STELLAR DYNAMICS

D.C. Heggie University of Edinburgh d.c.heggie@ed.ac.uk

Outline

- 1. A primer in stellar dynamics
- 2. N-body codes

The *N*-body Problem

- N point masses (good while separation of two stars is much less than the sum of their radii)
- classical gravitation and equations of motion (good except close to horizon of black hole, or close binaries emitting gravitational waves)

Equations of motion

$$\ddot{\mathbf{r}}_{i} = -G \sum_{j=1,\neq i}^{N} m_{j} \frac{\mathbf{r}_{i} - \mathbf{r}_{j}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|^{3}}$$
or

$$\begin{cases} \dot{\mathbf{r}}_i = \mathbf{v}_i \\ \dot{\mathbf{v}}_i = -G \sum_{j=1,\neq i}^N m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3} \end{cases}$$

Cold collapse

Initial conditions:

All velocities 0

Particles distributed uniformly in sphere

The crossing time and virial equilibrium

- The system "quickly" reaches a "steady state"
- The steady state is in "virial equilbrium", when the virial equation is approximately satisfied:

$$2T + V = 0$$

where

$$T = \frac{1}{2} \sum_{i=1}^{N} m_i \mathbf{v}_i^2 \text{ (Kinetic Energy)}$$
$$V = -\frac{G}{2} \sum_{i=1}^{N} \sum_{j=1,\neq i}^{N} \frac{m_j m_i}{|\mathbf{r}_i - \mathbf{r}_j|} \text{ (Potential Energy)}$$

Mass, length and time scales

Total mass

$$M=\sum_{i=1}^N m_i$$

► Characterise system size by "virial radius" *R* defined by

$$V=-rac{GM^2}{2R},~~$$
 where M is total mass

Characterise speeds by (mass weighted) mean square speed

$$v^2 = \frac{2T}{M}$$

Define time scale

$$t_{cr} = \frac{2R}{v}$$
 ("Crossing time")

N-body Units

A conventional system of units in which

$$G = 1$$

 $M = 1$
 $R = 1$

Example

Suppose a star cluster has $M = 10^5 M_{\odot}$, R = 5 pc. To convert a velocity from the *N*-body code to km/s, multiply by $\sqrt{\frac{GM}{R}}$, where *G* is expressed in the same units (i.e. km/s, M_{\odot} , pc), i.e. $G \simeq 0.043$.

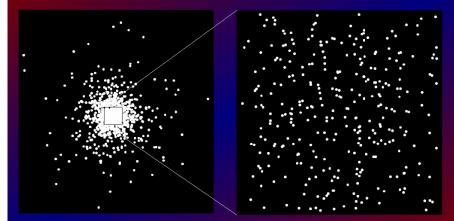
Significance of the crossing time

- Time scale of cold collapse
- Time scale of approach to virial equilibrium
- Time scale of orbital motions in virial equilibrium

Plummer's model

- A particular model of a system in virial (and dynamic) equilibrium
- Convenient analytical distributions

Core collapse: Two simulations



Entire system Central area 13 seconds to t = 3.3 13 seconds to t = 330 The initial conditions (Plummer's model)

Lessons from the simulations

Evolution on two time scales:

- orbital motions (crossing time scale)
- much slower evolution of the statistical distribution

Two-body relaxation

- Local definition $t_r = \frac{0.065v^3}{\rho m G^2 \ln \gamma N}$ where
 - v is the velocity dispersion (root mean square velocity)
 - ρ is the space (mass-)density
 - m is the particle mass
 - γ is a constant (about 0.11 for equal masses)
 - N is number of particles
- ► Global definition: half-mass relaxation time $t_{rh} = 0.138 \frac{N^{1/2} r_h^{3/2}}{1.6 + 1.6}$, where

$$E_{rh} = 0.138 \frac{m^{1/2} G^{1/2} \ln(\gamma N)}{m^{1/2} G^{1/2} \ln(\gamma N)}$$
, where

r_h is the half-mass radius (containing the innermost half of the system); comparable with the virial radius

Significance of the relaxation time

- Time scale of core collapse
- ► Time scale of escape (actually several/many *t_r*)
- Time scale of mass segregation (if there is a distribution of masses, the heavier particles sink to the centre on a time scale which is a fraction of t_r)
- Collisional stellar dynamics deals with phenomena on time scales of a few t_{rh} (open and globular star clusters; some galactic nuclei)
- Collisionless stellar dynamics deals with phenomena on time scales much less than t_{rh} (spiral structure, galaxy collisions (!), ...)

