yρ/mu, where Y is the abundance of
scatterers, we have

` = ρ−1
(mu

Yσ

)
≡ (ρκ)−1

where κ is the opacity and has dimensions [κ] ∼ [cm2 g−1].
The opacity in the stellar interior is set by a large number of pro-

cesses (see §6.5): Thomson scattering, free-free absorption, atomic
absorption, and photoionization. In general, the cross-section de-
pends on the ambient temperature and density and the frequency
of the photon. Over the length of a hop ` the temperature and den-
sity will only vary slightly. As a result, the conditions are nearly
isotropic, so we indeed expect the radiation to come into thermal
equilibrium with the ambient material. But the conditions are not
perfectly isotropic—otherwise there would be zero net heat flux! It is
the small anisotropy that gives rise to the transport of energy. Let’s
imagine a small cube of material, with the size of this cube being `.
Because we are so very nearly isotropic and in thermal equilibrium,
the flux through any one face of this cube must be (c/6)u. Now sup-
pose we have two adjacent cubes, with the common face of the cubes
being at x = 0. The flux across the face has contributions from pho-
tons emitted at x− ` and x + `, so the net flux is

F ≈ c
6

u(x− `)− c
6

u(x + `)

≈ −1
3

c`
du
dx

. (6.9)

This is a diffusion equation with coefficient c/(3ρκ). Our derivation
is very crude, as it neglects the variation in cross section with the
properties of the ambient medium and with the photon frequency.
Nonetheless, this is basically the correct scenario; heat diffuses with a
coefficient given by some suitably defined average over all sources of
opacity.

6.3 Equation of Transfer

We’re now ready to formalize the crude work in the previous section.
In the absence of interactions with matter, the specific intensity Iν is
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conserved along a ray propagating in direction k̂: dIν/ds = c−1∂t Iν +

k̂ ·∇Iν = 0. If matter is present, it can do three things to change Iν.

emit Matter may spontaneously emit photons and add to the beam:
dIν/ds = ρεν/(4π). Here εν is the energy spontaneously emitted
per unit frequency per unit time per unit mass. The factor of 4π is
to make this term per steradian.

absorb Photons have a chance of being absorbed or scattered out of
the beam: dIν/ds = −ρκν Iν. Here the right-hand side is the energy
removed from the beam along a path ds with κν = κabs

ν + κsca
ν

being the total opacity (absorption plus scattering). The dimen-
sions of opacity are clearly [κν] ∼ [cm2/g]. (If we had stimulated
emission, this would be a negative κν.)

scatter Photons may be scattered into the beam from other directions:
dIν/ds = ρκsca

ν φν. If the scattering is isotropic, then

φν =
1

4π

∫ 2π

0

∫ π

0
Iν dφ sin θ dθ ≡ Jν, (6.10)

where Jν is the mean intensity: the scattering redistributes the
energy over all angles.

Putting all these terms together gives us the equation of trans-
fer,

1
c

∂t Iν + k̂ ·∇Iν = ρ
εν

4π
− ρκν Iν + ρκsca

ν φν (6.11)

for the specific intensity Iν.

Radiative equilibrium

The emissivity εν and the opacity κν describe how the radiation inter-
acts with matter. A condition of steady-state is that the gas not gain
or lose energy to the radiation. This requires balancing

(energy emitted per unit volume) = ρ
∫

εν

4π
dν dΩ

with

(energy absorbed per unit volume) = ρ
∫

κabs
ν Iν dν dΩ,

or ∫ ∞

0

( εν

4π
− κabs

ν Jν

)
dν = 0. (6.12)

Here we assume εν does not depend on angle. We don’t include
scattering because it doesn’t transfer energy between the radiation
and the gas.
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Now suppose that the level populations of the matter are in ther-
mal equilibrium and can be described by a temperature T. In that
case, detailed balance must hold, so that

εν

4πκabs
ν

= Bν(T), (6.13)

where Bν(T) is the Planck function. This defines local thermo-
dynamic equilibrium (LTE). If the radiation field is, in addition,
described by a Planck function at the same temperature then we would
have complete thermodynamic equilibrium.

Optical depth

Consider a ray directed into a medium in steady-state (∂t → 0). In the
absence of emission (εν = 0) or scattering (κsca

ν = 0) equation (6.11)
takes a particularly simple form:

dIν

dτν
= −Iν. (6.14)

Here we have set k̂ ·∇ = (d/ds), where ds is a infinetesimal along
the path of the ray, and further have defined the optical depth as

τν =
∫

ρκν ds. (6.15)

Note that τν is dimensionless. Taking ρ and κν as given, equation (6.14)
has a simple solution,

Iν(τν) = Iν(0) exp (−τν) .

Note that ρκ = `−1, so equation (6.15) is just τ =
∫

ds/`, i.e., it
expresses distance by counting the number of mean free pathlengths
traversed.

Source function

Having defined the optical depth, we can now add the emissivity εν

and scattering term (henceforth we will assume isotropic scattering)
to equation (6.14) to obtain

dIν

dτν
= Sν − Iν, (6.16)

where
Sν ≡

1
κν

( εν

4π
+ κsca

ν Jν

)
(6.17)

is the source function. In the absence of scattering, so that Sν =

εν/(4πκν) is a known function of τν, we can formally solve equa-
tion (6.16):

Iν(τν) = Iν(0) exp(−τν) +
∫ τν

0
Sν(τν) exp(t− τν)dt.
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In the presence of scattering, Sν depends on Jν = (1/4π)
∫

Iν dΩ, so
that equation (6.16) is an integro-differential equation.

6.4 Diffusion Approximation and the Rosseland Mean Opacity

At large optical depth, such as deep in a stellar interior, the radiation
field is in thermal equilibrium, so that Iν = Sν = Bν. To see this,
consider the relative scales of terms in the transfer equation.

1
c

∂Iν

∂t
+ k̂ ·∇Iν = ρ

εν

4π
− ρκν Iν + ρκsca

ν Jν

I II III IV V

On the left-hand side, term I scales as Iν/(ct�), where t� is the evo-
lutionary timescale of the sun (Gyr), and term II scales as Iν/R�. On
the right-hand side, term IV scales at Iν/`. Hence the ratio of terms
of term II to term IV is `/R� � 1 and that of term I to term IV is
`/Gpc� 1. In addition, stellar properties change negligibly on scales
of a mean-free path, so conditions are nearly isotopic over much of
the interior and Iν = Jν. Hence Iν = Jν = Sν, and inserting the
relation between εν and κabs

ν from detailed balance, eq. (6.13), into
equation (6.17) implies that Sν = Bν.

If the radiation field is perfectly isotropic there is no flux, however,
so we must have some small anisotropy. Let’s write Iν as a thermal
term plus a correction,

Iν = Bν(T) + I(1)ν .

Substituting this into the steady-state equation of transfer,

1
ρκν

k̂ ·∇Iν = Sν − Iν

and setting the term Sν − Bν = 0 on the right-hand side, we obtain

I(1)ν = − 1
ρκν

k̂ ·∇Bν = − 1
ρκν

∂Bν

∂T
k̂ ·∇T. (6.18)

This is anisotropic: the energy transport is largest in the direction
“down” the temperature gradient. Let’s get the net flux: multiply
equation (6.18) by k̂ to get the flux; and then take the component
along a direction n̂ parallel to ∇T; finally replace the two dot prod-
ucts by the angle cosine µ, and integrate over dΩ = 2πdµ to obtain

Fν = −4π

3
1
ρ

[
1
κν

∂Bν

∂T

]
∇T. (6.19)

The quantity in [ ] deserves a closer look. First, suppose κν is inde-
pendent of frequency. Then equation (6.19) means that the energy
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transport is greatest at the frequency where ∂Bν/∂T is maximum,
and not at the peak of the Planck spectrum.

E X E R C I S E 6 . 1 — Explain on physical grounds why the flux for a grey
opacity would be greatest at the frequency for which ∂Bν/∂T, rather than Bν,
is maximized.

Let us define the Rosseland mean opacity as

κR ≡
[∫

dν κ−1
ν (∂Bν/∂T)∫

dν (∂Bν/∂T)

]−1

.

We can use this to integrate equation (6.19) to obtain the total radia-
tive flux,

F = −4π

3
1

ρκR
∇
[∫

dν Bν

]
= −1

3
c

ρκR
∇aT4. (6.20)

This is just our formula for radiation diffusion (eq. [6.9]) that we
obtained from physical arguments, but now we have an expression
for the effective opacity κR.

6.5 Sources of Opacity

There are several processes that contribute to radiative opacity in
stellar interiors. These are well described in standard texts, so we’ll
just briefly list them here.

Thomson scattering

Thomson scattering is scattering from non-relativistic electrons when
the photon energy is sufficiently low that we can neglect the recoil
of the electron. The cross-section for Thomson scattering derived in
Jackson and is

σTh =
8π

3

(
e2

mec2

)2

= 0.665× 10−24 cm2. (6.21)

The opacity for Thomson scattering is then

κTh =
neσTh

ρ
= (0.4 cm2 g−1)Ye.

The factor of Ye is because the electrons, which are much lighter than
nuclei and therefore easier for an incident wave to shake, do the
scattering.

E X E R C I S E 6 . 2 — Using Thomson scattering for the dominant opacity,
estimate the photon diffusion time for the sun.
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Free-free absorption

Another important one is free-free absorption. This is the inverse of
bremsstrahlung, which is radiation emitted when an electron is
scattered from an ion (see Figure 7.1). The procedure for calculating
the opacity is to first compute the emissivity and then use detailed
balance (eq. [6.13]) to obtain

κff
ν =

εν

4πBν(T)
.

To calculate the emissivity, we start with the derivation of the mo-
mentum gained by an electron (eq. [7.1]). The acceleration leads to
an emission of radiation; according to Larmor’s formula, the power
emitted is

P(b) =
2
3

e2

c3 |v̇|
2 =

2
3

Z2e6

m2
e c3b4 . (6.22)

The radiation is distributed over a broad range of frequencies up to a
cutoff νmax ∼ v/b. Integrating over a range of impact parameters and
then over the distribution of electron velocities gives the emissivity,
which is (restoring all of the numerical factors)

ρεν = 4π

(
2π

3

)1/2
Z2nIne h̄c2ασTh

(
me

kBT

)1/2
exp

(
− hν

kBT

)
ḡff.

(6.23)
The velocity-averaged Gaunt factor ḡff contains most of the details
about the integration. The factor of T−1/2 is because there is a factor
of v−1 that appears in the integration (the collision time is ∼ b/v).

Applying detailed balance, equation (6.13), gives the opacity as a
function of frequency,

κff
ν = π

(
2π

3

)1/2
Z2 nIne

ρ
c3ασTh

(
mec2

kBT

)1/2

ν−3
[

1− exp
(
− hν

kBT

)]
ḡff

(6.24)
Notice that nIne/ρ = ρ/(m2

uµIµe), so that the opacity scales with
density. Further, note that when taking the Rosseland mean over
all frequencies, the factor of ν−3 introduces a factor of T−3, so that
〈κff

ν 〉 ∝ ρT−7/2.

E X E R C I S E 6 . 3 — In terms of central density and temperature, under
what conditions is free-free opacity more important than Thomson
scattering? For what mass range of stars is free-free opacity dominant in the
core? What about for Thomson scattering?

Bound-free and bound-bound absorption; Kramer’s opacity

Bound-free and bound-bound transitions have a cross-section with
a frequency dependence (at photon energies above threshold) of ν−3
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as well; therefore their Rosseland averages also scale as ρT−7/2. An
opacities with this form is known as Kramer’s opacity, κ = κ0ρT−3.5.
For conditions in the solar center, a good approximation is

κ ≈ 0.012 cm2 g−1
(

ρ

1 g cm−3

)(
T

107 K

)−7/2

×
[
(1 + XH)

(
XH + XHe + ∑

Z>2

XiZ2
i

Ai

)]
. (6.25)

The expression in [ ] is just an approximation for Ye〈Z2〉 at solar
composition.

E X E R C I S E 6 . 4 — Suppose both free-free absorption (κff
ν ) and Thomson

scattering (κTh
ν ) contribute to the opacity. Denote by 〈 〉 the Rosseland

averaging of an opacity. Does 〈κff
ν + κTh

ν 〉 = 〈κff
ν 〉+ 〈κTh

ν 〉?
Now suppose that κff

ν is due to free-free absorption on two different ion
species (denoted below by subscripts “1” and “2”) with different charge
number Z. In this case does 〈κff

ν,1 + κff
ν,2〉 = 〈κff

ν,1〉+ 〈κff
ν,2〉?

6.6 Eddington Standard Model

Polytropes with index n = 3/2 correspond to fully convective stars
(P ∝ ρ5/3, the relation for an adiabat) or for white dwarfs (non-
relativistic, degenerate equation of state). Another interesting case,
for historical reasons, is the Eddington Standard Model, which
is a fair approximation to main-sequence stars with M & M�. Sup-
pose we write the equation of state as the sum of ideal gas and radia-
tion pressure,

P =
ρkBT
µmu

+
1
3

aT4. (6.26)

Now make the ansatz that

Prad
P

=
aT4

3P
= 1− β = const., (6.27)

that is, the radiation pressure is a fixed fraction of the total pressure
everywhere. Solving for T in terms of P and β,

T =

[
3(1− β)P

a

]1/4

,

and inserting this into equation (6.26) gives us a simple EOS,

P =

[(
kB

µmu

)4 3
a

]1/3 [
1− β

β4

]1/3
ρ4/3. (6.28)

This is the equation for a polytrope of index 3.
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E X E R C I S E 6 . 5 — Derive an expression for β in terms of the mass of the
star for the Eddington Standard Model.

Why is it at all reasonable to take β as being constant? To explore
this, go back to the equation for radiative diffusion

F(r) = −1
3

c
ρκ

daT4

dr
.

Write the flux as F(r) = L(r)/(4πr2), and since pressure decreases
monotonically with radius, write

daT4

dr
=

daT4

dP
dP
dr

= −ρ
Gm(r)

r2
daT4

dP
.

The equation of radiation transport then becomes

L(r) =
4πGm(r)c

κ(r)
dPrad
dP

.

Dividing both sides by L ·M/κTh and rearranging terms,

dPrad
dP

=

[
LκTh

4πGMc

] (
κ(r)
κTh

L(r)
L

M
m(r)

)
. (6.29)

Here L is the total luminosity of the star and M is the total mass. The
term in [ ] is a constant (the Thomson opacity κTh doesn’t depend on
density or temperature) and we define the Eddington luminosity

as LEdd = 4πGMc/κTh. For the sun, LEdd = 1.5× 1038 erg s−1 = 3.8×
104 L�. For the term ( ) on the right-hand side, note the L(r)/m(r)
is basically the average energy generation rate interior to a radius
r. Since nuclear reactions are temperature sensitive, the heating is
concentrated toward the stellar center and L(r)/m(r) decreases with
radius. For stars like the sun, free-free opacity is dominant, and since
the free-free Rosseland opacity goes as T−3.5, κ(r) increases with
radius. Thus, if the energy generation rate is not too temperature
dependent (the reaction p + p → 2H goes roughly as T4.5 at T =

107 K), then the term in ( ) does not vary strongly with radius, and
dPrad/dP is indeed roughly constant.



76 stellar astrophysics

E X E R C I S E 6 . 6 — You are now in a position to understand why the
luminosity depends strongly on the mass. Cast the flux equation (eq. [6.20])
into dimensionless form. Assume the opacity has the functional form
κ = κ0ρaT−b, and scale ρ and T in terms of M and R.

1. You should be able to find a characteristic scale for the luminosity which
depends on the stellar mass M and radius R, as well as on the exponents
a and b. Regard κ0 as a fitting constant, and adjust it so that you get an
expression in the form

L
L�

=

(
M

M�

)α ( R
R�

)β

.

2. If the opacity is dominated by Thomson scattering, what are α and β?
What about if the opacity is Kramer’s (eq. [6.25])?

Experiment 6.1— Radiation pressure and the Eddington
luminosity for massive stars

Starting from the pre-main-sequence, construct stars of masses
1.0 M�, 3.0 M�, 10.0 M�, and 30.0 M� and evolve them part-way
through their hydrogen burning phase (until the central mass frac-
tion of hydrogen drops below 0.5). You will find the template for the
project in the folder radiation/beta-eddington.

1. For each star, plot β ≡ Pgas/P as a function of Lagrangian mass
coordinate m. Is β roughly constant, i.e., independent of m? For
each ZAMS model, assign a “typical” value of β and plot this β as
a function of the total stellar mass M. How well does β(M) agree
with what you derived in exercise 6.5?

2. For each star, plot Lrad/LEdd as a function of m.

The template project files are set to load a file ‘inlist_radn_vars’,
which you will write. The file should contain a customized version of
‘Profile_Panels1’ that displays the β and Lrad/LEdd.

In this experiment, we are doing four runs with stars of various
masses, so we need to modify the run script. We’ve taken the ‘rn’
script from ‘$MESA_DIR/star/work/’ and renamed it ‘rn1’. We then
made a bespoke ‘rn’ script that loops over masses,

22 for m in 1 3 10 30

23 do

24 do_one ${m}M

25 done
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with the function ‘do_one’ defined in that file:

3 function do_one {

4 INLIST="inlist_${1}"

5 if [ ! -e "${INLIST}" ]

6 then

7 echo "target inlist file ${INLIST} does not exist"

8 exit 1

9 fi

10 cp "${INLIST}" inlist

11 echo ’run’ "$1"

12 if ! ./rn1

13 then

14 echo "rn1 failed"

15 exit 1

16 fi

This function copies the file ‘inlist_mM’ to ‘inlist’ and then calls
‘rn1’, which in turn calls ‘star’. Each ‘inlist_mM’ loads settings
from ‘inlist_common’ and ‘inlist_pgstar’, with one exception: in
‘&controls’ the mass and output locations are set. For example, in
‘inlist_3M’,

33 initial_mass = 3

34

35 ! output options

36 photo_directory = ’3M/photos’

37 log_directory = ’3M/LOGS’

In addition to setting the mass, the log and photo (restart) files are
redirected into subdirectories of ‘3M’ (which is created by the ‘mk’
script).

Three settings in ‘inlist_common’ that are of note are

17 disable_pgstar_for_relax = .true.

18

19 profile_columns_file = ’radn_vars.list’

46 ! stop when the center mass fraction of h1 drops below 0.2

47 xa_central_lower_limit_species(1) = ’h1’

48 xa_central_lower_limit(1) = 0.5

The first disables plotting until a radiative core appears, which can
take 800 steps or so for a 1 M� star. Since we are interested in look-
ing at the radiative luminosity, however, we aren’t as interested in
the phase where the pre-main sequence star is fully convective, and
turning off plotting speeds up the simulation. The last pair of set-
tings tell MESA to stop when the mass fraction of hydrogen drops
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below 0.5 at the center. Finally, since the values of β and Lrad/LEdd

are not output by default, you will need to add them to the list of
columns in the ‘radn_vars.list’ data files. You should not need to
alter ‘run_star_extras.f90’ for this experiment.

Note that we have not enabled any stellar winds or mass loss,
which is unrealistic for the more massive stars. You are welcome to
experiment with this, however. Finally, you may notice that things
get interesting near the surface of the star, especially for the more
massive stars. To examine this in more detail, change the indepen-
dent variable from ‘mass’ to ‘logxq’ for the plots of β and Lrad/LEdd

and redo the plots. (You may need to adjust the minimum value of
the x-axis and reverse the direction of the x-axis.) Comment on the
results.



7
Transport in a Plasma

7.1 Collisions

Without collisions, a plasma cannot reach thermodynamic equilib-
rium, and the rate of collisions mediates both the approach to equi-
librium and the transport of quantities, such as heat, in a forced sys-
tem. In this section, we’ll make an estimate for the rate of electron-
electron ion-ion, and electron-ion collisions.

To begin, let’s imagine a light particle (electron) colliding with a
much heavier, fixed particle (an ion), as illustrated in Figure 7.1. (This
picture also applies to a pseudo particle of reduced mass scattering
in a fixed potential.) Let the impact parameter be b, and the mass
of the incident particle is µ. For Coulomb interactions, the force on
the particle is (q1q2/r2)r̂. The incident momentum is p0. Now by as-
sumption, in our plasma most of the interactions are weak (potential
energy is much less than kinetic), so let’s treat the deflection of the
particle as a perturbation. That is, we shall assume that p0 = const
and that the effect of the interaction is to produce a perpendicular (to
p0) component of the momentum p⊥. The total change in p⊥ is then

p⊥ =
∫ ∞

−∞
dt

q1q2

r2 sin θ,

where sin θ = b/r is the angle that the radial vector makes with the
horizontal. Substituting r = b/ sin θ and dt = −µbdθ/p0/ sin2 θ, we
have

p⊥ = −
∫ π

0
sin θ dθ

µ

p0

q1q2

b
,

leading to the intuitive result

p0 p⊥
2µ

=
q1q2

b
. (7.1)

Clearly a large angle scattering occurs if p⊥ ≥ p0, or

b ≤ b0 ≡
2µq1q2

p2
0

; (7.2)
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our approach is only valid for b � b0. Note that p⊥/p0 = b0/b.
What is the rate of large angle scatterings? The cross section for a
large angle scattering is σLA = πb2

0. Imagine a particle incident on a
cylinder of length (p0/µ)dt and cross-sectional area A. Within this
cylinder there are n × (p0/µ)dtA scatterers of cross-section σLA. so
the probability of the particle interacting per time dt is

(σLA × n× p0/µ)A
A = nσLA p0/µ.

This defines the large-angle collision rate,

νLA = nσLAv0 =
4πµ(q1q2)

2

p3
0

. (7.3)

Note that it goes as p−3
0 ; fast-moving particles are hard to scatter.

b
r

x

p
⊥

p0

Ze

e– Figure 7.1: Geometry for scattering
problem.

As mentioned earlier, we are in a weakly coupled plasma, so we
expect large angle scatterings to be a rare occurrence. What happens
instead is that the particle suffers a number of small deflections. Let’s
consider an impact parameter in the range (b, b + db). Each deflection
will have ∆p⊥ in some random direction, so

〈p⊥〉 =
N

∑
i=1

∆pi ≈ 0.

What is happening is that the component of momentum perpendicu-
lar to p0 is executing a random walk. Indeed, after N collisions,

〈p⊥ · p⊥〉 =

(
N

∑
i=1

∆pi

)
·
(

N

∑
i=1

∆pi

)

=
N

∑
i=1

(∆pi)
2 + 2 ∑

i 6=j
∆pi · ∆pj = N(∆p⊥)2,

where we have assumed that all ∆p⊥ have the same magnitude and
are uncorrelated. Now N is just ∆t× n× (2πb db)× (p0/µ): the num-
ber of particles with impact parameters between b and b + db along
the length of the particles path over a time ∆t. Dividing by ∆t and
integrating over b, we have the rate of change of the perpendicular
component of the momentum

d〈p2
⊥〉

dt
=

8πnµ(q1q2)
2

p0

∫ bmax

bmin

db
b

. (7.4)
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What are bmax and bmin, the maximum and minimum impact param-
eters? Clearly, if b > λD then the potential will be screened. Since our
approximation is only good for b > b0, we may take bmin = b0. (Our
rate of scattering only depends logarithmically on bmax/bmin, so these
estimates are good enough for our purposes). With this substitution,

d〈p2
⊥〉

dt
=

8πnµ(q1q2)
2

p0
ln
(

λD

b0

)
≡ 8πnµ(q1q2)

2

p0
ln Λ. (7.5)

In the literature, the quantity ln Λ is called the Coulomb logarithm;
for a plasma such as we are considering it is ∼ ln

(
Λ3

Dn
)
, the loga-

rithm of the number of particles in a Debye sphere (see eq. [5.43]).
For conditions typical of the solar center (hydrogen plasma, ρ &
1 g cm−3, T ≈ 107 K), ln Λ ≈ (5–10).

For small-angle scattering, the concept of a collision rate is fuzzy:
the particle is constantly being bombarded by many tiny collisions.
Setting d〈p2

⊥〉/dt = p2
0ν allows us to define a deflection rate,

ν ≈ 8πnµ(q1q2)
2

p3
0

ln Λ (7.6)

=
8πn(q1q2)

2

(3kBT)3/2µ1/2 ln Λ. (7.7)

Comparing equations (7.6) and (7.3), we see that many small angle
scatterings are more important than single large angle scattering.
Note that the ion-ion collision rate will be about

√
mp/me ≈ 43 times

less than the electron-electron collision rate for a given temperature.
One can define a mean free path ` from equation (7.6). Consider

a particle incident on a cylinder of cross-sectional area A and length
`, as illustrated in Figure 7.2. We chose ` so that the time for the
particle to traverse it is ν−1, the timescale for deflection. Thus ` =

v0/ν = p0/(µν). Note that for a large angle collision, we can write
the probability for scattering as the total cross-section of scatterers
per unit area,

P =
Nσ

A =
n× (`A)σ
A , (7.8)

so the particle will suffer on average a collision after traversing a
distance ` = (nσ)−1. Comparing equation (7.8) with our expression
for ` in terms of ν allows us to define an effective cross-section for
small angle scattering.

l

σ

A

v = p0/µ

Figure 7.2: Schematic of a particle
incident on a cylinder containing
n× `×A particles.

7.2 Transport coefficients

We now have enough machinery to make estimates of transport coeffi-
cients, such as the viscosity and the thermal conductivity. Let’s begin
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with the viscosity. Suppose we have a fluid with a gradient in the
velocity, a shear, as depicted in Figure 7.3. Let the mean thermal ve-
locity of a particle be v0. In a time ∆t, a number of particles will enter
the box from the top, (1/6)nv0∆t, and a similar number will leave
the box via the top face. On average, these particles are endowed
with the fluid properties of their last scattering, so the net momentum
carried into the box across the top face is

1
6

nmv0∆t∆A
[
vy(zt + `)− vy(zt − `)

]
≈ 1

3
nmv0∆t∆A

∂vy

∂z

∣∣∣∣
zt

`. (7.9)

Here ∆A is the cross-section area of our box in the xy plane and zt is
the coordinate of the top face.

x

y

z

vy

Figure 7.3: An element of fluid with a
shear ∂vy/∂z.

A similar process occurs across the bottom face, located at coordi-
nate z = zb: the momentum flux across the bottom face is

≈ −1
3

nmv0∆t∆A
∂vy

∂z

∣∣∣∣
zb

`. (7.10)

Note the difference in sign: the momentum flux is positive if the y-
velocity is larger below the box. Putting equations (7.9) and (7.10)
together, the net change of momentum per time per unit volume
∆A∆z is

m
∆A∆z

∆vy

∆t
≈ 1

∆z
1
3

[(
nmv0`

∂vy

∂z

)
zt

−
(

nmv0`
∂vy

∂z

)
zb

]

≈ ∂

∂z

(
µ

∂vy

∂z

)
. (7.11)

Here we have defined µ = nmv0`/3 as the coefficient of dynamic
viscosity.

On the left-hand side, the quantity m/(∆A∆z) is just the mass
density ρ, and equation (7.11), so the left-hand side is the y-component
of our old friend ρ(∂tu + u · ∇u. On the right-hand side, we can
repeat the above derivation for the transport of momentum in the
x- and y-directions; if we also add back in forces from gravity and
pressure gradients, we transform Euler’s equation, eq. (1.5), to the
Navier-Stokes equation,

∂tu + u · ∇u = −∇Φ− 1
ρ
∇P +

1
ρ
∇ · (µ∇u). (7.12)

In an isothermal, incompressible fluid, one can pull µ outside the
divergence operator and the last term becomes

µ

ρ
∇2u ≡ ν∇2u,

where ν is defined as the coefficient of kinematic viscosity (sorry for the
overload of notation with the scattering frequency earlier!). Note that
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in order-of-magnitude

ν ∼ 1
3

v0`,

that is, it is roughly the thermal velocity times the mean free path.

E X E R C I S E 7 . 1 — Estimate the ratio of the pressure to viscous
accelerations,

|ρ−1∇P|
|ν∇2u| ,

in equation (7.12). Express your answer in terms of a characteristic
lengthscale, Mach number, and mean free path. Under what conditions are
viscous effects important?

An identical procedure, but replacing the average momentum of a
particle with its average thermal energy, yields an expression for the
thermal conductivity K, such that the heat flux is

F = −K∇T. (7.13)

If one writes the change in energy of a fluid element as being

ρC∂tT = ∇ · (K∇T),

it can be seen that in order of magnitude the thermal diffusivity χ ≡
K/(ρC), where C is the specific heat per unit mass, is χ ∼ (1/3)v0`.
(From the form of the equation and dimensional analysis, it has to be
like this.) But we need to be careful here: in a plasma with ions and
electrons, the ions are responsible for momentum transport, whereas
electrons, being more nimble, are more effective at heat transport.
Thus the thermal diffusivity is larger than the kinematic viscosity by
a factor ∼

√
mp/me ≈ 43.

E X E R C I S E 7 . 2 — Estimate the plasma thermal conductivity under
conditions appropriate to the solar center. How does heat conduction by the
electrons compare to that by photons?

Now suppose we wish to write a single equation for heat transport,

F = −4
3

acT3

ρκtotal
∇T.

Derive an expression for κtotal in terms of the electron conductivity K and the
free-free opacity κff.





8
Stellar Atmospheres

In the atmosphere of the star, the optical depth approaches unity, and
we can no longer treat the radiation field as being isotropic. Let’s
consider the time-independent problem (∂t → 0) of a plane-parallel
atmosphere. The optical depth for an outward-directed ray is

τν =
∫ ∞

z
ρκν dz′. (8.1)

Now the optical depth just the distance divided by the mean free
path. Clearly, when τν < 1, a photon has a good chance of reaching
a distant observer without any further interactions with the stellar
matter. As a result, the intensity takes its final form around τν ≈ 1,
and this defines the stellar photosphere. To get some of the basic
properties of the photosphere, rewrite eq. (8.1) in differential form,

dτ

dz
= −ρκ. (8.2)

This is for a crude estimate, so we neglect the frequency dependence
for now. We can use equation (8.2) along with hydrostatic balance to
get an estimate of the photospheric pressure,

dP
dτ

= −
(

dτ

dz

)−1
ρg =

g
κ

. (8.3)

Thus, at τ ≈ 1, the pressure is Pph ≈ g/κ. Since the flux at the
photosphere is σSBT4

eff, we would expect that the local temperature is
T ≈ Teff.

8.1 The Eddington Approximation

To get an analytical approximation for the atmosphere, we’ll first re-
define our transfer equation in terms of optical depth (eq. [6.16]).
Here however, we will take the optical depth to be along the z-
direction, so we define µ = k̂ · n̂, where n̂ is the direction along
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the ray. The equation of transfer then becomes

µ
∂Iν

∂τν
= Iν − Sν, (8.4)

where
Sν ≡

1
κν

( εν

4π
+ κsca

ν Jν

)
(8.5)

is the source function. In local thermodynamical equilibrium (LTE), we
can write Sν = (1− Aν)Bν + Aν Jν, where Aν ≡ κsca

ν /κν is the albedo.
Recall that Jν = (4π)−1

∫
dΩ Iν is the angle-average of Iν.

We noted that in thermal equilibrium, Pν = c−1
∫ 1
−1 dµ µ2 Iν =

uν/3. This relation holds even when the radiation is not thermal,
so long as it is isotropic to terms linear in µ. To make this concrete,
suppose we write

Iν(µ) = I(0)ν + µI(1)ν + µ2 I(2)ν + . . . .

Here we are assuming that terms marked (0) are much larger than
terms marked (1), etc. To lowest order, the energy density, flux, and
momentum flux are then

uν =
2π

c

∫ 1

−1
dµ Iν(µ) =

4π

c
I(0)ν ,

Fν = 2π
∫ 1

−1
dµ µ Iν(µ) =

4π

3
I(1)ν ,

Pν =
2π

c

∫ 1

−1
dµ µ2 Iν(µ) =

4π

3c
I(0)ν =

uν

3
.

The Eddington approximation then consists of treating the radiation
field as if its anisotropy is linear in µ everywhere, so that the above
relations hold; in particular, it means assuming that Pν = uν/3 every-
where.

8.2 A Grey Atmosphere

Finally, to get an analytical approximation to the structure of the
solar atmosphere, let’s consider a grey atmosphere in LTE, i. e., one
for which κabs

ν = κabs and κsca
ν = κsca are independent of frequency.

Equation (8.4) can then be integrated over all frequencies to become

µ
∂I
∂τ

= I − S. (8.6)

Integrating over all angles (note that we can pull the derivative wrt τ

out of the integral) gives

1
4π

∂F
∂τ

= J − S = 0. (8.7)
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Why does the right-hand side vanish? Note that S− J = (1− A)(B−
J). Clearly S = J if A = 1 (a pure scattering atmosphere). If A 6= 1, so
that there is some absorption, then the condition of detailed balance,
equation (6.13), implies that εν = 4πκabsBν(T); inserting this into
equation (6.12), factoring out the constant κabs, and integrating over ν

implies that B− J = 0, and hence S− J = 0. Note that J = B does not
necessarily imply that Iν = Bν!

Now multiply equation (8.6) by µ and integrate over 2π dµ to
obtain

c
∂P
∂τ

= F, (8.8)

the integral over µS vanishing because it is odd in µ. Equation (8.7)
implies that F is constant; hence we can integrate equation (8.8) at
once to obtain

cP = F(τ + τ0), (8.9)

where τ0 is a constant of integration. Of course, this does help us
yet; all we have done is introduce a new variable P, the radiation
pressure. This is where the Eddington approximation comes in. We
set P = u/3 = 4π J/(3c) in equation (8.9) to obtain 4π J = 3F(τ + τ0).
Since J = S, we can then write equation (8.6) as

µ
∂I
∂τ

= I − 3
4π

F(τ + τ0). (8.10)

Since F is constant, this first-order differential equation is now solv-
able,

I(µ, τ = 0) =
1
µ

∫ ∞

0

3
4π

F(τ + τ0)e−τ/µ dτ,

=
3

4π
F(µ + τ0). (8.11)

Now at τ = 0, all of the flux must be outward-directed (µ > 0), so
I(µ < 0, τ = 0) = 0 if the star is not irradiated by another source.
Note that the Eddington approximation is clearly violated here. Still,
we will see later that this approximation is not too terrible.

To determine τ0, multiply I(µ, τ = 0) by µ and integrate equa-
tion (8.11) over all angles to find

F = 2π
∫ 1

0
µI(µ, 0)dµ =

1
2

∫ 1

0
3F(µ + τ0) µ dµ = F

(
1
2
+

3
4

τ0

)
. (8.12)

We therefore find τ0 = 2/3. Now, since we are in LTE, P = aT4/3.
Further, let us define an effective temperature by the relation F =

σSBT4
eff. Substituting these definitions and the value of τ0 into equa-

tion (8.9) gives us the atmospheric temperature structure,

T4(τ) =
3
4

T4
eff

(
τ +

2
3

)
. (8.13)
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Figure 8.1: Spectral distribution from a
grey atmosphere. The open circles are
from Chandrasekhar, Radiative Transfer;
the solid line is the Planck distribution.

Thus T(τ = 0) = 2−1/4Teff and T(τ = 2/3) = Teff.
To get the spectral distribution, go back to equation (8.4) and (as-

suming the atmosphere has some absorption so that the matter and
radiation can come into equilibrium) insert Sν = Bν(T); solving for Iν

at τ = 0 then gives

Iν(µ, τ = 0) =
1
µ

∫ ∞

0
Bν [T(τ)] e−τ/µ dτ. (8.14)

A plot of the spectral distribution for the emergent flux is shown
(open circles) in Fig. 8.1. For comparison, a plot of the Planck distri-
bution (solid line) is also shown. Both fluxes are normalized to the
total flux. Note that Iν(µ, τ = 0) depends on angle; rays propagating
at a slant will have a lower intensity. As a result, when we observe
the sun, the edge of the visible disk appears darker than the center, a
phenomenon known as limb darkening.

E X E R C I S E 8 . 1 — Compute the reduction in intensity I as a function of
viewing angle.

8.3 Some examples

Requirement for convection in the atmosphere

Let’s construct a simple atmosphere model using our temperature
structure, eq. (8.13). Although we assume a grey opacity, we will
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let if vary with temperature and density, κ(ρ, T) = κ0ρrTs. For an
ideal gas, we can rewrite this in terms of pressure and temperature,
κ(P, T) = κ0(µmu/k)rPrTs−r. Substituting this into equation (8.3),
and using equation (8.13), we obtain,

dP
dτ

=
g
κ0

(
k

µmu

)r
P−r

[
3
4

T4
eff

(
τ +

2
3

)](r−s)/4
.

This is easily integrated: we’ll take P(τ = 0) = 0 and obtain

P(τ) = (const)τ(r−s+4)/4/(1+r)

so that
d ln P

dτ
=

r− s + 4
4(1 + r)τ

. (8.15)

For the temperature,

d ln T
dτ

=
1
4

d ln T4

dτ
=

1
4(τ + 2/3)

. (8.16)

We now combine eqn. (8.15) and (8.16) to obtain

d ln T
d ln P

=

(
1 + r

r− s + 4

)(
τ

τ + 2/3

)
. (8.17)

For convection to happen, d ln T/d ln P > (∂ ln T/∂ ln P)s = 1/(1 +

n), where n = 3/2 for an ideal gas. That is,

n >
r− s + 4

1 + r
− 1 =

3− s
1 + r

, (8.18)

is required for convection to happen somewhere. Table 8.1 illustrates
the behavior of d ln T/d ln P for various opacity sources. The fact that
the H− opacity increases with temperature forces the temperature
gradient to steepen with increasing pressure and ensures that low-
mass stars have outer convective zones.

source r s 3−s
1+r

Thomson 0 0 3
free-free 1 −7/2 13/4
H− 1/2 9 −4

Table 8.1: Right-hand side of eq. (8.18)
for various opacities

An irradiated atmosphere

Many extra-solar planets are in rather tight orbits and as a result are
strongly irradiated. The following example is a simplified treatment1. 1 D. G. Hummer. The effect of reflected

and external radiation on stellar flux
distributions. ApJ, 257:724–732, June
1982; and I. Hubeny, A. Burrows, and
D. Sudarsky. A Possible Bifurcation
in Atmospheres of Strongly Irradiated
Stars and Planets. ApJ, 594:1011–1018,
September 2003

At a distance D from the star, the luminous flux is σSBT4
? (R?/D)2.

The incident intensity is then (σSB/π)WT4
? , where W = (R?/D)2,
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since this will give the flux when integrated over all forward direc-
tions.

An classic approximation in stellar atmospheres is to write the
intensity as a sum of two streams,

Iν(µ) = I+ν δ

(
µ− 1√

3

)
+ I−ν δ

(
µ +

1√
3

)
. (8.19)

The reason for the choice of µ becomes apparent when we compute
the mean intensity, the flux, and the pressure:

Jν =
1

4π

∫
dφ dµ Iν =

1
2
(

I+ν + I−ν
)

Fν =
∫

dφ dµ µIν =
2π√

3

(
I+ν − I−ν

)
Pν =

1
c

∫
dφ dµ µ2 Iν =

2π

3c
(

I+ν + I−ν
)

.

You will recognize by comparing Pν with Jν that this formalism auto-
matically satisfies the Eddington approximation, since Jν = (c/4π)uν

(cf. § 6.1 and eq. [A.17]).
Following the standard method, we take successive moments of

our equation of transfer (for a grey atmosphere),

µ
dI
dτ

= I − S,

to obtain

dF
dτ

= 4π(J − S) (8.20)

c
dP
dτ

= F. (8.21)

In LTE, J − S = 0 and therefore F = const. We therefore integrate
eq. (8.21) and use the Eddington approximation, cP = (4π/3)J, to
obtain

J(τ) =
3

4π
Fτ + J0. (8.22)

To determine J0, we use our two stream approximation to write J0 =

(
√

3/4π)F + I−. Since F is constant, we set it to its value at great
depth in the star. Let us characterize F by temperature Tint via F ≡
σSBT4

int. Finally, we set I− to the incident intensity, I− = (σSB/π)WT4
?

and note that in radiative equilibrium, J = B = (σSB/π)T4(τ).
Collecting terms, we have the equation for the temperature structure,

T4(τ) =
3
4

T4
int

(
τ +

1√
3

)
+ WT4

? . (8.23)

If WT? � Tint, then the temperature is nearly isothermal to a depth
τh ≈ W(T?/Tint)

4. The assumption of a grey atmosphere is, however,
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quite poor: the incident photons are peaked in the optical, whereas
the local temperatures are in the infrared. Even taking a mean opac-
ity is not sufficient.

8.4 Line formation and the curve of growth

Spectral lines are the diagnostics of a stellar atmosphere’s temper-
ature, pressure, and composition. We’ll briefly treat here how the
ambient conditions set the line shape.