Post-collapse evolution

Depends on boundary conditions:

- "isolated" system: binaries form in the core, liberating energy, which expands the system on the time scale t_{rh} (by a feedback mechanism). As r_h expands, t_{rh} increases. The system very slowly loses mass
- "tidally limited" systems: stars escape (roughly speaking) at a tidal radius r_t, where external forces become dominant. Mass is lost on time scale t_{rh}; r_t contracts, r_h contracts (eventually). System dissolves in few t_{rh}.

N-body codes

Example: Euler method Equations of motion:

$$\dot{\mathbf{r}}_i = \mathbf{v}_i$$

$$\dot{\mathbf{v}}_i = \mathbf{a}_i = -\sum_{j=1, j \neq i}^N Gm_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

Algorithm:

$$\mathbf{r}_i(t + \Delta t) = \mathbf{r}_i(t) + \Delta t \, \mathbf{v}_i(t)$$

$$\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \Delta t \, \mathbf{a}_i(t)$$

Note: singularity where $\mathbf{r}_i = \mathbf{r}_j$ (collision between any pair of particles)

Time step limited by $\Delta t < \eta \min_{i,j} \frac{|\mathbf{r}_i - \mathbf{r}_j|}{|\mathbf{v}_i - \mathbf{v}_j|}$

Choices of Time Step

- Fixed time step too short, can't be predicted impractical
- Variable shared time step forces all particles to take same Δt - impractical. MUSE example: Hermite0
- Variable individual time step near-optimal, but requires extrapolation. MUSE example: nbody1h
- ► Block time steps (∆t = 2^{-k}, k = 0, 1, 2, ...) shares extrapolation

Conventional choices

Time step: a generalisation of $\eta \min_{i,j} \frac{|\mathbf{r}_i - \mathbf{r}_j|}{|\mathbf{v}_i - \mathbf{v}_j|}$ Particle advance: a generalisation of Euler called *Hermite* First step:

Euler:
$$\mathbf{r}_i := \mathbf{r}_i + \mathbf{v}_i \Delta t$$

 $\mathbf{v}_i := \mathbf{v}_i + \mathbf{a}_i \Delta t$
Hermite: $\mathbf{r}_i := \mathbf{r}_i + \mathbf{v}_i \Delta t + \frac{1}{2} \mathbf{a}_i \Delta t^2 + \frac{1}{6} \dot{\mathbf{a}}_i \Delta t^3$
 $\mathbf{v}_i := \mathbf{v}_i + \mathbf{a}_i \Delta t + \frac{1}{2} \dot{\mathbf{a}}_i \Delta t^2$

followed by a corrector involving values of $\mathbf{a}_i, \dot{\mathbf{a}}_i$ at the *end* of the time step (Hermite only).

Basic structure of an N-body code

- 1. Initialisation of \mathbf{r}_i , \mathbf{v}_i , tnext_i (update time), \mathbf{a}_i , $\dot{\mathbf{a}}_i$, all *i*.
- 2. Choose *i* minimising *tnext_i*
- 3. Extrapolate all **r**_j to tnext_i
- 4. Compute new $\mathbf{a}_i, \dot{\mathbf{a}}_i$
- 5. Correct new \mathbf{r}_i , compute new \mathbf{v}_i (Hermite integrator)
- 6. Compute new *tnext*_i
- 7. Repeat from step 2

Notes

- this does not include block time steps
- this is the basic structure of NBODY1 (Aarseth)

Accelerating force calculation: software

Neighbour Scheme (Ahmad-Cohen)

- ▶ For each particle *i*, keep a list of its near neighbours
- Update the neighbour force frequently, the non-neighbour force less frequently ("regular" and "irregular" forces)

Tree code: little used in collisional simulations. MUSE example: BHTree

Accelerating force calculation: hardware

► GRAPE

Entry level version costs a few thousand euros

- Speed-up factor ~ 100
- ▶ Parallel computers and clusters: NBODY6++ (Spurzem)
- Video cards (Portegies Zwart)

Close encounters and binaries. I. Offset "regularisation"

Suppose particles i, j form a bound pair, or experience a close encounter. Use offset variables \mathbf{r}, \mathbf{R} defined as

$$\mathbf{R} = \frac{m_i \mathbf{r}_i + m_j \mathbf{r}_j}{m_i + m_j}$$

$$\mathbf{r} = \mathbf{r}_i - \mathbf{r}_j,$$

and write equations of motion in terms of \mathbf{r}, \mathbf{R} : e.g.

$$\ddot{\mathbf{r}} = -G(m_i + m_j)\frac{\mathbf{r}}{|\mathbf{r}|^3} + \mathbf{a}'_i - \mathbf{a}'_j,$$

where \prime means we omit force due to i, j.

Advantage: avoids rounding error in repeated calculation of $\mathbf{r}_i - \mathbf{r}_j$.