The classical oscillator

Suppose we have a classical charged harmonic oscillator. The instan-
taneous power emitted by the oscillator is

P(t) =
2
3

e2

c3 |u̇|
2, (8.24)

and when averaged over a cycle is

〈P(t)〉 = e2

3c3 x2
0ω4, (8.25)

since u̇ = −ω2x0 cos ωt. Since the oscillator is radiating, it is losing
energy and is damped. Let us write the damping as Frad · u and
integrate over a cycle,

−
∫ t2

t1

dt
2
3

e2

c3 u̇ · u̇ = − 2
3

e2

c3 u̇ · u
∣∣∣∣t2

t1

+
2
3

e2

c3

∫ t2

t1

dt ü · u.

The first term vanishes and we can therefore identify

Frad =
2
3

e2

c3 ü = −m
(

2e2ω2

3c3m

)
u

as the radiation damping term with the term in parenthesis being
the damping constant γ. If there is an driving electric field on our
oscillator, then its equation of motion becomes

mẍ = −mω2
0x + eEeiωt −mγẋ. (8.26)

Using a trial function x ∝ eiωt gives

x =
e
m

Eeiωt

(ω2
0 −ω2) + iωγ

.

Taking the second derivative w.r.t. time of x, substituting into eq. (8.24),
and averaging over a cycle gives the power radiated by the oscillator,

〈P(t)〉 = e4ω4E2

3c2m2
1

(ω2
0 −ω2)2 + γ2ω2

.
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Dividing 〈P(t)〉 by the incident power per unit area, cE2/(8π), gives
the cross-section,

σ =
8π

3
e4

m2c3
ω4

(ω2
0 −ω2)2 + γ2ω2

. (8.27)

Now, for ω ≈ ω0, we can expand (ω2
0 − ω2)2 ≈ 4ω2

0(ω0 − ω)2;
furthermore, we identify 2e2ω2

0/(3c3m) = γ and equation (8.27)
becomes

σ = π

(
e2

mc

)
γ

(ω0 −ω)2 + (γ/2)2 . (8.28)

The line profile is Lorentzian, with a width γ. In terms of wave-
length, the width is

∆λ =

∣∣∣∣ dλ

dω

∣∣∣∣ γ =
2πc
ω2 γ = 1.2× 10−4 Å.

This width is independent of the transition frequency (it is just the
classical electron radius), and it is very, very small. In a stellar atmo-
sphere, the width is set by interactions and doppler broadening.

Suppose we model the oscillator as being started and stopped by
impacts; in between impacts it just goes as eiω0t. To get the spectrum,
we take the Fourier transform,

F(ω, t) =
∫ t

0
dt′ exp[i(ω0 −ω)t′],

where t is some time between impacts. Now if the impacts are dis-
tributed randomly and are uncorrelated, then the distribution of wait
times follows a Poisson distribution,

W(t)dt = e−t/τ dt/τ,

where τ is the average time between collisions. Using this to compute
the energy spectrum, we obtain

E(ω) =
1

2πτ

∫ ∞

0
dt F(ω, t)F∗(ω, t)W(t) =

1
πτ

1
(ω0 −ω)2 + (1/τ)2 ;

the line profile is again Lorentzian, with a FWHM 2/τ.
We might be inclined to treat the atoms as hard spheres, but this

gives a large τ, or equivalently a narrow line width. We are therefore
led to consider longer-range interactions for setting the intrinsic line
width. Table 8.2 lists such interactions. The picture is similar to our
considerations of collisions in §7.1. For a given impact parameter,
the interaction perturbs the energy levels; by integrating over a dis-
tribution of impact parameters one gets the intrinsic damping. Of
course, we should really use a quantum mechanical calculation. We
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can scale our cross-section to the classical result (eq. [8.28]), however,
by writing

σν =

(
πe2

mec

)
f φν, (8.29)

where φν is the line profile (dimension ∼ Hz−1) and f is a dimen-
sionless cross-section called the oscillator strength.

perturbation form source affects

linear Stark C2r−2 e−, p, ions H (Hα, Hβ, . . . )
quadratic Stark C4r−4 e− non-hydrogenic ions
van der Waals C6r−6 atoms, H most atomic lines, esp. in cool stars

Table 8.2: Interactions in stellar atmo-
spheres

The Curve of Growth

A classical technique in the analysis of stellar spectra is to construct
the curve of growth, which relates the equivalent width of a line Wν

to the opacity in the line. This discussion follows Mihalas, Stellar
Atmospheres.

Let’s first get the opacity in the line. Write the cross-section for the
transition i→ j as

σν =

(
πe2

mec

)
fijφν,

where the first term is the classical oscillator cross-section, fij is the
oscillator strength and contains the quantum mechanical details of
the interaction, and φν is the line profile. Now recall that the opacity
is given by κν = niσν/ρ, where ni denotes the number density of
available atoms in state i available to absorb a photon. Furthermore,
we need to allow for stimulated emission from state j to state i. With
this added, the opacity is (I’m writing it as χν to distinguish it from
the continuum opacity)

ρχν =

(
πe2

mec

)
fijφνni

[
1− gi

gj

nj

ni

]
. (8.30)

If we are in LTE, then the relative population of ni and nj follow a
Boltzmann distribution,

1− gi
gj

nj

ni
= 1− exp

(
− hν

kT

)
.

This ensures we have a positive opacity. If our population were in-
verted, i. e., more atoms in the upper state j, then the opacity would
be negative and we would have a laser.

Now for the line profile. In addition to damping, there is also
Doppler broadening from thermal (or convective) motion. Let the line
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profile (here we’ll switch to ν, rather than ω) be Lorentzian,

φ =
Γ/(4π)

(ν− ν0)2 + (Γ/[4π])2 .

In a Maxwellian distribution, the probability of having a line-of-sight
velocity in (u, u + du) is

P(u)du =
1√
πu0

exp

(
−u2

u2
0

)
,

where u0 = (2kT/m)1/2 = 12.85 km s−1 (T/104 K
)

(for H) is the
mean thermal velocity. The atom absorbs at a it shifted frequency
ν(1− u/c), so the mean cross section is

σν =
∫ ∞

−∞
σ
[
ν
(

1− u
c

)]
P(u) du. (8.31)

After some algebraic manipulations, we have the cross-section

σν =

(√
πe2

mec

)
fij

1
∆νD

{
a
π

∫ ∞

−∞

exp(−y2) dy
(v− y)2 + a2

}
≡ 1

∆νD
H(a, v) (8.32)

where ∆νD ≡ νu0/c is the doppler width, a = Γ/(4π∆νD) is the ratio
of the damping width Γ to the doppler width, and v = ∆ν/∆νD is the
difference in frequency from the line center in units of the doppler
width. The function H(a, v) is called the Voigt function.

Let’s combine the line opacity with the continuum opacity and
solve the equation of transfer. For simplicity, we are going to assume
pure absorption in both the continuum and the line. Under these
conditions, the source function is (see the notes on the Eddington
atmosphere) Sν = Bν, the Planck function. For a plane-parallel atmo-
sphere, the equation of transfer is then

µ
dIν

dτν
= Iν − Bν (8.33)

where µ is the cosine of the angle of the ray with vertical. Solving
equation (8.33) for the emergent intensity at τν = 0 gives

Iν(µ) =
1
µ

∫ ∞

0
Bν[T(τν)] exp(−τν/µ)dτν. (8.34)

The opacity is given by
κν = κC

ν + χν, (8.35)

where κC
ν is the continuum opacity and χν = χ0φν is the line opacity,

with

χ0 =
1
ρ

(
πe2

mec

)
fijni

(
1− ehν`/kT

)
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being the line opacity at the line center ν`.
As a further simplification, we can usually ignore the variation

with ν in κC
ν over the width of the line. As a more suspect approx-

imation (although it is not so bad in practice), let’s assume that
βν ≡ χν/κC is independent of τν. With this assumption we can
write dτν = (1 + βν)dτ, where τ = −ρκC dz. Finally, let’s assume that
in the line forming region, the temperature does not vary too much,
so that we can expand Bν to first order in τ,

Bν[T(τ)] ≈ B0 + B1τ,

where B0 and B1 are constants. Inserting these approximations into
equation (8.34), multiplying by the direction cosine µ and integrating
over outward bound rays gives us the flux,

Fν = 2π
∫ 1

0

∫ ∞

0
[B0 + B1τ] exp

[
− τ

µ
(1 + βν)

]
(1 + βν) dτ dµ

= π

[
B0 +

2
3

B1

1 + βν

]
. (8.36)

Far from the line-center, βν → 0, implying that the continuum flux is

FC
ν = π

[
B0 +

2B1

3

]
.

Hence the depth of the line is

Aν ≡ 1− Fν

FC
ν

= A0
βν

1 + βν
, (8.37)

where
A0 ≡

2B1/3
B0 + 2B1/3

(8.38)

is the depth of an infinitely opaque (βν → ∞) line.

E X E R C I S E 8 . 2 — Explain why an infinitely opaque line (A0 = 0 in
eq. [8.38]) is not completely black.

Now that we have the depth of the line Aν we can compute the
equivalent width,

Wν ≡
∫ ∞

0
Aν dν = A0

∫ ∞

0

βν

1 + βν
dν. (8.39)

Let’s change variables from ν to v = ∆ν/∆νD = (ν− ν`)/∆νD. Since
H(a, v) is symmetrical about the line center, we will just integrate
over ∆ν > 0, giving

Wν = 2A0∆νD

∫ ∞

0

β0H(a, v)
1 + β0H(a, v)

dv, (8.40)
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with β0 = χ0/(κC∆νD).
It’s useful to understand the behavior of Wν in various limits.

First, at small line optical depth (β0 � 1) only the core of the line will
be visible. In the core of the line, H(a, v) ≈ exp(−v2) so we insert
this into equation (8.40) and expand the denominator to give

W?
ν ≡

Wν

2A0∆νD
=

∫ ∞

0

∞

∑
k=1

(−1)k−1βk
0e−kv2

dv

=
1
2
√

πβ0

[
1− β0√

2
+

β2
0√
3
− . . .

]
. (8.41)

Here W?
ν is the reduced equivalent width. Notice that since β0 ∝ 1/∆νD

(cf. eq. [8.32]), the equivalent width Wν is independent of ∆νD in
this linear regime. Physically, in the limit of small optical depth, each
atom in state i is able to absorb photons, and the flux removed is just
proportional to the number of atoms ni.

As we increase β0 eventually the core of the line saturates—no
more absorption in the core is possible. As a result, the equivalent
width should be nearly constant until there are so many absorbers
that the damping wings contribute to the removal of flux. In the
saturation regime, the Voigt function is still given by e−v2

, but we can
no longer assume β0 � 1, so our expansion in equation (8.41) won’t
work. Let’s go back to our integral, eq. (8.40), change variables to
z = v2, and define α = ln β0 to find

W?
ν =

1
2

∫ ∞

0

z−1/2

ez−α + 1
dz.

This may not look like an improvement, but you might notice that it
bears a resemblance to a Fermi-Dirac integral (see the notes on the
equation of state). That means that very smart people figured out
tricks to handle these integrals and all we have to do is look up what
they did. In this case we have Sommerfeld to thank. In this saturation
regime,

W?
ν ≈

√
ln β0

[
1− π2

24(ln β0)2 −
7π4

384(ln β0)4 − . . .
]

. (8.42)

Note that the amount of flux removed is basically 2A0∆νD: the line is
maximally dark across the gaussian core.

Finally, if we continue to increase the line opacity, there will finally
be so many absorbers that there will be significant flux removed
from the wings. Now the form of the Voigt profile is H(a, v) ≈
(a/
√

π)v−2, so our integral (eq. [8.40]) in this damping regime be-
comes

W?
ν =

∫ ∞

0

(
1 +
√

πv2

β0a

)−1

dv
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=
1
2
(πaβ0)

1/2 . (8.43)

Note that since aβ0 ∝ ∆ν−2
D , Wν is again independent of the doppler

width in this regime.
Now that we have this “curve of growth”, W?

ν (β0), why is it use-
ful? Since it only involves the equivalent width, it is possible to con-
struct the curve of growth empirically without a high-resolution
spectrum. Next, let’s put some of the factors back into the quantities
in the curve of growth. First, for a set of lines, the population of the
excited state depends on the Boltzmann factor exp(−E/kT). Second,
we can expand out the Doppler width in both W?

λ and β0,

log
(

Wλ

∆λD

)
= log

(
Wλ

λ

)
− log

(u0

c

)
(8.44)

log β0 = log(gi fijλ)−
E

kT
+ log(N/κC) + log C (8.45)

where C contains all of the constants and the continuum opacity.
The temperature T is picked as a free parameter, and is picked to
minimize scatter about a single curve that is assumed to fit all of the
lines. What is measured then is log(Wλ/λ) and log(gi fijλ); by com-
paring them to theoretical curves one gets an estimate of log(u0/c),
the mean velocity of atoms (may be thermal or turbulent). Since
the continuum opacity κC usually depends on the density of H, one
gets from equation (8.45) an estimate of the abundance of the line-
producing element to H.
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E X E R C I S E 8 . 3 — There is a subtlety involved when an atmospheric
opacity is scattering-dominated, because scattering does not change the
photon energy. Suppose we have an atmosphere where the Thomson
scattering dominates the opacity, and the absorption of a photon is inverse
bremsstrahlung (free-free), for which you can get the cross section expression
from equation (6.24). Note that we do not want the Rosseland mean here, we
want to know what happens to a photon of a specific frequency. Finally, we
are after scalings here, so don’t get hung up on the precise value of
numerical prefactors.

1. Is the opacity scattering-dominated at all frequencies?

2. Trace a photon of frequency ν back into the atmosphere. How deep (in
terms of the scattering optical depth) does it go before being absorbed? Is
there a single well-defined photosphere for all frequencies? (Hint: the
photon is taking a random walk into the star.)

3. Now, suppose the emergent intensity is still Planckian, but with a
temperature that is the local temperature at the depth where the photon
was last absorbed. Obtain an expression for T and ρ as a function of
scattering optical depth, and use this to derive an approximate expression
for the spectrum at high frequencies. How does it compare to a blackbody
at temperature Teff? Hint: you may find the article by Illarionov and
Sunyaev (Astrophys. & Space Science 19: 61 [1972]) helpful.



9
Contraction to the Main Sequence

9.1 The Jeans’ criterion

We’ll mention briefly a classic piece of stability analysis, and that is
of the collapse of a homogeneous, isotropic fluid. Our equations are
conservation of mass and momentum, plus Poisson’s equation for the
gravitational potential:

∂tρ +∇ · (ρu) = 0 (9.1)

∂t(ρu) +∇ · (ρuu) = −ρ∇Φ−∇P (9.2)

∇2Φ = 4πGρ. (9.3)

Right away we run into a snag: if our system is homogenous and
isotropic, then ∇Φ = 0, since there is no preferred direction for
the vector to point. In this case the left-hand side of Poisson’s equa-
tion vanishes, which is inconsistent with our having a background
density. This, of course, is the central point to cosmology, and if we
want to do this calculation correctly we need general relativity and
an expanding background universe.

Instead, we shall take an alternate route: following Jeans’s lead,
we simply assert that there is a background state of uniform density
ρ0. This not-quite-consistent approach still provides insight. Forging
ahead, we write the density, velocity, and potential as a background
piece (subscript “0”) plus a perturbation (subscript “1”):

ρ(x, t) = ρ0 + ρ1 exp(ik · x− iωt)

u(x, t) = u1 exp(ik · x− iωt)

Φ(x, t) = Φ1 exp(ik · x− iωt)

We take the perturbations to be adiabatic: dP = c2
s dρ. Substituting

these into eqns. (9.1)–(9.3), dropping all terms that are higher than
first order, dotting k into the perturbed form of eq. (9.2) and using
the other two equations to eliminate terms results in a dispersion
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relation,
ω2 = c2

s k2 − 4πGρ0. (9.4)

For sufficiently small k (long wavelengths) ω2 < 0 and the pertur-
bations will grow exponentially. Setting ω = 0 defines the Jeans’
length,

λJ = cs

√
π

Gρ0
. (9.5)

We recognize the right-hand side as just being ∼ csτdyn: equa-
tion (9.5) simply says that regions where the sound-crossing time
are longer than the dynamical timescale are subject to collapse. The
mass contained in a box of size λJ is MJ = c3

s (π/G)3/2/ρ1/2. For
conditions appropriate to the dense cores of molecular clouds—
temperatures ∼ 10 K, H2 densities ∼ 103 cm−3—the Jeans mass is
MJ ∼ 100 M�.

9.2 The Hayashi Track

For a fully convective star, we can use the fact that the entropy per
unit mass is the same at the photosphere as at the center to relate the
surface temperature to the mass and radius of the star. Namely,

Teff = Tc

(Pph

Pc

)2/5

, (9.6)

with

Tc = 0.5
GMµmu

kR
(9.7)

Pc = 0.8
GM2

R4 (9.8)

being the central density and pressure of a polytrope of index n =

3/2, and Pph being the root of the equation

Pph ≈
GM
R2

1
κ0(µmu/k)rPr

phTs−r
eff

. (9.9)

(We could have used the solution for P(τ) from before, but this ap-
proximation is accurate enough to demonstrate our point.)

Now for some crazy fractions: insert equations (9.7), (9.8), and
(9.9) into equation (9.6) and solve for Teff to find

T5+3r+2s
eff = 0.555(1+r)κ−2

0

(
Gµmu

k

)5+3r
M3+rR3r−1. (9.10)

What does this say for Thomson scattering (κ0 ≈ 0.4, r = s = 0)?
Inserting these values into eq. (9.10) gives

Teff ≈ 250 K
(

M
M�

)3/5 ( R
R�

)−1/5
, (9.11)
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a ridiculous value. Let’s try it with H− opacity (κ0 ≈ 2.5× 10−31,
r = 1/2, s = 9). In this case,

Teff ≈ 2200 K
(

M
M�

)1/7 ( R
R�

)1/49
. (9.12)

Note the extremely weak dependence on R. This is a consequence
that R is very sensitive to the entropy at the photosphere. Writing
L = 4πR2σSBT4

eff, we can solve for R and insert it into equation (9.12)
to get the effective temperature in terms of mass and luminosity,

Teff ≈ 2300 K
(

M
M�

)7/51 ( L
L�

)1/102
. (9.13)

This is a crude estimate, so don’t take these numbers too seriously.
What this exercise illustrates, however, is that the effective temper-
ature for fully convective, low-mass stars is essentially independent
of luminosity. On an HR diagram, these stars follow a vertical track,
known as the Hayashi track, as they contract to the main sequence.

9.3 Formation of a radiative core

For low-mass stars, the opacity in the core has a Kramers’-like form,
κ ∝ ρT−7/2. From our scalings, we see that κ ∝ M−5/2R1/2. As a re-
sult, as the star contracts, the central opacity decreases. If it decreases
enough, then photons can carry the flux and a radiative core will
develop.

To find out when a radiative core forms, let’s start with our equa-
tion for the flux,

F(r) = −1
3

c
ρκ

daT4

dr
,

and use hydrostatic balance to rewrite this as

L(r) = 4πr2F(r) =
16π

3
acT4

κ

Gm(r)
P

d ln T
d ln P

.

Now imagine we consider a tiny amount of matter δm about the
center of the star. The luminosity coming out of this sphere is δL(r),
and since in a convectively stable atmosphere d ln T/d ln P < (Γ2 −
1)/Γ2, the maximum amount of energy that can be generated in the
sphere δm and transported away in the absence of convection is

δL(r)
δm

<
16π

3
Gac

κ

T4
c

Pc

Γ2 − 1
Γ2

. (9.14)

Flashback! Do you remember doing problem 2.3 of chapter 2? This
gave us an expression, eq. (2.33), for ∂L/∂m, which we can equate
with the LHS of equation (9.14):

q− Pc

ρc(Γ3 − 1)
D
Dt

ln

(
Pc

ρΓ1
c

)
<

16π

3
Gac

κ

T4
c

Pc

Γ2 − 1
Γ2

.
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Let’s do the time warp again: in problem 4.2 of chapter 4, you showed
that P/ρΓ1 ∝ R for an ideal gas (i.e., the polytropic constant K); mak-
ing this substitution in the derivative gives the condition for the
formation of a radiative core,

q− NAkBTc

µ(Γ3 − 1)
D ln R

Dt
<

16π

3
Gac

κ

T4
c

Pc

Γ2 − 1
Γ2

. (9.15)

Stars with M & 0.3M� form a radiative core while contracting to the
main-sequence; in contrast, lower-mass stars remain fully convective
throughout their main-sequence lives.

E X E R C I S E 9 . 1 — We showed that low-mass pre-main-sequence stars
(including brown dwarfs) are fully convective and have nearly constant
effective temperatures. Use these facts to model their pre-main sequence
contraction. Assume Teff = const. so that the luminosity is L = 4πR2σSBT4

eff.

1. Use the appropriate polytropic relation for the energy of the protostar and
assume that the luminosity is entirely powered by contraction, i.e., the star
is not yet approaching the main-sequence. Derive an equation for R(t).
What is the characteristic timescale for a low-mass star to contract? Scale
your answer to Teff = 3000 K and M = 0.1 M� (i.e., get an analytical
solution in terms of the variables T̃ = [Teff/3000 K] and M̃ = [M/0.1 M�]).

2. Compare your findings with more elaborate calculations. You will find a
review in “Theory of Low-Mass Stars and Substellar Objects,” G. Chabrier
and I. Baraffe, Ann. Rev. Astron. Astrophys. 38: 337 (2000).

http://arxiv.org/abs/astro-ph/0006383


10
Nuclear Physics

10.1 The Nuclear Landscape

From nucleon-nucleon scattering, we find that the nuclear force op-
erates over a range of . 2 × 10−13 cm ≡ 2 fm, where fm denotes
the unit of length known as a “fermi.” At low energies the nuclear
force can be described as the exchange of spin-zero pions; recall
from quantum field theory that the exchange of a spin-zero par-
ticle produces an attractive potential of the form e−r/λπ /r, where
λπ = h̄/(mπc) is the Compton wavelength of the force carrier. The
pion rest mass is ≈ 140 MeV/c2, so λπ ≈ 1.4 fm. The nuclear force
is indeed attractive over this range, but it becomes repulsive at dis-
tances < 1 fm where higher order terms in the interaction become
important.

This interaction—short range and attractive, but with a repulsive
core—resembles the interaction between molecules in a fluid. Indeed,
for heavy nuclei, the nucleons form a “nuclear fluid” with a charac-
teristic density of 0.16 fm−3. The binding energy is defined as

B(N, Z) =
[
Zmp + Nmn −M(N, Z)

]
c2, (10.1)

where M is the total mass of a nucleus with N neutrons and Z
protons. The total number of nucleons is A = N + Z, the proton
rest mass is mp = 938.272 MeV/c2, and the neutron rest mass is
mn = 939.565 MeV/c2. From the form of this definition B > 0 for
bound nuclei and is ≈ 8 MeV for most nuclei. This binding of the
nucleons into a “nuclear fluid” implies that one can make a crude
model of the nucleus as a liquid drop, and use this model to fit the
binding energy. Such a model, due to Weizäcker, is

−B(N, Z) = aV A + aS A2/3 + aA
(N − Z)2

A
+ aC

Z2

A1/3 + apδA−1/2,

(10.2)
and has five terms: a bulk energy term aV A that scales with the to-
tal number of nucleons; a surface term aS A2/3 that corrects for the
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weaker binding near the surface; an asymmetry term aA(N − Z)2/A
that accounts for the energy cost to have an imbalance in the num-
ber of neutrons and protons; and a Coulomb term aCZ2/A1/3 that
accounts for the repulsion between other protons. The final term
accounts for the pairing between like nucleons, with

δ =


+1, N, Z even;
−1, N, Z odd;
0, N even, Z odd, or N odd, Z even

.

A sample fit for the coefficients is listed in Table 10.1.

coefficient aV aS aA aC ap

5-parameter fit (MeV) -15.67 17.04 23.09 0.71 -14.55

4-parameter fit (MeV) -15.5 16.6 22.7 0.71 —

Table 10.1: Coefficients for the
Weizäcker mass formula.

E X E R C I S E 1 0 . 1 — In the r-process, a heavy seed nucleus captures a
large number of neutrons and then decays back to stability. Suppose we start
with 56Fe in a bath of free neutrons, so that the iron nucleus captures 152

neutrons (with β-decays occurring as necessary to keep the nucleus bound)
until it reaches the stable nucleus 208Pb. Is this process exothermic or
endothermic? Explain your answer.

Equation (10.2) gives a good, if somewhat crude, description of the
nuclear landscape. As a first example, let’s look at how the binding
energy per nucleon, −B/A trends with A. For simplicity, we’ll ignore
the pairing term. Dividing equation (10.2) by A, and denoting the
neutron asymmetry by η ≡ (N − Z)/(N + Z), we obtain

− B
A

= aV + aS A−1/3 + aAη2 +
aC
4

(1− η)2 A2/3. (10.3)

Minimizing this expression for small A, we see that the most bound
nuclei (smallest −B/A) have η → 0, i.e., equal numbers of neutrons
and protons. As A increases, however, the Coulomb term becomes
important. Expanding the last two terms and combining gives the
sum of the asymmetry and Coulomb terms,

aAη2 +
aC
4

(1− η)2 A2/3 =
aC
4

A2/3 − aC
2

A2/3η +
[ aC

4
A2/3 + aA

]
η2.

For large A, this expression is minimized (although it cannot be
made to vanish) for η > 0: that is, N > Z and the most bound mas-
sive nuclei are neutron-rich. The nuclei for which −B/A is a mini-
mum for a fixed A define the valley of stability. How does the binding
energy change with A along this valley? At small A, the asymme-
try term dominates and η2 � 1. As A increases, the surface term
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aS A−1/3 becomes smaller and B/A increases. At large A, however,
the sum of the Coulomb and asymmetry terms decreases B/A. As a
result, there is a peak in B/A, which is around A = 56.

Next, let’s find the boundaries of our nuclear landscape: the most
neutron-rich and proton-rich nuclei that are still bound. Define the
neutron separation energy Sn as the energy needed to remove a
neutron from a nucleus,

Sn(N, Z) ≡ c2 {[M(N − 1, Z) + mn]−M(N, Z)}
= B(N, Z)− B(N − 1, Z). (10.4)

Likewise, define the proton separation energy as

Sp(N, Z) ≡ c2 {[M(N, Z− 1) + mp
]
−M(N, Z)

}
= B(N, Z)− B(N, Z− 1). (10.5)

If we take a nucleus (N, Z) in the valley of stability and add pro-
tons keeping N fixed, we will eventually reach a nucleus for which
Sp = 0, that is, it costs no energy to add or to remove a proton. This
defines the proton-drip line: nuclei more proton-rich are unsta-
ble to proton emission. Likewise, on the neutron-rich side there is
the neutron-drip line, for which Sn = 0. Note that because of
the pairing term there is an odd-even staggering in the Sn and Sp; it
is therefore useful, sometimes, to define the two-neutron and two-
proton separations energies S2n and S2p.

E X E R C I S E 1 0 . 2 —

1. (a) For a fixed A, find Z?(A) such that the binding energy per nucleon,
f = B(N = A− Z?, Z?)/A is maximized.

(b) Plot Z? vs N.

(c) Using this Z?, plot Ye = Z?/A for 20 < A < 200 and explain
qualitatively any trends.

(d) Now substitute the value of Z? into the expression for B(N, Z) and
plot B(N, Z?)/A as a function of A = N + Z?. Explain qualitatively
any trends.

2. (a) For each 10 ≤ Z ≤ 82, find the maximum value of N such that
S2n(N, Z) > 0. Plot the values (N, Z) you find.

(b) For each 10 ≤ N ≤ 120, find the maximum value of Z such that
S2p(N, Z) > 0. Plot the values (N, Z) you find.

3. Compare the plots of problems 1b, 2a, and 2b to a chart of the nuclides.
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10.2 Non-resonant nuclear reactions

The situation of interest is the reaction between two nuclei, (A1, Z1)

and (A2, Z2). The nuclear radius is rN ≈ A1/3 fm, and the Coulomb
energy at this distance is

Z1Z2e2

rN
=

Z1Z2αh̄c
rN

≈ 1.4Z1Z2 A−1/3 MeV� kT. (10.6)

For nuclear reactions, typical energy scales are ∼ MeV and typ-
ical length scales are ∼ fm. In these units, h̄c = 197 MeV fm. In
the first equality in eq. (10.6), we also introduce the fine-structure
constant α = e2/(h̄c) = 1/137. In “nuclear units,” e2 = αh̄c =

(197 MeV fm)/137 = 1.44 MeV fm. Remember these numbers!
If we scatter two nuclei together, the closest approach (cf. §7.1) is
∼ e2/(kBT) ∼ 1440 fm at typical stellar energies kBT ∼ 1 keV.
Clearly the cross-section for a reaction between our pair of particles
is controlled by the probability of tunneling through the Coulomb
potential.

For a two-body system, it is convenient to transform into a center-
of-mass frame. Our problem then reduces to a one-body problem
with reduced mass m = Amu, with A = A1 A2/(A1 + A2) and
incident energy E = mv2/2, where v is the relative velocity of the two
particles. For now, we’ll neglect angular momentum (` = 0) so our
scattering is s-wave. At low energies, we can form a “geometrical”
cross-section from the particle wavenumber k = p/h̄, with

πk−2 = π
h̄2

(2mE)
= 660 b

1
A

(
keV

E

)
(10.7)

Here the cross-section is in units of barns, with 1 b = 10−24 cm2. This
is the first part of our nuclear cross-section σ(E).

The second portion of the nuclear cross-section is the probability
of tunneling through the Coulomb barrier. First, let’s get the classical
turning point rE from

Z1Z2e2

rE
= E,

rE = 1440 fm Z1Z2

(
keV

E

)
. (10.8)

Now the wavelength is k−1 = h̄(2AmuE)−1/2 = h̄c(2Amuc2E)−1/2

and since muc2 = 932 MeV the wavelength k−1 = 145 fm (keV/E)1/2.
The important point is that since k−1 � rE, we can solve the Schrödinger
equation using the WKB approximation.

The WKB approximation is standard, so let me just remind you
that the probability of tunneling through the barrier depends on the
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action,

P ∝ exp

{
2
h̄

∫ rN

rE

[
2m
(

Z1Z2e2

r
− E

)]1/2

dr

}
. (10.9)

To do this integral, note that rE � rN, so we can make the approxi-
mation rN → 0 in the integral’s lower limit; with the substitution

sin φ =

[
2m
(

Z1Z2e2

r
− E

)]1/2 ( r
2mZ1Z2e2

)1/2

we tame the integral and obtain

P ∝ exp
{
− 8mZ1Z2e2

h̄(2mE)1/2

∫ π/2

0
sin2 φ dφ

}
= exp

[
−
(

EG

E

)1/2
]

,

(10.10)
where

EG ≡ 2π2 Amuc2α2(Z1Z2)
2 = 979 keV A(Z1Z2)

2 (10.11)

is the Gamow energy. Note the strong dependence on Z1Z2: EG deter-
mines which reactions can occur at a given temperature. If you stare
at the factor multiplying the integral in equation (10.10), you will see
that P ∝ exp(−rE/λ), the exponential of ratio of the width of the for-
bidden region to the wavelength of the incident particle. This makes
intuitive sense.

Now we have the second part of our cross-section, the probability
of getting through the Coulomb barrier. This third part depends
on the nuclear interactions. For non-resonant reactions, this third
part does not depend strongly on energy, so it is common to define
the astrophysical S-factor by writing the cross section as the product
(geometrical)× (tunneling)× (nuclear),

σ(E) =
1
E

exp

[
−
(

EG

E

)1/2
]

S(E). (10.12)

It is easier to extrapolate the slowly varying S(E) from lab energies of
> 100 keV down to center-of-mass energies of ∼ keV than it would be
to fit the rapidly varying cross-section.

Now each nucleus has a Maxwellian velocity distribution,

n1(v1)d3v = n1

( m1

2πkT

)3/2
exp

(
−mv2

2kT

)
d3v, (10.13)

and similarly for particle 2. Let’s call a particular nucleus 1 (having
velocity v1) the target. By definition the cross section is

number of reactions/target/time
number of incident particles/area/time

,
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so to get the number of reactions per target per time we need to
multiply σ(E) by the number of incident particles per unit area per
unit time. The incident flux is just n2(v2)|v|d3v2 where v = v2 − v1.
Hence the reaction rate per unit volume per unit time between a pair
of particles having velocities in volumes d3v1 and d3v2 about v1 and
v2 is just

1
1 + δ12

n1(v1)n2(v2)σ(E)|v|d3v1d3v2.

The factor (1 + δ12)
−1 is equal to 1/2 if particles 1 and 2 are identical,

and is there to avoid double-counting in that case. To get the total re-
action rate per unit time, we need to integrate over the joint velocity
distribution d3v1 d3v2,

r12 =
n1n2

1 + δ12

[
m1m2

(2πkT)2

]3/2

×
∫

σ(E)v exp

(
−

m1v2
1

2kT
−

m2v2
2

2kT

)
d3v1 d3v2. (10.14)

Now E and v are the relative energies and velocity in the center-of-
mass frame. We can change variable using the relations

v1 = V − m2

m1 + m2
v

v2 = V +
m1

m1 + m2
v.

where V is the center-of-mass velocity. It is straightforward to show
that dv1,x dv2,x = dVxdvx, and likewise for the y, z directions. Fur-
thermore, m1v2

1 + m2v2
2 = (m1 + m2)V2 + mv2, and multiplying

and dividing the integral in equation (10.14) by m1 + m2 allows us to
write

r12 =
n1n2

1 + δ12

(
m1 + m2

2kT

)3/2 ( m
2kT

)3/2

×
∫

d3V
∫

d3v σ(E)v exp
[
−mv2

2kT

]
exp

[
− (m1 + m2)V2

2kT

]
.

The integral over d3V can be factored out and is normalized to unity.
Hence we have for the reaction rate between a pair of particles 1 and
2,

r12 =
1

1 + δ12
n1n2

{( m
2πkT

)3/2 ∫ ∞

0
σ(E)v exp

(
−mv2

2kT

)
4πv2 dv

}
.

≡ 1
1 + δ12

n1n2〈σv〉. (10.15)

The term in {} is the averaging over the joint distribution of the
cross-section times the velocity, and is usually denoted as 〈σv〉.
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Changing variables to E = mv2/2 in equation (10.15) and inserting
the formula for the cross-section, equation (10.12), gives

〈σv〉 =
(

8
πm

)1/2 ( 1
kT

)3/2 ∫ ∞

0
S(E) exp

[
−
(

EG

E

)1/2
− E

kT

]
dE.

(10.16)
Now, we’ve assumed that S(E) varies slowly; but look at the argu-
ment of the exponential. This is a competition between a rapidly
rising term exp[−(EG/E)1/2] and a rapidly falling term exp(−E/kT).
As a result, the exponential will have a strong peak, and we can ex-
pand the integrand in a Taylor series about the maximum. Let

f (E) = −
(

EG

E

)1/2
− E

kT
.

Then we can write∫ ∞

0
S(E) exp

[
−
(

EG

E

)1/2
− E

kT

]
dE

≈
∫ ∞

0
S(Epk) exp

[
f (Epk) +

1
2

d2 f
dE2

∣∣∣∣
E=Epk

(
E− Epk

)2
]

.

Here Epk is found by solving (d f /dE)|E=Epk = 0. This trick allows us
to turn the integral into a Gaussian! (Before the internet, all there was
to do for fun were integrals.)

Solving for Epk, we get

Epk =
E1/3

G (kT)2/3

22/3 ,

and

exp
[

f (Epk)
]
= exp

[
−3
(

EG

4kT

)1/3
]

.

Further,

1
2

d2 f
dE2

∣∣∣∣
E=Epk

= − 3
2(2EG)1/3(kT)5/3 = − 3

4EpkkT
.

Defining a variable ∆ = 4(EpkkT/3)1/2, our integral becomes

〈σv〉 =
(

8
πm

)1/2 ( 1
kT

)3/2

×S(Epk) exp

[
−3
(

EG

4kT

)1/3
] ∫ ∞

0
exp

[
−
(E− Epk)

2

(∆/2)2

]
dE.(10.17)

How well does this approximation do? Figure 10.1 shows the inte-
grand (solid line) and the approximation by a Gaussian (dashed line).
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p + p,T = 107 K

E (keV)

ar
b.

un
its

0 2 4 6 8 10

0.0

0.5

1.0

1.5 exp
[
−(EG/E)1/2 − E/kT

]
approx.

exp
[
−(EG/E)1/2

]
exp [−E/kT ]

Figure 10.1: Integrand of eq. (10.16)
(solid line) and the Gaussian (dot-dashed
line) constructed by expanding to sec-
ond order the argument of the exponen-
tial. The parameters for EG were taken
from the p + p reactions (Z1Z2 = 1,
A = 1/2), and the temperature is 107 K.
Note that the grey curves, showing the
two terms of the exponential, have been
rescaled to fit on the same plot.

Although the integrand is skewed to the right, the area is approxi-
mately the same. We could correct for this by taking more terms in
our expansion. Consult Clayton for details.

Another simplification can be made because both the Gaussian
and the original integrand go to zero as E → 0. As a result, we
can extend the lower bound of our integral (eq. [10.17]) to −∞, and
obtain

〈σv〉 ≈
(

8
πm

)1/2 ( 1
kT

)3/2
S(Epk) exp

[
−3
(

EG

4kT

)1/3
]

∆
2

=
213/6
√

3m

E1/6
G

(kT)2/3 exp

[
−3
(

EG

4kT

)1/3
]

S(Epk). (10.18)

On to some numbers. Table 10.2 lists quantities for some common
reactions. A couple of notes. First, ∆/Epk indicates how well our
Gaussian approximation works—you will see it is less than 1 in all
cases. We evaluated ∆/Epk, which decreases with temperature as
T−1/6, at T = 107 K. Second, the quantity n(T) is the exponent if we
want to approximate the reaction rate as a power-law, r ∝ Tn. We
compute this as

n(T) =
d ln r
d ln T

= −2
3
+

(
EG

4kT

)1/3
, (10.19)

as you can easily verify for yourself. In the table, the exponent is
evaluated at T = 107 K; obviously n depends on temperature. Finally,
note the size of EG/(4k). This makes the argument of the exponential
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in equation (10.18) large in absolute value, and sets the temperature
scale at which a given reaction comes into play.

Reaction p + p p + 3He 3He + 3He p + 7Li p + 12C

A 1/2 3/4 3/2 0.88 0.92

Z1Z2 1 2 4 3 6

EG (MeV) 0.489 2.94 23.5 7.70 32.5
EG/(4k) (GK) 1.4 8.5 68.0 22.0 94.0
Epk|T=107 K (keV) 4.5 8.2 16.3 11.3 18.2
∆/Epk|T=107 K 1.0 0.75 0.53 0.64 0.50

n(T = 107 K) 4.6 8.8 18.3 12.4 20.5

Table 10.2: Parameters for non-
resonant reactions

10.3 Resonances

This section contains my condensed notes on resonances following
Blatt and Weisskopf’s excellent text1. Other treatments of the subject, 1 John M. Blatt and Victor F. Weisskopf.

Theoretical Nuclear Physics. Springer-
Verlagpr, 1979

such as that in Iliadis2 and in Clayton3, mostly follow their approach.

2 C. Iliadis. Nuclear Physics of Stars.
Wiley-VCH, 2007

3 Donald D. Clayton. Principles of Stellar
Evolution and Nucleosynthesis. University
of Chicago Press, 1983

In this section, we shall often make use of the notation X(a, b)Y to
mean the reaction X + a→ b + Y.

Orbitals

Nuclei exhibit shell effects: one can often treat the nucleons as
independent particles occupying orbitals determined by a mean
force. Unlike in the atomic case, the spin-orbit term in the Hamilto-
nian, −aL · S, is quite strong. Since the total angular momentum is
J = L + S, we have

L · S =
1
2
(J · J − L · L− S · S) ,

and hence states with larger J have a lower energy. The strong L · S
coupling leads to the presence of “gaps” in the energy spectra; nuclei
that have have filled (either neutrons or protons) shells up to this
gap are unusually bound and the nucleon number (either neutron or
proton) is termed a magic number. The magic numbers are 2, 8, 20, 28,
50, 82, and 126. For example, 16O (8 protons, 8 neutrons) and 40Ca
(20 protons, 20 neutrons) are doubly magic and hence more strongly
bound than other nuclides of similar mass.

We label the orbitals as n`j, where n is the radial quantum number,
` is the orbital angular momentum (s, p, d, f , . . .), and j is the total
angular momentum. The first few orbitals are listed in Table 10.3.
Each orbital has 2j + 1 nucleons, and a fully occupied orbital has
J = 0. For example, we would expect that the ground state of 13C
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(6 protons, 7 neutrons) to have closed 1s1/2 and 1p3/2 shells for both
neutrons and protons, and the remaining neutron would then occupy
the 1p1/2 shell.