Close encounters and binaries. II. KS regularisation

Singularity in

$$\ddot{\mathbf{r}} = -G(m_i + m_j)\frac{\mathbf{r}}{|\mathbf{r}|^3} + \mathbf{a}'_i - \mathbf{a}'_j$$

requires small time steps for close and/or eccentric binaries.

- KS regularisation is subtle change of variables which removes the singularity.
- still requires short time step for close binary
- freeze unperturbed binaries

Higher-order subsystems: triples, quadruples, etc

- hierarchical triples are binaries constantly perturbed by third body: "slow-down" treatment follows secular perturbations with (much) larger time step
- non-hierarchical triples, quadruples: chain regularisation, a generalisation of offset and KS regularisation; there are specilisations to triples and quadruples

Flow control

Each integration step may involve any of the following possibilities (Aarseth, NBODY6):

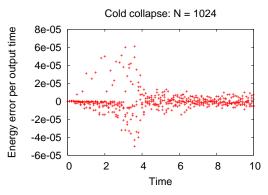
- 1. Standard integration
- 2. New KS regularisation
- 3. KS termination
- 4. Output
- 5. 3-body regularisation
- 6. 4-body regularisation
- 7. New hierarchical system
- 8. Termination of hierarchical system
- 9. Chain regularisation
- 10. Physical collisions
- Also: stellar evolution

N-body codes

- 1. NBODY1-6 (Aarseth), NBODY6++ (Spurzem): FORTRAN, production code
- 2. starlab (McMillan, Hut, Makino, Portegies Zwart): C++, no KS regularisation, production code
- 3. ACS (Hut, Makino): Ruby, experimental
- MUSE (everyone): Python, FORTRAN, C++, C, experimental; includes a Hermite code, NBODY1h, and a Barnes-Hut tree code

Quality control

Energy check



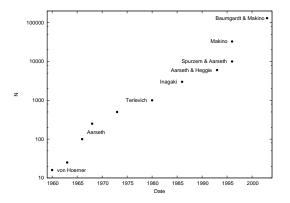
Are your answers reasonable?

"Complexity"

- Effort dominated by calculation of a: N terms
- N forces to be calculated
- Typical time step $\ll t_{cr}$
- Typical collisional simulation lasts few $t_r \sim N t_{cr}$

Hence effort $\propto N^3$ at least.

The Development of *N*-body Simulations in History



Something else is needed for large N.

Monte Carlo codes

Assume

- Spherical symmetry
- Dynamic equilibrium
- In a given potential, each particle characterised by
 - energy E
 - angular momentum L

These evolve on a time scale of t_r . Choose time step = ηt_{rh} .

A Monte Carlo Algorithm

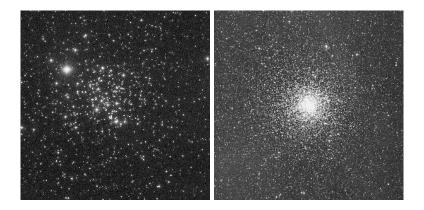
- 1. Initialise positions and velocities, compute E_i, L_i
- 2. Order the particles by radius, and compute gravitational potential ϕ (easy in spherical symmetry)
- 3. For each successive pair i, i + 1 compute the local value of t_r , and let i, i + 1 have a two-body encounter yielding, on average, the correct effect of two-body relaxation in the time interval Δt .
- 4. Calculate new E, L for all particles
- 5. Reassign radii of all particles (according to the time spent at each radius given E, L, ϕ)
- 6. Repeat from 2

Refinements to the Monte Carlo Algorithm

- Different time steps in different zones
- Binaries and their interactions using
 - cross sections (Giersz & Heggie)
 - on-the-fly few-body integrations (Fregeau)
- Stellar evolution (e.g. McScatter interface)

Recent applications (see talks at Capri)

- ▶ open cluster M67
- ▶ globular cluster M4



References

- Stellar Dynamics
 - 1. *Galactic Dynamics* James Binney and Scott Tremaine, Princeton University Press, 1988, £38.95, 755 pp.
 - 2. Dynamical Evolution of Globular Clusters Lyman J. Spitzer Jr, Princeton UP, 1988, out of print, 196 pp.
 - 3. *The Gravitational Million Body Problem*, Douglas Heggie, Piet Hut; Cambridge UP, 2003, \$65.00
- N-body codes
 - 1. *Gravitational N-body simulations*, Sverre J. Aarseth Cambridge: CUP, 2003, £49, 413pp
 - 2. http://www.ids.ias.edu/~starlab/ (starlab)
 - 3. http://artcompsci.org/ (The Art of Computational Science)
 - 4. Hénon, M. 1971, The Monte Carlo Method, Ap&SS, 14, 151