Orbital Number, 2j + 1, in orbital Total number

1d3/2 4 20

2s1/2 2 16

1d5/2 6 14

1p1/2 2 8

1p3/2 4 6

1s1/2 2 2

Table 10.3: Neutron orbitals

The remaining quantum number is parity (π), which is conserved
under the strong force. The parity of a nucleon orbital is (−1)`,
where the angular momentum number ` must be summed over all
nucleons. Since a closed shell has an even number of nucleons, it
must have positive parity. For example, the ground state of 17O has 8

protons filling the 1s1/2, 1p3/2, and 1p1/2 shells 8 neutrons in closed
shells, so the remaining neutron must be in the 1d5/2 shell (` = 2):
the angular momentum and parity of the ground state must there-
fore be jπ = 5

2
+

. As a second example, 14Nhas 6 protons in closed
shells and 6 neutrons in closed shells, with the remaining proton and
neutron both in 1p1/2 orbitals. Hence the angular momentum of the
ground state could either be 0 or 1; it turns out that the symmetric
state has lower energy, so j = 1. The parity of the ground state is
(−1)1+1 = 1, so Jπ(14N) = 1+.

The angular momentum matters because it sets the possible range
of relative angular momenta that the incoming particles can have.
Writing the wave function as ψ(r) = (u`(r)/r)Y`0 and substituting
into Schrödinger’s equation,

− h̄2

2m
∇2ψ + V(r)ψ = Eψ,

gives the following equation for u`,

d2

dr2 u` +

{
k2 − `(`+ 1)

r2 − 2m
h̄2

ZaZXe2

r

}
u` = 0.

Here k is the wavenumber for the particle at r → ∞, E = h̄2k2/2m.
Note the presence of the “centrifugal barrier,”

h̄2

2mr2 `(`+ 1) = 20.9 MeV
mu

m

(
fm
r

)2
`(`+ 1) :

there is a price to pay if the particles must have a high relative `.
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Formation of a compound nucleus

Even orbitals with positive energy can be long-lived; suppose we
excite a proton in 11C to an orbital just above the threshold for de-
cay into p + 10B. Although this state has positive energy and can
decay, the particle has to tunnel through the coulomb barrier, and
potentially an angular momentum barrier if s-wave emission is for-
bidden. We saw that the probability of getting through the Coulomb
barrier (for s-wave) is given by eq. (10.10). If this is very small, then
we can imagine a classical particle oscillating back and forth in the
well, which is does many times because the probability of escaping
each time it approaches the barrier is so small. Thus, if there is a
substantial energy barrier impeding escape, the classical oscillation
period P is much less than the lifetime of the state τ. Now the clas-
sical oscillation period depends inversely on the spacing D between
energy levels, P ∼ h̄/D, as you can verify for an infinite square well
potential. Hence if the probability of tunneling is sufficiently small,

P
τ
∼ h̄

Dτ
=

Γ
D
� 1,

where the width of the state to particle emission is Γ = h̄/τ. Hence
for reactions at low excitation energies involving light nuclei with
widely separated levels, we can look at captures into discrete levels in
the compound nucleus.

Derivation of resonant cross-section

We’re now ready to do some heavy lifting and derive the cross-
section for a resonant reaction. The nuclear force is short-ranged,
so we can define a “channel radius” R exterior to which our poten-
tial is purely Coulomb. Our strategy is just like doing transmission
resonances in quantum mechanics: we’ll solve for the wave function
exterior to R and match it to the wave function inside R. Since we
don’t completely know the form of the potential inside R, our expres-
sion will have terms that must be experimentally constrained.

The reaction is a + X; the coulomb potential is ZaZXe2/r and the
relative angular momentum of a and X is `. Let m be the reduced
mass of a and X. Our wave function is then ψ(r) = (u`(r)/r)Y`0;
substituting this into the Schrödinger equation,

− h̄2

2m
∇2ψ + V(r)ψ = Eψ,

gives the following equation for u`,

d2

dr2 u` +

{
k2 − `(`+ 1)

r2 − 2m
h̄2

ZaZXe2

r

}
u` = 0.
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Here k is the wavenumber for the particle at r → ∞, E = h̄2k2/2m.
There are two solutions to this differential equation; the solutions are
known as Coulomb wave functions, F` and G`. The regular solution
F` vanishes as r → 0, and G` blows up at the origin. For kr � 1, the
Coulomb wave functions go over to

F`(r) ' sin
[

kr− 1
2
`π − γ ln(2kr) + σ`

]
(10.20)

G`(r) ' cos
[

kr− 1
2
`π − γ ln(2kr) + σ`

]
. (10.21)

Here the parameter σ` is a Coulomb phase shift, and the parameter

γ =
1

2π

(
EG
E

)1/2

contains the Gamow energy. This shouldn’t be too surprising: since
F` and G` are the exact solutions to the motion of a particle in a
Coulomb potential, they must behave like what we found using a
WKB approximation in some limit.

For r ≥ R, we can write our solution in terms of outgoing waves,
u+
` , and incoming waves, u−` ; here the outgoing and incoming waves

are defined as

u+
` = e−iσ` [G` + iF`]

u−` = eiσ` [G` − iF`] .

At large distances these go over to plane waves, and so we can deter-
mine the coefficients,

u` =

√
π

k
i2`+1(2`+ 1)1/2 [u−` − η`u+

`

]
. (10.22)

The effect of the nucleus is to affect the outgoing waves via the co-
efficient η`. Furthermore, if we integrate the current over a large
sphere we obtain the cross-section for the reaction (if the current is
zero, then every particle that enters the sphere leaves it, so there is no
reaction),

σ` =
π

k2 (2`+ 1)
[
1− |η`|2

]
. (10.23)

To determine η`, we need to find the logarithmic derivative

α` ≡ R
u′`
u`

∣∣∣∣
r=R

where u′` = du`/dr. For now α` is undetermined, since it depends
on the wave function inside the nucleus. It is useful to define the
following quantities:

u−`
u+
`

=
G` − iF`
G` + iF`

e2iσ` ≡ e2iξ (10.24)

R
u+′
`

u+
`

∣∣∣∣∣
r=R

= R(G′`G` + F′`F`)v` + ikRv` ≡ ∆` + is`. (10.25)
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In the last equation, we made use of the fact that G`F′` − F`G′` = k for
all r and defined

v` =
(

G2
` + F2

`

)−1

r=R
.

To see the significance of v`, note that the ratio of an outgoing wave
at r → ∞ and that at r = R is

|u`(∞)|2
|u`(R)|2 =

1
G2
` (R) + F2

` (R)
,

where the numerator follows from the asymptotic forms, eqns. (10.20)
and (10.21). This ratio, however, is just the probability of the wave
transmitting through the potential barrier, and for ` = 0 is approxi-
mately what we found earlier (eq. [10.10]) using the WKB approxima-
tion.

Evaluating α` for the solution defined at r ≥ R, eq. (10.22), and
using our definitions, eq. (10.24) and (10.25), we determine the phase
shift,

η` =
α` − ∆` + is`
α` − ∆` − is`

e2iξ .

Using this to evaluate the reaction cross-section, eq. (10.23), we have

σ` =
π

k2 (2`+ 1)
−4s`=α`

(<α` − ∆`)2 + (=α` − s`)2 (10.26)

Notice that the reaction cross-section vanishes if α` ∈ R, i.e., =α` = 0.
So far, our efforts may just look like we are reshuffling terms for no
apparent reason, but there is a method to the algebraic madness. We
see explicitly, for example, that the cross-section is proportional to the
penetration through the term s` in the numerator.

To make further progress, we have to evaluate α`, and this requires
making some constraints on the form of the wavefunction at r < R.
Although the precise form of the potential is unknown, we do know
that it is a rather deep well. Just inside the surface R, we expect the
radial wavefunction to be composed of spherical waves,

u`(r < R) = A
{

exp(−iKr) + e2iζ e−2q exp(iKr)
}

.

Our reasoning for this form is as follows. In general the state will
be a standing wave, which we can write as a sum of incoming and
outgoing waves. The jump in the potential at r = R introduces a
phase shift, which we parameterize by e2iζ . If the state decays by
another channel than simply re-emitting the particle, i.e. if a reaction
occurrs, then the amplitude of the outgoing wave will be less than
that of the incoming wave; we parameterize this by the factor e−2q.
We expect that q � 1, because otherwise the state wouldn’t be long-
lasting and have a well-defined energy.



116 stellar astrophysics

We can factor u`(r < R),

u`(R) =
(

2Aeiζe−q
){exp(−iKR− iζ + q) + exp(iKR + iζ − q)

2

}
= C cos(KR + ζ + iq).

Using this to evaluate the logarithmic derivative,

α` = −KR tan(KR + ζ + iq). (10.27)

Now, recall that K � k; the wavenumber inside the nuclear potential
well is much larger than that outside. The only way to smoothly join
two waves with such discrepant wavenumbers is to have them match
where u′` = 0, i.e., where α` = 0. Let’s expand α` about such a point
with energy εr and q = 0:

α` ≈
∂α`
∂ε

∣∣∣∣
q=0,ε=εr

(ε− εr) +
∂α`
∂q

∣∣∣∣
q=0,ε=εr

q.

Substituting this into equation (10.26) gives

σ =
π

k2 (2`+ 1)
{

4KRqs`
[(∂εα`)(ε− εr)− ∆`]2 + [−KRq− s`]2

}
. (10.28)

We expect that near a resonance, the cross-section will have a Lorentzian
profile, with a total width

Γ = ∑
i

Γi + Γγ

that is the sum of particle decay widths Γi and widths for radiative
transitions Γγ. The entrance channel width will be proportional to
s` = kRv`. Furthermore, a reaction will take place if the nucleus does
something other than decay in the entrance channel, and this will
occur with probability Γ− Γa.

Motivated by these considerations, we note that if we define the
width for decay in the entrance channel as

Γa = −
2s`
∂εα`

= −2kR v`
∂εα`

, (10.29)

the reaction width as (it can be shown that in general ∂εα` < 0)

Γr = Γ− Γα = −2KR q
∂εα`

, (10.30)

and the “observed” resonance energy as

εr,obs = εr +
∆`

∂εα`
,

then the cross-section becomes

σ =
π

k2 (2`+ 1)
ΓaΓr

(ε− εr,obs)2 + (Γ/2)2 . (10.31)
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This is the cross-section for a compound nucleus to form in channel
a and decay by any other channel. To get the cross-section for a spe-
cific exit channel b, we must multiply by the branching ratio Γb/Γr.
Finally, for an unpolarized incident beam, we need to multiply the
cross section by a statistical factor

ω =
2J + 1

(2Ja + 1)(2JX + 1)
(10.32)

to account for the fraction of angular momentum states in the target
X and beam a that can enter the level with the appropriate angular
momentum `.

You might be troubled by our identification of the particle width,
eq. (10.29), and reaction width, eq. (10.30). Notice that if we were to
solve the problem of a quasi-bound state leaking out of its well, we
would encounter similar equations, and this would lead to the identi-
fication of the level width. We can make the argument more plausible
by the following consideration. Let’s consider ∂εα`, evaluated about
the point where α` = 0 and q = 0. The general form of α` is a tangent
function (eq. [10.27]), so if we increase the energy by the spacing be-
tween levels D, the phase of the tangent must increase by π. Hence,
∂εα`|KR+ζ=nπ,q=0 ∼ −KRπ/D. Substituting this into eq. (10.29) and
rearranging,

Γa ∼ h̄
(

4k
K

)(
D

2πh̄

)
v`.

Now, when a plane wave is incident on a step in the potential, the
transmission coefficient across the step is roughly k/K, as you can
verify by solving a one-dimensional Schrödinger equation. We
saw earlier that classical oscillation period for a particle in a well
is 2πh̄/D. Hence

Γa ∼ h̄× (oscillation frequency)

×(transmission across potential step at nuclear surface)

×(probability of penetrating coulomb, centrifugal barrier).

But this is precisely what we would write down for h̄× (rate of decay in channel a)—
the particle has a small probability on each oscillation to penetrate
the potential jump and barrier.

A worked example

Consider the reaction 10B(p, α)7Be. We can think of this reaction pro-
ceeding first via the formation of a compound nucleus in an excited
state, 11C?. It can be shown that the cross-section for the formation of
11C? via proton capture is proportional to the width for the decay of
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that state via proton emission:

σ(p + 10B→ 11C
?
) ∝ Γp. (10.33)

The second stage of the reaction is the decay of the 11C? into α + 7Be.
Because of the short timescale ∼ 10−23 s for nuclear interactions—
roughly the crossing time for a nucleon in a 20 MeV by 2 fm well—we
make the assumption that the decay of an excited state does not
depend on how the state was formed. If Γα represents the decay
11C? → α + 7Be, then

σ(p + 10B→ α + 7Be) ∝ ΓpΓα.

The full expression for the cross section is

σ(p + 10B→ α + 7Be) =
π

k2 (2`+ 1)ω
ΓpΓα

(ε− εr,obs)2 + (Γ/2)2 . (10.34)

Here the first term π(2` + 1)k−2 is the geometrical cross-section
and Γ represents the total decay width of the excited state in the
compound nucleus. The factor ω is the statistical factor

ω =
2J + 1

(2Jp + 1)(2J10 + 1)

that accounts for the fraction of angular momentum states that can
enter the level with the appropriate angular momentum `. For our
example, the reaction 10B(p, α)7Be can proceed via the Jπ = 5/2+

level at 8.70 MeV in 11C. The angular momentum and parity of 10B
and the proton are Jπ(10B) = 3+, Jπ(p) = 1/2+. These two spins can
add to either 7/2+ (multiplicity of 8) or 5/2+ (multiplicity of 6). As a
result, they can enter into the resonance with ` = 0, and they will do
so with 6/14 probability. The cross section for this reaction is then

σ(p + 10B→ 7Be + α) =
6
14

π

k2
ΓpΓα

(ε− ε8.70)2 + (Γ/2)2 .

This is multiplied by the entrance channel velocity v and integrated
over the thermal distribution to produce the reaction rate.

10.4 Inverse Rates

Consider a photodisintegration reaction Y(γ, a)X. We could compute
the rate for this by first computing the excitation Y → Y∗ by absorp-
tion of a photon followed by decay through the a-channel. There is
another, easier, way to compute the thermally averaged rate, however,
if we already have an expression for the forward reaction X(a, γ)Y.
Suppose we allow our plasma, consisting of a, X, and Y to come into
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thermal balance. In such a plasma, the composition does not change
with time, so our forward and inverse rates must balance:

nXna〈σv〉Xa = nYλ, (10.35)

where λ is the photodissociation rate. Since we are in thermal equi-
librium, however, we also have a relation between the chemical po-
tentials,

µX + µa = µY.

For an ideal gas, the chemical potentials are given by eq. (5.7). Rear-
ranging terms gives and taking the exponential gives us the equation

nXna

nY
=

nQ
X nQ

a

nQ
Y

exp
(
− Q

kBT

)
. (10.36)

In this expression we have substituted Q = (ma + mX −mY)c2, and

nQ
i = gi

(
mikBT
2πh̄2

)3/2
.

Substituting eq. (10.36 into eq. (10.35) gives us an expression for the
photodissociation rate λ in terms of the forward rate,

λ =
nXna

nY
〈σv〉Xa

=
gX ga

gY

(
mukBT
2πh̄2

)3/2 (AX Aa

AY

)3/2
exp

(
− Q

kBT

)
〈σv〉Xa.(10.37)

This expression is specific to this type of reaction, but similar formula
can be generated for other types of reactions, such as X(a, b)Y.

10.5 Plasma corrections to the reaction rate

In stars, the nuclear reactions do not occur in isolation, but rather
in the midst of a plasma. The effect of these ambient charges is to
screen the long-range Coulomb interaction. This in turn perturbs the
penetration factors and hence the reaction rates. We now derive the
lowest order correction 4. 4 E. E. Salpeter. Electrons Screening and

Thermonuclear Reactions. Australian
Journal of Physics, 7:373–+, September
1954

The first thing to consider are the typical scales involved. In a
plasma, the mean interparticle spacing is

a =

(
3Amu

4πρ

)1/3
= 1.6× 104 fm× A1/3

(
100 g cm−3

ρ

)1/3

,

and the Debye length (cf. eq. [5.41]) is

λD = 2.8× 104 fm×
(

T
107 K

)1/2 (100 g cm−3

ρ

)1/2 ( A
〈Z2 + Z〉

)1/2
.
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Both of these lengths, for typical conditions in a stellar plasma, are
much larger than the size of the classically forbidden region through
which the particle must tunnel: at Epk = 10 keV, this length is rE =

144 Z1Z2 fm � a < λD. The nuclear scale is ∼ fm and is much
smaller that all of these.

The penetration factor (eq. [10.9]) depends on the potential in the
barrier; given that rE � λD, we may expand the potential, eq. (5.42),
and write

P ∝ exp

{
2
h̄

∫ rN

rE

[
2m
(

Z1Z2e2

r
− Z1Z2e2

λD
− E

)]1/2

dr

}
. (10.38)

Since λD doesn’t depend on either E or r, the effect of the screening
potential is just to change the zero point of the energy scale. As-
suming the S-factor doesn’t depend sensitively on energy, the effect
of screening on the rate is just to multiply the integrand in equa-
tion (10.15) by

fscr = exp
(

Z1Z2e2

λDkBT

)
. (10.39)

Since this factor doesn’t depend on E, it simply multiplies the rate
〈σv〉. Note that since λD > a and since e2/(akBT) � 1 in a plasma,
this screening factor is a small correction to the rate.

10.6 Equations for Chemical Evolution

Now that we have a reaction cross-section, we can write down the
equations describing the chemical evolution of the star, and the
nuclear heating. To make this concrete, let’s look at the reaction
p + p→ e+νe + 2H. The reaction rate is (cf. eqs. [10.15] and [10.39])

rpp =
1
2

n2
H f scr

pp 〈σv〉pp.

Each reaction destroys 2 protons, so we can write down our equation
for the change in nH,

∂tnH +∇ · (nHu) = −n2
H f scr

pp 〈σv〉pp. (10.40)

Likewise, the pp reaction produces deuterium, which is in turn de-
stroyed by D + p→ 3He:

∂tnD +∇ · (nDu) =
1
2

n2
H f scr

pp 〈σv〉pp − nDnH f scr
Dp〈σv〉Dp. (10.41)

Let’s write each number density in terms of its abundance: nH =

YHNAρ. We can then use the equation of mass continuity (eq. [2.1]) to
simplify these equations to

(∂t + u · ∇)YH = −Y2
Hρ f scr

pp [NA〈σv〉]pp (10.42)
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(∂t + u · ∇)YD =
1
2

Y2
Hρ f scr

pp [NA〈σv〉]pp

−YDYHρ f scr
Dp [NA〈σv〉]Dp . (10.43)

The left-hand side of these equations are just the Lagrangian time
derivatives. On the right-hand sides, the quantities in [ ] are just func-
tions of temperature and are compiled into rate libraries, such as
reaclib. We will need equations like (10.42) and (10.43) for each
species in our star. A collection of such equations is known as a re-
action network.

Each reaction is specified by a Q-value, which is just the energy
deposited into the gas by the reactions. If there is no neutrino re-
leased, this will just be the change in nuclear binding energy, but for
reaction like p + p one has to account for the energy carried off by
the neutrino. For the two reactions we consider here, the total heating
rate, per unit mass, is

q =
1
ρ

(
Qpp

2
n2

H f scr
pp 〈σv〉pp + QDPnDnH f scr

Dp〈σv〉Dp

)
(10.44)

=
QppNA

2
Y2

Hρ f scr
pp [NA〈σv〉]pp

+ QDpNAYDYHρ f scr
Dp [NA〈σv〉]Dp . (10.45)

The equations for the change in chemical composition and the heat-
ing rate close our system of equations describing the structure and
evolution of the star. We are now ready to discuss the life cycle of
stars in detail.





11
Hydrogen Burning and the Main Sequence

11.1 Hydrogen burning via pp reactions: the lower main sequence

In a contracting pre-main sequence star, the reaction 2H(p, γ)3He
proceeds rapidly owing to the small Coulomb barrier; in fact, this
reaction can occur in objects as small as ≈ 12 MJupiter. The small pri-
mordial abundance of deuterium, however, prevents this reaction
from doing anything more than slowing contraction slightly. The re-
action p + p is much slower, because there is no bound nucleus 2He;
the only possible way to form a nucleus is to have a weak interaction
as well, giving the reaction p(p, e+νe)2H.

The weak cross section goes roughly as σweak ∼ 10−20 b (E/keV),
so that

σweak
σnuc

∼ 10−23
(

E
keV

)
.

The S-factor for the p + p reaction is very small, and as a result the
characteristic temperature for this reaction to occur is ≈ 1.5× 107 K;
at this temperature, the lifetime of a proton to forming deuterium via
capture of another proton is about 6 Gyr. Once a deuterium nucleus
is formed, it is immediately destroyed via 2H(p, γ)3He. The nucleus
4Li is unbound with a lifetime of 10−22 s; the nucleus 6Be is likewise
unbound (τ ∼ 5× 10−21 s). As a result, the next reaction that can
occur is 3He(3He, 2p)4He. Despite having a much greater Gamow
energy than p + p (see Table 10.2), this reaction still is much faster
than p + p owing to the small weak cross-section.

In addition to capturing another 3He, it is also possible that
3He + 4He → 7Be + γ

7Be + e− → 7Li + νe (τ = 53 d)
7Li + p → 24He + γ; (11.1)

furthermore, at slightly higher temperatures 7Be can capture a proton
instead of an electron, giving the third branch

7Be + p → 8B + γ
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8B → 8Be + e+ + νe (τ = 770 ms)
8Be → 24He (τ = 10−16 s). (11.2)

The end result of these chains is the conversion of hydrogen to he-
lium, although the amount of energy carried away by neutrinos dif-
fers from one chain to the next.

E X E R C I S E 1 1 . 1 — Compute the mass of H, in units of solar masses,
that must be converted into 4He in order to supply the solar luminosity over
1010 yr.

11.2 Hydrogen burning via the CNO cycle: the upper main se-
quence

As we saw in the previous section, the smallness of the p + p cross-
section means that captures onto heavier nuclei can be competitive
at stellar temperatures. Let’s get a rough estimate of how charged a
nucleus can be before the Coulomb barrier makes the reaction slower
than p + p. Assuming A = 2Z, and taking the S-factor for p + p to be
10−22 times smaller that that for p + AZ gives us the rough equation

10−22 exp

(
−33.81

T1/3
6

)
≈ exp

(
−41.47Z2/3

T1/3
6

)
,

where the factors in the exponentials come from the peak energy for
the reaction (see eq. [10.19]), and T6 ≡ (T/106 K). Solving for Z,
we see that at T6 = 10, proton captures onto 12C have a comparable
cross-section to p + p; at T6 = 20, proton captures onto 16O have a
comparable cross-section.

Thus at temperatures slightly greater than that in the solar center,
the following catalytic cycle becomes possible.

reaction log[(τ/yr)× (ρXH/100 g cm−3)]
12C(p, γ)13N 3.82

13N(, e+νe)13C τ = 870 s
13C(p, γ)14N 3.21

14N(p, γ)15O 5.89

15O(, e+νe)15N τ = 178 s
15N(p, 4He)12C 1.50

As indicated by the underlined symbols, this cycle takes in 4 protons
and releases 1 helium nucleus. The reaction timescales are evalu-
ated at a temperature of 20 MK. The reaction 14N(p, γ)15O is by far
the slowest step in the cycle; as a result, all of the CNO elements are
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quickly converted into 14N in the stellar core, and this reaction con-
trols the rate of heating. At T = 2× 107 K, d ln εCNO/d ln T = 18; in
contrast the p + p reaction has a temperature exponent of only 4.5.

The strong temperature sensitivity of the CNO cycle has a pro-
found effect on the properties of the upper main sequence. Dividing
equation (2.28) by equation (2.27), we have

dT
dP

=
3

16πGm
κ

acT3 Lr. (11.3)

For stars with masses & M�, the structure roughly follows a poly-
trope of index n = 3. We can insert the relations T ∼ M/R and
P ∼ M2/R4 into equation (11.3) and scale to the solar luminosity to
obtain

L ≈ L�(M/M�)3. (11.4)

On the other hand, we can integrate our equation for the heating
rate per unit mass, ε ≈ ε0ρTn, over the star; inserting the scal-
ings for T and ρ and normalizing to solar values, we obtain L ≈
L�(M/M�)2+n(R/R�)−3−n. Equating this with L from eq. (11.4), we
find that on the upper main sequence,

R
R�
≈
(

M
M�

)(n−1)/(n+3)
. (11.5)

For n = 18, this gives R ∼ M0.81. Since L = L�(M/M�)3 =

(R/R�)2(Teff/Teff,�)
4, we can obtain a relation between Teff and L on

the upper main sequence,(
Teff

Teff,�

)
=

(
L

L�

)0.12
. (11.6)

The fact that Teff is so insensitive to L is a consequence that the radius
increases with mass, which follows from the central temperature
being roughly constant. The strong temperature sensitivity of the
CNO cycle ensures that the central temperature varies only slightly
over a large range of luminosity.

E X E R C I S E 1 1 . 2 — Suppose that there were no CNO cycle, and
hydrogen could only be consumed via the PP chains. Estimate the effective
temperature-luminosity relation for the upper main-sequence in this case.
Would it be observationally distinguishable from the CNO-dominated upper
MS?

A second effect on the stellar structure is that the luminosity is
generated in a very small region concentrated about the center. In-
serting Prad = (a/3)T4 and LEdd = 4πGMc/κ into equation (11.3)
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and solving for ∇ = d ln T/d ln P, we obtain

∇ =
1
4

P
Prad

L
LEdd

(
Lr

L

)(
M

M(r)

)
. (11.7)

For the Eddington standard model, P/Prad ≈ 2600(M/M�)−2, and
L/LEdd ≈ 2.7× 10−5(M/M�)2. Inserting these factors and using the
criteria for convective stability, ∇ < (∂ ln T/∂ ln P)S = 2/5, we see
that if

Lr

L
> 23

M(r)
M

we have convective instability. Thus, if the luminosity is produced in
the innermost 4% (by mass) of the star, the core will be convective.
The strong temperature sensitivity of the CNO reactions ensure that
this is the case, and so the cores of upper main sequence stars have
convective zones.

This convective zone changes the structure of the star, so that
L ∼ M3.5 rather than the M3 scaling used above. It also means the
star can burn more of the hydrogen in its interior. The hotter Teff

means, however, that the H− opacity is not important and the surface
layers of upper main sequence stars are radiative. Table 11.1 gives a
summary of the properties of main sequence stars.

characteristic lower (M . M�) upper (M & M�)

hydrogen burning pp CNO
opacity Kramers Thomson
core radiative, ≈ 0.1M convective, ≈ 0.2M
envelope convective radiative

Table 11.1: Characteristics of main-
sequence stars
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E X E R C I S E 1 1 . 3 — In this exercise, we are going to examine how the
core of a solar-mass star approaches a steady conversion of 4 hydrogen
nuclei to 1 helium nucleus via the PPI chain

p + p → e+ + νe +
2H

2H + p → 3He
3He + 3He → 4He + p + p.

Denote the abundances of protons, deuterium, 3He, and 4He by Yp, Yd, Y3,
and Y4, respectively. Furthermore, evaluate the rates at a fiducial central
temperature and density (obtained with the mesa stellar evolution code)
Tc,� = 1.35× 107 K, ρc,� = 83.2 g cm−3:

λpp ≡ ρNA〈σv〉(p + p→ 2H) = 4.40× 10−18 s−1

λpd ≡ ρNA〈σv〉(p + 2H→ 3He) = 2.58× 10−2 s−1

λ33 ≡ ρNA〈σv〉(3He + 3He→ 4He + p + p) = 3.40× 10−9 s−1

Take the screening factors to be unity.

1. First, let’s consider the build-up of deuterium. Start from equation (10.43):

d
dt

Yd =
1
2

Y2
p λpp −YdYpλpd. (11.8)

Assume that over the timescale to establish the PP chain, the abundance
of hydrogen Yp is constant, and that all the λ are constant as well. Under
these assumptions, solve for Yd(t) and show that it approaches a constant
value

Yd
Yp

∣∣∣∣
equil.

=
1
2

λpp

λpd
.

What is this abundance? What is the timescale to reach this equilibrium?

2. Now consider the evolution of 3He via production by d + p and
destruction via 3He + 3He:

d
dt

Y3 = YpYdλpd −Y2
3 λ33. (11.9)

Assume that Yp is constant and use the equilibrium value of Yd to solve
this equation for Y3(t). Show that Y3 approaches a constant value

Y3
Yp

∣∣∣∣
equil.

=

(
1
2

λpp

λ33

)1/2
.

What is this value? What is the timescale for the abundance of 3He to
reach 99% of this equilibrium value? Is the assumption that deuterium is
at its equilibrium abundance a valid one?

3. Using the equilibrium value of 3He, show that the rate of helium
production via the 3He + 3He is

d
dt

Y4 =
1
4

Y2
p λpp.





12
Post-Main Sequence Evolution: Low-mass Stars

12.1 The Triple-Alpha Reaction

The consumption of 4He is hindered by the lack of stable nuclei with
mass numbers A = 5 and A = 8. The nucleus 8Be is, however, long-
lived by nuclear standards: its decay width is Γ = 68 eV, implying a
decay timescale h̄/Γ = 9.7× 10−17 s. (For comparison, the lifetime of
5Li is ∼ 10−22 s.) Thus if the reaction 4He + 4He → 8Be can proceed
quickly enough, a small amount of 8Be can accumulate allowing the
reaction 8Be + 4He→ 12C to proceed.

The reaction 2 4He → 8Be is endothermic, with Q = −92 keV. As
a result, the peak energy for Coulomb barrier transmission (see the
discussion following eq. [10.16]) must reach

Epk =
E1/3

G (kT)2/3

41/3 = −Q.

Substituting EG = 979 keVA(Z1Z2)
2 and solving for T gives T =

1.2× 108 K as the temperature required to build up any substantial
amount of 8Be. To reach such a temperature requires a helium core
mass of & 0.45 M�.

Once a sufficient temperature is reached, the reaction 2 4He → 8Be
comes into equilibrium with the decay, 8Be → 2 4He. We can use a
Saha-like equation (cf. eqns. [5.35] and [5.36]) to get the abundance of
8Be. Writing

2µ4 = µ8 −Q

and substituting the expression for µ, eq. (5.7) gives

n8

n4
=

(
2πh̄2

mukT

)3/2 (
8
42

)3/2 X4ρ

4mu
exp

(
−92 keV

kT

)
. (12.1)

Here we use n8 and n4 to mean the number densities of, respectively,
8Be and 4He; also X4 denotes the mass fraction of helium. Scaling
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eq. (12.1) to ρ = ρ5105 g cm−3 and T = T8108 K, we obtain

n8

n4
= 2.8× 10−5T−3/2

8 X4ρ5 exp
(
−10.68

T8

)
. (12.2)

At X4ρ5 = 1 and T8 = 1, n8/n4 = 6.5× 10−10.
If the reaction 8Be + 4He → 12C were non-resonant, the reaction

rate for this n8 would be far too slow to account for the amount of
12C synthesized in stars. Hoyle proposed, therefore, that there should
be an excited state of the 12C nucleus into which the reaction would
proceed. Both 4He and 8Be have spin and parity Jπ = 0+; hence for s-
wave capture (angular momentum ` = 0), the state in 12C should also
have Jπ = 0+. What energy should the level have? The Q-value for
8Be + 4He → 12C is 7.367 MeV; the Gamow energy for this reaction
is EG = 1.67× 105 keV and hence the peak energy is Epk = 146 keV,
with a width ∆ = 4(EpkkT/3)1/2 = 82 keV. The proposed level
should therefore have an energy within 2∆ of 7.513 MeV.

Such a level was indeed detected by Fowler, with Jπ = 0+ and E =

7.654 MeV. Radiative decay from this level is hampered: the ground
state also has Jπ = 0+, so the decay is forbidden; and the decay to the
Jπ = 2+ state at 4.44 MeV has a decay width of only Γrad = 3.67meV.
This level’s primary decay is indeed back to 8Be + 4He. If the forward
rate is fast enough, however, than a population of 12C in this excited
state can accumulate. The total rate to the ground state would then
be n12∗Γrad/h̄, where n12∗ is the number density of 12C nuclei in the
excited state.

To compute n12∗, we again can use the equation for chemical equi-
librium: µ8 + µ4 = µ12∗ − Q∗. Here Q∗ = −287 keV is the difference
in energy between the 4He and 8Be nuclei and the energy of 12C in
the excited state. Again using eq. (5.7) to expand µ, we obtain

n12∗ =
nQ,12∗

nQ,4nQ,8
n4n8 exp

(
−287 keV

kT

)
. (12.3)

Substituting for n8 using equation (12.1), this becomes

n12∗ =

(
2πh̄2

mukT

)3 (
12
43

)3/2 (X4ρ

4mu

)3
exp

(
−397 keV

kT

)
. (12.4)

Multiplying eq. (12.4) by Γrad/h̄ and scaling to ρ5, T8, we obtain the
net rate, per unit volume, at which 3 4He→ 12C,

rate = 4.37× 1031 cm−3 s−1 (X4ρ5)
3

T3
8

exp
(
−44.0

T8

)
. (12.5)

Multiplying the rate by Q = 7.275 MeV, the net Q-value, gives the
volumetric heating rate ρε3α, or

ε3α ≈ 5.1× 1021 erg g−1 s−1 X3
4ρ2

5

T3
8

exp
(
−44.0

T8

)
. (12.6)
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The temperature exponent is d ln ε3α/d ln T = 44.0/T8 − 3, that is,
ε3α ∼ T41 at T = 108 K.

The helium flash and the horizontal branch

The extreme temperature sensitivity of the triple-alpha reaction mo-
tivates a return to analyzing the stability of reactions in a stellar
environment. We saw in an earlier problem that the “gravithermal”
specific heat

C? ≡ T
∂S
∂T

∣∣∣∣
M

< 0

for an ideal gas. The physical cause is that an increase in entropy
leads to an increase in radius, and the resulting P dV work results in
a reduced central temperature.

For conditions in low-mass stars at the time of helium ignition
(nearly pure He at T ≈ 108 K, ρ ≈ 105 g cm−3); at that density the
temperature at kBT = εF is (eq. [5.27]) 4.1× 108 K. Thus, He ignition
takes place under semi-degenerate conditions. To understand how
the star responds, let’s assume a homologous expansion—that is, one
in which the ratios r(m)/R(M) remains constant. In other words, we
assume that the structure of the star retains its functional form and
we are merely “rescaling” our radial length. To compute a gravither-
mal specific heat, we use Jacobians (see Appendix A.1) to transform
S(T, P) to S(T, M):

T
(

∂S
∂T

)
M

= T
∂(S, M)

∂(T, M)

= T
∂(S, M)

∂(T, P)
∂(T, P)
∂(T, M)

= T
(

∂S
∂T

)
P
− T

(
∂S
∂P

)
T

(
∂M
∂T

)
P

(
∂P
∂M

)
T

= CP

[
1−

(
∂T
∂P

)
S

(
∂P
∂T

)
M

]
, (12.7)

where in the last identity we have used(
∂T
∂P

)
S

(
∂S
∂T

)
P

(
∂P
∂S

)
T
= −1

and a similar expression relating P, T, and M. We could continue to
use this technique of Jacobians to further transform (∂P/∂T)M; but
an easier method is to expand the equation of state as

ln P = χρ ln ρ + χT ln T, (12.8)

where χρ ≡ (∂ ln P/∂ ln ρ)T , and similarly for χT . In an homologous
expansion or contraction, the polytropic index stays constant, so that
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from equations (4.16) and (4.17) we have(
∂ ln P
∂ ln R

)
M

= −4,
(

∂ ln ρ

∂ ln R

)
M

= −3. (12.9)

Using these relations, we have(
∂ ln T
∂ ln R

)
M

= χ−1
T

[(
∂ ln P
∂ ln R

)
M
− χρ

(
∂ ln ρ

∂ ln R

)
M

]
=
−4 + 3χρ

χT
.

We can use this along with equations (12.8) and (12.9) to obtain(
∂ ln P
∂ ln T

)
M

=

(
∂ ln P
∂ ln R

)
M

(
∂ ln T
∂ ln R

)−1

M

=
4χT

4− 3χρ
. (12.10)

Inserting eq. (12.10) into equation (12.7), we finally get the expression
for the gravithermal specific heat under a homologous expansion or
contraction,

C? = CP

[
1−∇ad

4χT
4− 3χρ

]
. (12.11)

For an ideal gas, χT = χρ = 1 and ∇ad = 2/5, so that C? < 0,
as required for stability. As the core becomes degenerate, however,
χρ → 5/3 and χT → 0; as a result, the addition of heat to the core
causes the temperature to rise, causing the rate of heating from nu-
clear reactions to increase even further. The ignition of helium in
low-mass stars is therefore somewhat unstable and proceeds via
“flashes.”

Eventually, the burning of helium heats the core enough that
degeneracy is lifted, and the star settles onto its “helium main-
sequence.” On an HR diagram, low-mass stars with core helium
burning lie on the “horizontal branch.”

The Asymptotic Giant Branch

After exhaustion of helium burning in the core, the star has a semi-
degenerate C/O core, surrounded by a He burning shell with a su-
perincumbent H-burning shell. Burning by these shells adds to the
mass of the C/O core. As on the giant branch, the luminosity in-
creases due to the high pressure at the edge of the core, and this
high-luminosity produces a deep convective envelope, so that the star
again lies along the Hayashi line in the HR diagram.

Because of the large gravitational acceleration at the edge of the
core, the burning shells become thin in radial extent. This tends to
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make the burning unstable and leads to thermal pulses. To understand
why the burning is unstable, let’s revisit equation (12.11). This equa-
tion still holds for expansion or contraction of a thin layer, with one
critical difference: the volume of the shell is 4πr2

c D, where D is the
thickness of the shell and rc is the core radius, which is fixed. Hence
if we expand or contract the shell, keeping the mass in the shell fixed,
the logarithmic change in density is

d ln ρ = −dD
D

= −dR
D

= − R
D

d ln R.

Replacing the coefficient 3 of χρ with R/D in equation (12.11) gives
us the specific heat during a homologous expansion or contraction of
a shell of thickness D,

C?,shell = CP

[
1−∇ad

4χT
4− (R/D)χρ

]
. (12.12)

Even for an ideal gas, if D < R/4, say, then C?,shell > 0 and the
burning in the shell is thermally unstable.

When the burning shells are thin, the temperature, and hence rate
of burning, become dependent on the local gravitational acceleration.
Because the underlying core is degenerate, this means the luminosity
depends almost entirely on the core mass: an empirical fit is1 1 B. Paczyński. Evolution of Single Stars.

I. Stellar Evolution from Main Sequence
to White Dwarf or Carbon Ignition.
Acta Astronomica, 20:47, 1970

L
L�

= 5.9× 104
(

Mc

M�
− 0.52

)
. (12.13)

The rate at which mass is added to the core is set by the rate at which
1H is processed into 4He,

dMc

dt
=

L
q

. (12.14)

Here q is the mass-specific energy release from the fusion of 4
1H

into 4He: q = 26.72 MeV/(4mu) = 6.68× 1018 erg g−1. Thus as the
core mass grows, the luminosity increases and the rate at which mass
is added to the core increases. The high luminosity drives a strong
wind from the stellar envelope. An empirical fit to the mass loss rate
is2 2 D. Reimers. On the absolute scale of

mass-loss in red giants. I - Circumstellar
absorption lines in the spectrum of the
visual companion of Alpha-1 HER.
A&A, 61:217–224, October 1977

dM
dt

= −8.0× 10−13 M� yr−1
(

L
L�

g�
g

R�
R

)
. (12.15)

Here g = GM/R2 is the gravitational acceleration at the stellar sur-
face. The coefficient has been increased beyond that in the original
formula to fit the higher mass-loss rates observed from supergiants3. 3 K.-P. Schröder and E. Sedlmayr. The

galactic mass injection from cool stellar
winds of the 1 to 2.5 M� stars in the
solar neighbourhood. A&A, 366:913–
922, February 2001

The envelope is thus consumed at the base by hydrogen and he-
lium burning shells and expelled at the top by a radiative wind. This
process ends when the envelope is consumed, leaving behind a de-
generate C/O white dwarf that gradually cools.
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E X E R C I S E 1 2 . 1 — This exercise gives an illustration of the physics that
sets the white dwarf initial mass function. Note that the numbers listed here
are rather crude.

1. Combine equations (12.13) and (12.14) into a differential equation for the
core mass as a function of time. Solve the equation. Since we don’t know
the initial core mass Mc0 at the end of core He burning (other than that
we are assuming it is greater than 0.52 M�), let’s leave that as a free
parameter in the problem. What is the characteristic timescale for the core
to increase in mass?

2. Solve equation (12.15) for the total stellar mass as a function of time,
assuming the initial total mass at the start of the AGB phase is M0. To
make the problem concrete, assume that the surface effective temperature
on the AGB is fixed at 4000 K, and use the result of problem 1 to get the
luminosity as a function of initial core mass, Mc0.

3. For a star that starts its AGB phase with M0 = 1.0 M� and
Mc0 = 0.55 M�, what is the final white dwarf mass?



13
Stellar Pulsations

In this chapter, we’ll linearize the perturbed continuity and momen-
tum equations and solve for the frequencies of the normal modes for
a star.

13.1 Adiabatic, radial pulsations

Imagine that we perturb our fluid in some way. As described in
section 3.2, we can describe the Eulerian perturbation in some fluid
property f :

∆ f ≡ f (r, t)− f0(r, t), (13.1)

where the subscript “0” denotes the unperturbed quantity. Said an-
other way, ∆ f describes the change, under our perturbation, in some
property of the fluid at a fixed location.

f0(r,t)

f(r,t)

Figure 13.1: An Eulerian perturbation:
we compare quantities at corresponding
locations.

We may also describe our perturbation as a Lagrangian one, where
we compare the same fluid element in both the perturbed and unper-
turbed systems:

δ f ≡ f (r, t)− f0(r0, t). (13.2)

Under a Lagrangian perturbation the fluid element in the perturbed
system in general has a different position r than in the unperturbed
system, r0.

f0(r0,t)

f(r,t)

Figure 13.2: A Lagrangian perturbation:
we compare quantities for correspond-
ing fluid elements.

The two perturbations are related to one another via

δ f = ∆ f + (δr · ∇) f0. (13.3)

There are a few useful commutation relations that are easily proved:

∂t∆ f = ∆ (∂t f ) , (13.4)

∇∆ f = ∆∇ f , (13.5)
D
Dt

δ f = δ
D f
Dt

. (13.6)

And there are operations that do not commute:

∂tδ f 6= δ (∂t f ) , (13.7)
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∇δ f 6= δ∇ f , (13.8)
D
Dt

∆ f 6= ∆
D f
Dt

. (13.9)

One can further show that δu = (D/Dt)δr. Also, if the fluid has
unperturbed velocity u = 0, then ∆u = δu. Finally, for purely radial
motion, we can introduce the Lagrangian mass coordinate m, in
which case ∂mδ f = δ(∂m f ) and ∂m∆ f 6= ∆(∂m f ).

We are now ready to use these commutation relations to

derive a linear adiabatic wave equation. By linear, we mean that we
shall only keep terms to first order in δ. By adiabatic, we mean that
we shall only consider the equations of continuity and momentum,
and we shall relate the density and pressure perturbations via

δP
P

= Γ1
δρ

ρ
. (13.10)

Here Γ1 ≡ (∂ ln P/∂ ln ρ)s.
For simplicity, we’ll start with purely radial oscillations. First, let’s

perturb the equation of continuity, expressed in Lagrangian form
(eq. [2.26]),

∂ ln r
∂m

=
1

4πr3ρ
.

We apply a Lagrangian perturbation to both sides of this equations
and expand the right-hand side to first order in δr and δρ. Since δ

and ∂/∂m commute, we can interchange them:

∂

∂m

(
δr
r

)
= δ

(
∂ ln r
∂m

)
= δ

(
4πr3ρ

)−1

=
(

4πr3ρ
)−1

(
−3

δr
r
− δρ

ρ

)
.

Moving (4πr3ρ) to the left-hand side of the equation, and recogniz-
ing that

4πr3ρ
∂

∂m
= r

∂m
∂r

∂

∂m
= r

∂

∂r
,

we have our first equation,

r
∂

∂r

(
δr
r

)
= −3

δr
r
− δρ

ρ
. (13.11)

Next, we can perturb the force equation (eq. [2.27])

D2r
Dt2 = −Gm

r2 − 4πr2 ∂P
∂m

.
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If the unperturbed state is taken to have Dr0/Dt = D2r0/Dt2 = 0,
then a similar linearization yields

ρr
D2

Dt2

(
δr
r

)
= −∂P

∂r

(
4

δr
r
+

δP
P

)
− P

∂

∂r

(
δP
P

)
, (13.12)

which is our second equation.
To proceed further, we write

δr
r

= ζ(r) exp(iσt),

so that the left-hand side of equation (13.12) becomes −ρrσ2ζ(r)eiσt,
and we can make the substitution ∂r(δr/r) → eiσt(dζ/dr). We ad-
ditionally eliminate δρ/ρ from equation (13.11) using the adiabatic
condition, eq. (13.10) and make use of the zeroth-order momentum
equation dP/dr = −ρGm/r2 to obtain

d
dr

ζ = −1
r

(
3ζ +

1
Γ1

δP
P

)
(13.13)

d
dr

(
δP
P

)
=

1
λP

[(
4 + σ2 r3

Gm

)
ζ +

δP
P

]
. (13.14)

Here we introduce the pressure scale height (in the unperturbed
system) λP ≡ −(d ln P/dr)−1 = Pr2/(ρGm). Multiply equa-
tion (13.13) by Γ1Pr4 and then differentiate with respect to r, using
equation (13.14) to eliminate the spatial derivative of δP/P and equa-
tion (13.13) to eliminate δP/P to obtain

d
dr

[
Γ1Pr4 d

dr
ζ

]
+

{
r3 d

dr
[(3Γ1 − 4) P]

}
ζ + σ2(r4ρ)ζ = 0. (13.15)

Notice here that we have not assumed that Γ1 is a constant.
Equation (13.15) has the form

Lζ(r) + σ2w(r)ζ(r)

where

L ≡ d
dr

[
u(r)

dζ

dr

]
+ q(r)ζ(r),

with u(r) = Γ1Pr4,

q(r) = r3 d
dr

[(3Γ1 − 4) P] ,

and w(r) = r4ρ. For the imposed boundary conditions, there will
in general be solutions for only certain eigenvalues σ2. Note that
u(r) > 0 on the interval 0 < r < R. Furthermore, we require that ζ

and dζ/dr be finite at r = 0 and r = R, which means that if ζi and ζ j

are solutions of eq. (13.15), then

u(r)ζ∗i
dζ j

dr

∣∣∣∣
r=0

= u(r)ζ∗i
dζ j

dr

∣∣∣∣
r=R

= 0. (13.16)
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Using these boundary conditions and the form of the operator L, we
find that∫ R

0
dr ζ∗i Lζ j = uζ∗i

dζ j

dr

∣∣∣∣r=R

r=0
−
∫ R

0
dr

dζ∗i
dr

u
dζ j

dr
+ ζ jq(r)ζ∗i

= − u(r)ζ j
dζ∗i
dr

∣∣∣∣r=R

r=0
+
∫ R

0
dr ζ j

d
dr

[
u

d
dr

ζ∗i

]
+ ζ jq(r)ζ∗i

=
∫ R

0
dr ζ jLζ∗i .

The operator L is thus Hermitian. As a result, the eigenvalues σ2

are real and denumerable. There is a minimum eigenvalue σ2
0 . The

eigenfunctions corresponding to these eigenvalues are orthogonal in
the following sense: if σ2

i and σ2
j are eigenvalues of equation (13.15)

and ζ1, ζ2 their corresponding eigenfuctions, then∫ R

0
dr w(r)ζiζ j =

∫ R

0
dr r4ρζiζ j = 0 if σ2

i 6= σ2
j . (13.17)

Solutions with larger eigenvalues have more nodes.

13.2 Adiabatic non-radial pulsations

Now that we’ve warmed up with the purely radial pulsations, we’ll
do the more general case. Rather than going through the separation
of variables in spherical coordinates, we’ll keep things simple and
cartesian. This amounts to looking at a small box in the star. We
will also make an ansatz that the fluid perturbations don’t change
the gravitational potential1. In this case, the (constant) gravitational 1 This is known as the Cowling ap-

proximation.acceleration g = −ger defines the local vertical, so we will separate
our equations into a radial direction, labeled by “r”, and a transverse
direction, labeled by “t”.

Let us first perturb the equation of continuity,

∂ρ

∂t
+∇ · (ρu) =

Dρ

Dt
+ ρ∇ · u = 0. (13.18)

We take our unpertubed state to be independent of time with u = 0.
If we take the Lagrangian perturbation of eq. (13.18), we have

D
Dt

(δρ + ρ∇ · ξ) = 0,

with u = Dξ/Dt. Setting the constant of integration to 0 reduces this
to

δρ

ρ
= −∇ · ξ.

The linearization of the momentum equation,

D2ξ

Dt2 = −1
ρ
∇∆P +

∆ρ

ρ
g, (13.19)



stellar pulsations 139

looks very similar to what we did in deriving a condition for con-
vection, § 3.2. This time, however, we won’t impose the condition
that ∆P = 0. When we were looking at convective instabilities, we
were interested in low-frequency perturbations, in which the pressure
has time to equilibrate. Keeping the terms with ∆P, the perturbed
momentum equation becomes

D2ξ

Dt2 = −1
ρ
∇∆P + g

1
Γ1

∆P
P

+ g(ξ · ∇)

−A︷ ︸︸ ︷[
1
Γ1

ln P− ln ρ

]
︸ ︷︷ ︸

buoyancy from density perturbation

. (13.20)

If ∆P→ 0, this reduces to equation (3.20) with A being the Schwarzschild

discriminant.
To decompose our perturbed system into normal modes, with the

perturbed quantities varying in time as exp(iωt), we first note that in
the unperturbed system ln P and ln ρ depend only on r; and nothing
depends on the transverse directions. As a result, we can impose
periodic boundary conditions in the transverse direction and write

∆P(x, t) = ∆P(r) exp(ikt · xt) exp(iωt),

∆ξ(x, t) = ξ(r) exp(ikt · xt) exp(iωt).

Here kt is a transverse wavenumber and xt are the transverse coordi-
nates. The transverse component of equation (13.20) is thus

ρω2ξt = ikt∆P, (13.21)

and the radial equation of motion is

ρω2ξr = ∂r∆P +
gρ

Γ1P
∆P + ρN2ξr. (13.22)

We’ve re-introduced the Brunt-Väisälä frequency2 2 We take Γ1 to be constant.

N2 = −g
d
dr
A = g

(
1
Γ1

d
dr

ln P− d
dr

ln ρ

)
,

just as was done in analyzing convection.
We still have more unknowns than equations. Next, we’ll use the

perturbed equation of continuity,

δρ

ρ
= −∇ · ξ = −∂rξr − kt · ξt. (13.23)

For adiabatic perturbations,

δρ

ρ
=

1
Γ1

δP
P

=
1
Γ1

(
∆P
P

+ ξ · ∇ ln P
)

=
1
Γ1

∆P
P
− ξr

1
Γ1λP

.



140 stellar astrophysics

Here we used ξ · ∇ ln P = ξr(d/dr) ln P = −ξrρg/P = −ξr/λP,
where λP is the pressure scale height. It makes physical sense that
this scale will enter: modes with radial wavelengths much less than
H shouldn’t be affected by the background stratification.

Inserting the expression for δρ/ρ in equation (13.23) and using
equation (13.21) to eliminate ξt, we obtain

∂rξr =
1

ω2Γ1P

(
k2

t Γ1P
ρ
−ω2

)
∆P +

ξr

Γ1λP
. (13.24)

The quantity S2 = k2
t Γ1P/ρ = k2

t c2
s is called the Lamb frequency.

Collecting equations (13.24) and (13.22), we now have two coupled
first order differential equations for ξr(r) and ∆P(r),

∂rξr =
1

Γ1P
S2 −ω2

ω2 ∆P +
ξr

Γ1λP
(13.25)

∂r∆P = ρ(ω2 − N2)ξr −
∆P

Γ1λP
. (13.26)

From the form of these equations, let’s try a solution in the form

∆P(r) = ∆PeKr; ξr(r) = ξreKr. (13.27)

If K is imaginary, then we have oscillatory solutions. If K is real, then
we must choose K so that the radial functions decay exponentially, or
evanesce. Substituting equation (13.27) into eq. (13.26) gives

∆P =

[
ρ(ω2 − N2)

1 + 1/KλP

]
ξr

K
.

Substituting this expression for ∆P into eq. (13.25) and eliminating ξr

gives us the dispersion equation,

K2 =
k2

t
S2

(S2 −ω2)(ω2 − N2)

(1 + 1/KλP)ω2 +
1

KλP
, (13.28)

which relates the mode frequency ω to the transverse wavenumber kt

and the radial wavenumber K.
In the limit where the radial wavelength is much less than a pres-

sure scale height, |K|λP � 1, equation (13.28) simplifies to

K2 =
k2

t (S
2 −ω2)(ω2 − N2)

S2ω2 . (13.29)

If N2 < ω2 < S2, K2 > 0 and the radial perturbations evanesce. To
have a mode, we require either that ω2 < N2, S2 or ω2 > N2, S2.

The analysis is similar in spherical coordinates, except that instead
of plane waves, ekt·xt , we’ll have spherical harmonics Y`m. In the
above dispersion relation, make the substitution k2

t → `(`+ 1)/r2 and
S2 → S2

` .
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E X E R C I S E 1 3 . 1 — Use dimensional analysis and virial estimates to
sketch S (for ` = 1) and N on a plot of frequency against radius for the sun.
Indicate where modes with ω2 < N2, S2 can propagate, and likewise for
ω2 > N2, S2.





14
The Initial Mass Function

As originally formulated1, the initial mass funciton (IMF) is the num- 1 E. E. Salpeter. The Luminosity Func-
tion and Stellar Evolution. ApJ, 121:
161–+, January 1955

ber of stars, per unit volume, that have formed per logarithmic (base
10) mass interval:

ξ(lg m) ≡ d(N?/V)

d lg m
. (14.1)

Here m ≡ M/M�. The IMF is derived from an observed luminosity
function—the amount of starlight in a given waveband emitted per
unit mass—and stellar models. As might be expected, this function is
not well-constrained, but it is roughly a power law for m > 1.0, and
at lower masses it flattens out. One such formulation2 for the solar 2 Gilles Chabrier. Galactic stellar

and substellar initial mass function.
Publ.Astron.Soc.Pac., 115:763–796, 2003

neighborhood is

ξ(lg m) =

{
A0 exp

[
− (lg m−lg mc)2

2σ2

]
, m < 1.0

A1mb m > 1.0
. (14.2)

Here A0 = 0.158, A1 = 4.43 × 10−2, mc = 0.079, σ = 0.69, and
b = −1.3± 0.3. The coefficients A0, A1 are in lg M−1

� pc−3.

E X E R C I S E 1 4 . 1 — For the IMF given in eq. (14.2), what fraction of the
stars formed with m > 1.0 will end their lives as core-collapse supernovae, if
the mass threshold for forming a core-collapse SNe is 8.0 M�? What is the
fraction if the mass threshold is 12.0 M�?

The main-sequence lifetime is a rapidly decreasing function of
mass: for m > 1.0, it goes roughly like τMS ≈ 10.0 Gyr m−2.5. For stars
with lifetimes comparable to or longer than the age of the galactic
disc τG, all stars that were ever formed are still on the main sequence,
so that the IMF is identical to the present day mass function (PDMF) φ.
For more massive stars, however, we only see those that were formed
a time τMS(m) ago.

Let’s define a birthrate B(t) as the number of stars per unit vol-
ume formed per interval of time. If we make the ansatz that the IMF
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doesn’t depend on time, then we can define a creation function,

C(lg m, t) ≡ ξ(lg m)
B(t)∫ τG

0 B(t)dt
. (14.3)

Here the birthrate is normalized to the total number of stars formed
over the age of the galactic disk. The present-day mass function is
then

φ(lg m) =
∫ τG

max(0,τG−τMS)
C(lg m, t)dt.

For a constant birthrate over the age of the disk, the integral is trivial
and

φ(lg m) =

{
ξ(lg m) τMS(m)

τG
τMS < τG

ξ(lg m) τMS > τG

As the galaxy ages, the stellar population becomes increasingly dom-
inated by long-lived, low-mass stars. Empirically, the Milky Way
birthrate has in fact been more or less constant (deviations less than
a factor of 2) over the life of the galactic disk. The timescale for con-
verting the present supply of gas into stars is ∼ (1–5)Gyr.

For an IMF, we can define, for each generation of stars, a lock-up
fraction, which is the amount of gas that is not eventually returned
to the interstellar medium. Clearly this will include all stars with
τMS(m) > τG, as well as the remnant mass, mrem(m), of the remaining
stars. For stars with mass < 8 M�, the mass of the white dwarf as a
function of the progenitor’s mass is fairly well known; more massive
stars leave behind either a neutron star, for which observed masses
(in binaries!) are 1–2 M�; for black holes the remnant mass is more
uncertain.

E X E R C I S E 1 4 . 2 — Suppose the IMF is simply a power-law,
ξ(lg m) ∝ m−1.3, for 0.1 < m < 120. On average, how many stars are formed
out of one solar mass of gas?

14.1 Application: The delay time of type Ia supernovae

Type Ia supernovae are observed in elliptical galaxies, which typi-
cally have an old stellar population and no ongoing star formation.
There must be a substantial delay, then, between the time the progen-
itor was born and the supernovae. To see how this works, let’s define
a delay time distribution D(τ) and a realization probability AIa(t). These
are defined as follows: if N?(t) is the total number of stars formed
at time t, then define N?(t)AIa(t) as the total number of SNe Ia that
will ever result from this generation of stars. The SNe Ia rate at the
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current time, t = τG, is then

ΓIa(t = τG) =
∫ min(τG,τmax)

τmin

∫ lg mmax

lg mmin

C(lg m, t− τ)AIa(t− τ)D(τ)d lg m dτ.

(14.4)
In this definition, the delay time distribution is normalized to unity.

As an example, suppose all the stars are born in a burst of star
formation at t = 0, so that B(t) = δ(t), then the SNe Ia rate at late
times is

ΓIa(t = τG) =
∫ min(τG,τmax)

τmin

N?δ(t− τ)AIa(t− τ)D(τ)dτ = N?AIaD(t).

Notice that if D(t) is a very broad function of time, then the SNe Ia
rate is proportional, for this case of a rapid burst of star formation at
early times, to the total number of stars in the galaxy.

E X E R C I S E 1 4 . 3 — Consider the SNe Ia rate, eq. (14.4), following a
burst of star formation, B(t) = δ(t), but now suppose that the delay time for
each mass is just the main-sequence lifetime, and that AIa is independent of
mass. That is, for stars with mass m = M/M� < 8, we assume that some
fraction AIa will become SNe Ia, and that the time for a particular mass star
to evolve to explosion is just its main-sequence lifetime τ(m) = τMS(m).
Show that, for ξ(lg m) ∝ m−1.3 and τMS = 10.0 Gyr m−2.5, the Ia rate is
ΓIa ∝ t−0.5, for t > τMS(m = 8).





15
Binaries

15.1 Accretion

Suppose we have two objects orbiting a common center of mass. By
convention, the more massive object is known as the primary and will
be denoted by a subscript “1”; the less massive object is the secondary
and is denoted by a subscript “2”. From Kepler’s law, the orbital
separation is

a3 = G(M1 + M2)

(
P

2π

)2
, (15.1)

with a numerical value a = 0.51 R�(m1 + m2)
1/3(P/hr)2/3, where

we’ve scaled our masses to solar values, m = M/M�.
In a co-rotating frame, there is an equipotential surface with a

saddle point, the inner Lagrange point, between the two stars. This
surface forms two lobes, the Roche lobes, that meet at this point. See
the crude sketch in Figure 15.1. Although the Roche lobes are not
spherical, we can define the radius of an equivalent spherical volume;
for the secondary, this is

R2

a
≈ 0.462

(
M2

M1 + M2

)1/3
. (15.2)

As an aside, equations (15.2) and (15.1) imply that the average den-
sity of the secondary, if it fills its Roche lobe, is

ρ̄ =
3M2

4πR3
2
≈ 111 g cm−3

(
hr
P

)2
.

and does not depend explicitly on the masses of the two stars.
CM

L4

L5

L2L3
L1

Figure 15.1: Sketch of the Roche lobes
and potential for M2 = 0.1M1.

If matter is transferred from M2 to M1 how does the system re-
spond? Let’s first write down the angular momentum of the system,

J = (M1a2
1 + M2a2

2)ω = M1M2

(
Ga

M1 + M2

)1/2
. (15.3)
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Here we’ve used equation (15.1) and the relations a1 = aM2/(M1 +

M2), a2 = aM1/(M1 + M2). Let’s make the assumption that no mass
is lost from the system and that the mass transfer Ṁ is from M2 to
M1:

Ṁ1 + Ṁ2 = 0;

Ṁ2 = −Ṁ < 0.

Taking the logarithm of equation (15.3) and differentiating, we then
obtain

ȧ
a
= 2

J̇
J
+ 2

(
Ṁ
M2

)(
1− M2

M1

)
. (15.4)

We see explicitly that for M2 < M1, the response of mass transfer is
to increase the orbital separation a if there is no external torque on
the system.

What about the size of the lobe that the secondary inhabits? There
are two countervailing tendencies: a increases, which acts to increase
R2, but M2 decreases, which acts to decrease R2. Taking the loga-
rithm of eq. (15.2),

Ṙ2

R2
=

ȧ
a
+

1
3

Ṁ2

M2
= 2

J̇
J
+ 2

Ṁ
M2

(
5
6
− M2

M1

)
. (15.5)

Hence for M2 < (5/6)M1, the volume of the secondary’s Roche
lobe increases; if the secondary doesn’t expand in response to mass
loss and there are no external torques, then the secondary will lose
contact with the inner Lagrange point and mass transfer will cease.
Alternatively, if M2 > (5/6)M1, then the Roche lobe will clamp down
on the secondary; this tends to drive the mass transfer at an even
greater rate, and the process is unstable.

In general, there are three physical mechanisms for driving mass
transfer.

Gravitational radiation For P . 2 hr, gravitational radiation from the
orbit produces a negative torque on the system:

J̇
J
= −32

5
G3

c5
M1M2(M1 + M2)

a4 . (15.6)

Note that for this short of an orbital period, the binary consists of
two degenerate stars (e.g., WD-WD, NS-WD).

Magnetic braking At somewhat longer periods P . 1 d, the compan-
ion can be a main sequence star that has a tidally locked rotation
period. Main-sequence stars have winds, and these winds carry
angular momentum. Because of the tidal locking, this also intro-
duces a negative torque on the system.
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Evolution of the secondary For wider binary orbits, the secondary star
can make contact with the Roche lobe as it becomes a giant star.

Finally, if the secondary is sufficiently evolved, it may have a strong
enough wind that accretion can still occur, even if the orbit is so wide
that the secondary doesn’t fill its Roche lobe.

E X E R C I S E 1 5 . 1 — Suppose we have a 1.6 M� neutron star and a
0.8 M� companion. The companion is evolved and has an effective
temperature Teff = 3000 K. We’ll assume that Teff is fixed. On the giant
branch, the luminosity is powered by hydrogen shell burning, the ashes of
which are added to the core (i.e., the core mass Mc increases due to hydrogen
burning). The energy released, per gram of hydrogen consumed, is
Q = 6× 1018 erg g−1. For such an evolved giant the luminosity depends
mainly on the core mass Mc and may be approximated as [Ritter, 1999]

L
L�

= 106.3
(

Mc

M�

)8
.

For this system, find the orbital period P and the mass transfer rate Ṁ (in
units of solar masses per year) if the secondary has a core mass
Mc = 0.2 M�.

Matter that crosses the inner Lagrange point will find itself in orbit
about the primary. The material still has enough angular momentum
that it won’t fall directly onto the primary, and so an accretion disk
will form. In order for the matter to accrete, there must be enough
friction in the disk so that the gravitational energy can be radiated
away and angular momentum transported outward.

E X E R C I S E 1 5 . 2 — Suppose our binary consists of two white dwarfs
with a short orbital period, less than 2 hours, so that gravitational radiation
produces a torque on the system according to eq. (15.6). Because the
secondary is also degenerate, its radius depends on mass as

R2 = K
(

M2
M�

)−1/3
,

where K ≈ 2× 109 cm.

1. Show that if the secondary just fills its Roche lobe, then M2 ∝ P−1 and
find M2 if P = 1 hr.

2. Show that
Ṁ
M2

= − J̇/J
2/3−M2/M1

3. Using the above relations and eq. (15.6), find Ṁ if M1 = 1 M�. Scale the
orbital period to units of 1 hour.
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15.2 The Eddington Limit

There is a characteristic luminosity at which the pressure from ra-
diation balances the gravitational force. This tends to act as a limit
to accretion. To derive this limit, known as the Eddington luminosity,
consider a spherically symmetric shell of matter. Radiation enters the
shell and scatters isotropically (Thomson scatters) from electrons. The
momentum flux (momentum per unit time per unit area) entering the
shell is just

P =
1
c

L
4πr2 er.

Here L is the luminosity and r is the radius of the shell. Since the
scattering is presumed isotropic, the rate at which the fluid element’s
momentum changes (the impulse imparted to it by the radiation) is
just

dp
dt

= PσThne,

where σTh is the cross-section for Thomson scattering. Since dp/dt is
just a force per unit volume, we can balance it with the gravitational
force per unit volume,

fg = −GM〈A〉munion

r2 er,

and solve for L to obtain

LEdd =
4πGMc

(σTh/mu)Ye
. (15.7)

Here I have used ne = 〈Z〉nion and Ye = 〈Z〉/〈A〉. Note that LEdd is
independent of distance from the star. Numerically,

LEdd = 1.3× 1038 erg s−1
(

M
M�

)
Y−1

e = 3.2× 104L�

(
M

M�

)
Y−1

e .

We can now look at what the luminosity supplied by accretion is.
First there is the just the gravitational energy release. The gravita-
tional release, per nucleon, is

GMmu

R
=

{
0.069 MeV WD with R = 2× 109 cm
138 MeV NS with R = 106 cm

In both cases we used M = 1 M�. For hydrogen-rich accretion onto a
white dwarf, steady nuclear burning (assuming it exists!) will dwarf
the luminosity from accretion. The situation is reversed for a neutron
star, for which the energy from nuclear burning is a perturbation to
the large release of gravitational binding energy.

We can compute the accretion rate at which the luminosity sup-
plied by either nuclear burning or release of gravitational binding
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energy would equal the Eddington value:

ṀEdd =

{ 4πGMc
Q(σTh/mu)Ye

nuclear, L = ṀQ
4πRc

(σTh/mu)Ye
gravitational, L = GMṀ

R
.

For nuclear burning, taking M = 1 M�, Q = 6× 1018 erg g−1 (hy-
drogen burning), and Ye = 1 gives ṀEdd = 3.3 × 10−7 M� yr−1.
For gravitational power, taking R = 106 cm and Ye = 1 gives
ṀEdd = 1.5× 10−8 M� yr−1. Observed systems do in fact have in-
ferred mass transfer rates that are typically less than these values.

E X E R C I S E 1 5 . 3 — Consider a star surrounded by an accretion disk of
matter. In the disk, which consists of ionized gas, a fluid element gradually
spirals inward, so that at each point in the disk, it is approximately in a
circular orbit. Show that under these conditions, the energy radiated, per
unit mass, by the fluid element over its lifetime in the disk is GM/(2R).





A
Technical Notes

A.1 Thermodynamical derivatives

A common task in stellar physics is transforming between different
derivatives with respect to different thermodynamical quantities.
For example, you may have expressions for (∂κ/∂T)ρ and (∂κ/∂ρ)T ,
but you need (∂κ/∂T)P and (∂κ/∂P)T . There is a straightforward
way to handle transforming from (ρ, T) space to (P, T) space, and
that is using Jacobians. Despite the utility of this technique, it is not
commonly discussed in astrophysical texts1. 1 L. D. Landau and E. M. Lifshitz.

Statistical Physics, part 1. Pergamon
Press, Oxford, 3 edition, 1980

The Jacobian is defined as the determinant of a matrix of partial
derivatives,

∂(a, b)
∂(c, d)

≡ det

 (
∂a
∂c

)
d

(
∂a
∂d

)
c(

∂b
∂c

)
d

(
∂b
∂d

)
c


=

(
∂a
∂c

)
d

(
∂b
∂d

)
c
−
(

∂a
∂d

)
c

(
∂b
∂c

)
d

. (A.1)

Because interchanging any the rows (or the columns) causes the
determinant to change sign,

∂(b, a)
∂(c, d)

= −∂(a, b)
∂(c, d)

(A.2)

and
∂(a, b)
∂(d, c)

= −∂(a, b)
∂(c, d)

. (A.3)

Further,

∂(a, s)
∂(c, s)

=

(
∂a
∂c

)
s

(
∂s
∂s

)
a
−
(

∂a
∂s

)
c

(
∂s
∂c

)
s
=

(
∂a
∂c

)
s

, (A.4)

and
∂(a, b)
∂(a, b)

=

(
∂a
∂a

)
b

(
∂b
∂b

)
a
−
(

∂a
∂b

)
a

(
∂b
∂a

)
b
= 1. (A.5)
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Hence we can write thermodynamical derivative in terms of Jaco-
bians, for example, (

∂T
∂P

)
S
=

∂(T, S)
∂(P, S)

. (A.6)

Finally, when multiplying two Jacobians, one can “cancel” identical
upper and lower parts,

∂(a, b)
∂(c, d)

∂(c, d)
∂(s, t)

=
∂(a, b)
∂(s, t)

, (A.7)

as can be readily checked by expanding out both the left and right
hand sides.

Common thermodynamic derivatives

Certain thermodynamical derivatives occur commonly in working
with fluids. The first set express how the pressure relates to the pair
ρ, T:

χT ≡
T
P

(
∂P
∂T

)
ρ

, χρ ≡
ρ

P

(
∂P
∂ρ

)
T

. (A.8)

For a fixed composition the equation of state can always be expanded
about a point P0(ρ0, T0) as

P = P0

(
ρ

ρ0

)χρ
(

T
T0

)χT

, (A.9)

or equivalently
dP
P

= χρ
dρ

ρ
+ χT

dT
T

.

Here we are implicitly keeping the composition fixed.
The next set concern how quantities transform under adiabatic

changes. For a general equation of state with fixed composition,
define the following:

Γ1 ≡ ρ

P

(
∂P
∂ρ

)
s
=

(
∂ ln P
∂ ln ρ

)
s

; (A.10)

Γ2 − 1
Γ2

≡
(

∂ ln T
∂ ln P

)
s
≡ ∇ad; (A.11)

Γ3 − 1 ≡
(

∂ ln T
∂ ln ρ

)
s

. (A.12)

The nomenclature is historical. These quantities are not independent:
for example, one can show (see exercise 2) that

Γ1 =
[
χρ + χT (Γ3 − 1)

]
.

Furthermore,

Γ3 − 1 =
P

ρT
χT
cρ

,

Γ2 − 1
Γ2

=
Γ3 − 1

Γ1
.
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Furthermore, one can show that the specific heat at constant pressure
is cP = (Γ1/χρ)cρ.

A worked example: derivatives of the opacity

Here’s a simple worked example of how we can use these identities.
Suppose we have an opacity κ(ρ, T) that is expressed in terms of
density and temperature, but we need the quantity (∂κ/∂T)P. We can
express (∂κ/∂T)P as(

∂κ

∂T

)
P

=
∂(κ, P)
∂(T, P)

=
∂(κ, P)
∂(T, ρ)

∂(T, ρ)

∂(T, P)

=

(
∂ρ

∂P

)
T

[(
∂κ

∂T

)
ρ

(
∂P
∂ρ

)
T
−
(

∂κ

∂ρ

)
T

(
∂P
∂T

)
ρ

]

=

(
∂κ

∂T

)
ρ

−
(

∂κ

∂ρ

)
T

∂(ρ, T)
∂(P, T)

∂(P, ρ)

∂(T, ρ)

=

(
∂κ

∂T

)
ρ

−
(

∂κ

∂ρ

)
T

χT
χρ

ρ

T
. (A.13)

We have to add to (∂κ/∂T)ρ a term that allows for the density to
change with temperature at constant pressure.

E X E R C I S E A . 1 —

1. Show that (
∂T
∂P

)
S

(
∂S
∂T

)
P

(
∂P
∂S

)
T
= −1

2. Show that(
∂P
∂s

)
ρ

=
P
cρ

χT ,
(

∂P
∂ρ

)
s
=

P
ρ

[
χρ + χT (Γ3 − 1)

]
.

A.2 Moments of the radiant intensity

In the notes on radiative transport (§ 6.1) we have tended to use
quantities derived from the specific intensity with a readily inter-
pretable physical meaning, such as the energy density, flux, and radi-
ation pressure. Often, however, it is useful to make this more formal
by defining moments of the specific intensity, which are just weighted
angular averages. For example, integrating Iν over all angles and
dividing by 4π gives

Jν ≡
1

4π

∫ 2π

0
dφ
∫ π

0
sin θ dθ Iµ =

1
2

∫ 1

−1
dµ Iν. (A.14)
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Here µ = cos θ. For the first moment, we can multiply Iν by a unit
vector k, and then dot that into the unit directional vector and inte-
grate over all directions,

Hν ≡
1

4π

∫ 2π

0
dφ
∫ π

0
sin θ dθ Iµ k · n =

1
2

∫ 1

−1
dµ µIν. (A.15)

Finally, we can multiply Iν by a tensor kk; contracting this along n
gives

Kν ≡
1

4π

∫ 2π

0
dφ
∫ π

0
sin θ dθ Iµ (k · n)2 =

1
2

∫ 1

−1
dµ µ2 Iν. (A.16)

If we further integrate equations (A.14)–(A.16) over all frequencies,
we will obtain expressions for the energy density, flux, and radiation
pressure,

u =
4π

c
J, F = 4πH, P =

4π

c
K. (A.17)

A.3 Shocks

In a shock, the properties of the fluid change over a scale of a few
mean free paths. Over this distance, the fluid properties—density,
pressure, temperature—are not well characterized by smooth, differ-
entiable functions. To understand how shocks arise, imagine a long
tube filled with a gas and fitted with a piston at one end. The piston
is pushed into the gas; this creates a compressed region of higher
density and pressure, and a compression wave propagates into the
cylinder. This behavior can be captured by Burgers’s equation,

∂u
∂t

+
∂

∂x

(
u2

2

)
= 0,

which is simple but has a nonlinear term that captures the formation
of a shock.

0.50.0 0.5 1.0 1.5

1.0

1.2

1.4

1.6

1.8

2.0

+ ( / ) =

Figure A.1: The plots show the solution
of Burgers’s equation for a disturbance
propagating along the x-direction.
Because the sound speed is greater in
the compressed region, the “back” of
the disturbance B moves faster than
the front F: as a result, the disturbance
steepens. The disturbance steepens into
a shock in a time t ≈ ∆/(uL − uR),
where ∆ is the initial width of the
transition and uL and uR are the values
of u on the left and right sides of the
disturbance.

Information about the disturbance is carried by acoustic waves.
In the compressed region, however, the sound speed is higher. As a
result the back of the transition region travels at a faster velocity that
the front of the disturbance, so that over time the disturbance steep-
ens (Fig. A.1). This steepening continues until the thickness of the
transition is small enough that diffusive effects—i.e., viscosity—can
balance the steepening. This gives a characteristic width to the front.
On macroscopic scales, the transition is essentially a discontinuity
and is termed a shock front.

To illustrate the properties of a shock, we’ll follow Zel’dovich and
Kompaneets2 and imagine a piston being pushed into a tube filled 2 Ya. B. Zel’dovich and A. S. Kompa-

neets. Theory of Detonation. Academic
Press, Inc., 1960

with gas, as illustrated in Fig. A.2. The piston moves to the right with
velocity u. We assume that the piston has been pushing the fluid for
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a while at constant velocity, so that any transients have died down,
leaving a simple flow structure at t = 0 (Fig. A.2, top panel): far
from the piston, the fluid is at rest, with density ρ0, pressure P0, and
internal energy ε0; a shock propagates into this fluid with velocity
S; between the shock and the piston the fluid moves with the same
velocity, u, as the piston and has density ρ1, pressure P1, and ε1.

u•t S•t

u S ρ0, P0ρ1, P1

u S ρ0, P0ρ1, P1

Figure A.2: Schematic of a piston
driving a shock. In this schematic, the
shock propagates at velocity S.

In a time t, the piston has moved (Fig. A.2, botton panel) a dis-
tance u · t, and the shock has moved a distance S · t; the mass of the
“shocked” fluid has therefore increased by ρ1(S − u)t. This must
equal the mass swept up by the shock, namely ρ0St. We therefore
have our first relation,

ρ1(S− u) = ρ0S. (A.18)

The fluid swept up by the shock now has velocity u and thus a mo-
mentum (ρ0St)u. This increase in momentum must equal the net
impulse imparted to the fluid, (P1 − P0)t. We therefore have our
second relation,

S1 − S0 = Sρ0u. (A.19)

The fluid swept up by the shock has a change in total energy, (ρ0St)(ε1 +

u2/2− ε0). This must equal the work done on the fluid by the piston,
which is the force times displacement P1ut. We therefore have our
third relation,

ρ0S
[

ε1 − ε0 +
1
2

u2
]
= P1u. (A.20)

To abstract the problem, we transform to a frame moving with the
shock. In this frame the upstream velocity ahead of the shock has
velocity u0 = −S; the downstream velocity is u1 = u − S. The
difference in velocity is |u0 − u1| = u. In this frame, equations (A.18),
(A.19), and (A.20) take on the more familiar forms,

ρ1u1 = ρ0u0, (A.21)

P1 + ρ1u2
1 = P0 + ρ0u2

0, (A.22)

(ρ1u1)

[
ε1 +

1
2

u2
1 +

P1

ρ1

]
= (ρ0u0)

[
ε0 +

1
2

u2
0 +

P0

ρ0

]
. (A.23)

Recognize these? Compare with equations (2.1), (2.3), and (2.5), and
recognize that equations (A.21), (A.22), (A.23) just express that the
downstream mass flux, momentum flux, and energy flux equal their
upstream counterparts.

Equations (A.21), (A.22), (A.23), when supplemented with an
equation of state, are sufficient to allow solution for P1 and ρ1 in
terms of P0, ρ0 and u. To explore the properties of the shock, we
adopt a simple ideal adiabatic equation of state: P = (γ− 1)ρε = Kργ

with sound speed c2 = γP/ρ. The enthalpy is then

ε +
P
ρ
=

γ

γ− 1
P
ρ

.
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Using this equation of state, we can reduce equations (A.21), (A.22),
(A.23) into expressions in terms of the pressure ratio P = P1/P0:

density ratio,
ρ1

ρ0
=

(γ + 1)P + (γ− 1)
(γ− 1)P + (γ + 1)

; (A.24)

entropy increase, s1 − s0 = cv ln
[

P1

P0

(
ρ0

ρ1

)γ]
; (A.25)

temperature ratio,
T1

T0
=

P1

P0

ρ0

ρ1
; (A.26)

upstream Mach,
(

u0

c0

)2
=

(γ + 1)P + (γ− 1)
2γ

;(A.27)

downstream Mach,
(

u1

c1

)2
=

(γ− 1)P + (γ + 1)
2γP

.(A.28)

In the limiting case of a strong shock, P � 1, the density increase
is finite: ρ1/ρ0 → (γ + 1)/(γ − 1); for γ = 5/3, ρ1/ρ0 → 4. The
temperature and entropy jumps across the shock, however, scale with
P and are arbitrarily large. The upstream Mach number is likewise
proportional to the pressure ratio, Ma2

0 → (γ + 1)P/(2γ), but the
downstream flow is subsonic, Ma2

1 → (γ − 1)/(2γ). The shock
transforms the ordered (low-entropy) supersonic upstream flow into
the disordered (high-entropy) subsonic downstream flow.



Bibliography

E. Anders and N. Grevesse. Abundances of the elements - meteoritic
and solar. Geochim. Cosmochim. Acta, 53:197–214, 1989.

M. Asplund, N. Grevesse, and A. J. Sauval. The Solar Chemical Com-
position. In T. G. Barnes, III and F. N. Bash, editors, Cosmic Abun-
dances as Records of Stellar Evolution and Nucleosynthesis, volume
336 of Astronomical Society of the Pacific Conference Series, page 25,
September 2005.

John M. Blatt and Victor F. Weisskopf. Theoretical Nuclear Physics.
Springer-Verlagpr, 1979.

Gilles Chabrier. Galactic stellar and substellar initial mass function.
Publ.Astron.Soc.Pac., 115:763–796, 2003.

Donald D. Clayton. Principles of Stellar Evolution and Nucleosynthesis.
University of Chicago Press, 1983.

C. Fröhlich and J. Lean. Solar radiative output and its variability:
evidence and mechanisms. A&A Rev., 12:273–320, December 2004.

H. L. Grant, R. W. Stewart, and A. Moilliet. Turbulence spectra from
a tidal channel. Journal of Fluid Mechanics, 12:241–268, 1962.

Carl J. Hansen, Steven D. Kawaler, and Virginia Trimble. Stellar
Interiors. Springer-Verlag, 2d edition, 2004.

I. Hubeny, A. Burrows, and D. Sudarsky. A Possible Bifurcation in
Atmospheres of Strongly Irradiated Stars and Planets. ApJ, 594:
1011–1018, September 2003.

D. G. Hummer. The effect of reflected and external radiation on
stellar flux distributions. ApJ, 257:724–732, June 1982.

C. Iliadis. Nuclear Physics of Stars. Wiley-VCH, 2007.

R. Kippenhahn and A. Weigert. Stellar Structure and Evolution.
Springer-Verlag, 1994.



160 stellar astrophysics

L. D. Landau and E. M. Lifshitz. Statistical Physics, part 1. Pergamon
Press, Oxford, 3 edition, 1980.
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