Enigma

Stem Sentences. Spine 3: Fractions

Part-whole relationship
Unit fractions
Non Unit Fractions
Making a whole
Counting in fractional steps
Improper fractions and mixed numbers
Equivalent Fractions
Simplifying Fractions
Comparing Fractions
Adding and subtracting fractions
Multiplying whole numbers and fractions
Dividing fractions
Linking fractions, decimals and percentages

Year 3: 3.1
Year 3: 3.2
Year 3: 3.3
Year 3: 3.4, Year 4: 3.6
Year 4: 3.5
Year 3: 3.5, Year 4: 3.5
Year 5:3.7
Year 5: 3.8
Year 3:3.3, Year 5:3.8
Year 3: 3.3, 3.4, Year4: 3.4, 3.5, Year 5: 3.8
Year 4: 3.6, Year 6: 3.9
Year 6: 3.9
Year 6: 3.10

	Part-Whole relationships				
$\begin{aligned} & \text { PD } \\ & \text { Link } \end{aligned}$	Example of stem sentence	Type of stem sentence	Examples from the NCETM PD Materials		
$\begin{gathered} \text { Year 3: } \\ 3.1 \\ 1: 1 \\ 1: 4 \end{gathered}$	If \qquad is the whole then \qquad is part of the whole.	Structure	If Europe is the whole, then the United Kingdon is part of the whole.		
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.1 \\ & 1: 5 \end{aligned}$	A part is always smaller than the whole.	Generalisation			
$\begin{aligned} & \text { Year 3: } \\ & 3.1 \\ & 1: 7 \end{aligned}$	If \qquad is the whole then \qquad is not part of the whole.	Structure	If my face is the whole then my foot is not part of the whole.		
$\begin{aligned} & \text { Year 3: } \\ & 3.1 \\ & 2: 2 \\ & \hline \end{aligned}$	The whole has been divided into \qquad equal / unequal parts.	Structure / language			
$\begin{aligned} & \text { Year 3: } \\ & 3.1 \\ & 2: 3 \end{aligned}$	The whole has been divided into \qquad equal parts.	Structure	The whole has been divided into 4 equal parts.		

Enigma

$\begin{array}{\|l} \hline \text { Year 3: } \\ 3.1 \\ 2: 6 \end{array}$	The parts are equal, I know this because the number of \qquad in each part is the same.	Structure		
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.1 \\ & 2: 6 \end{aligned}$	The parts are unequal, I know this because the number of \qquad in each part is not the same.	Structure / language		
$\begin{aligned} & \text { Year 3: } \\ & 3.1 \\ & 2: 7 \end{aligned}$	Equal-sized parts do not have to look the same.	Generalisation		
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.1 \\ & 3: 2 \end{aligned}$	Different parts of the samesized whole can be directly compared based on their size.	Generalisation	$000 \cdot 0 \cdot 0$ $00000 \cdot 0$ In the first set of counters, the yel smaller part of the whole then in	w counters make up a e second set.
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.1 \\ & 3: 4 \end{aligned}$	As the while increases in size and the size of the selected part remains the same, each part becomes smaller in relation to the whole.	Generalisation		
	Unit Fractions			
$\begin{aligned} & \hline \text { Year } 3 \\ & 3: 2 \\ & 2: 1 \end{aligned}$	A unit fraction is any fraction where the numerator is one.	Generalisation	Numerator (1 for a unit fraction) $1 \leftarrow$ One of the parts of the whole $\mathbf{2} \leftarrow$ Denominator The number of equal parts in the whole	
$\begin{aligned} & \text { Year 3: } \\ & 3.2 \\ & 2: 1 \end{aligned}$	The whole has been divided into \qquad equal parts \qquad of the parts has been shaded.	Structure / language	The whole has been divided into the parts has been shaded.	hree equal parts. One pf
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.2 \\ & 2: 2 \end{aligned}$		Language / structure	Say	Write
			'The whole has been divided...'	The division bar:-
			'...into 3 equal parts.'	The denominator: 3
			'One of the parts has been shaded.'	The numerator: 1

Enigma

Year 3: 3.2 2:2	The denominator is \qquad because the whole is divided into \qquad equal parts. The numerator is one because one part is shaded.	Structure	The denominaor is 4 because the whole is divided into 4 equal parts. The numerator is 1 because one part is shaded.
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.2 \\ & 3: 1 \end{aligned}$	The whole has been divided into \qquad equal parts. Each part is one \qquad of the whole. \qquad of the whole ribbon has been cut off.	Structure	
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.2 \\ & 3: 2 \end{aligned}$	The whole has been divided into \qquad equal parts. One of these parts is highlighted. This part is one \qquad of the whole line.	Structure	The whole has been divided into 5 equal parts. One of these parts is highlighted. This part is one fifth of the whole line.
$\begin{aligned} & \text { Year 3: } \\ & 3.2 \\ & 3: 6 \end{aligned}$	The whole has been divided into \qquad equal parts. One of these parts in one \qquad of the whole.	Structure	Dividing 12 counters into equal groups:
$\begin{aligned} & \text { Year 3: } \\ & 3.2 \\ & 5: 1 \end{aligned}$	When the whole is the same, the greater the number of equal parts, the smaller each equal part is. When the whole is the same, the smaller the number of equal parts, the bigger each equal part is.	Generalisation	
Year 3: 3.2 5:1	When comparing unit fractions, the greater the denominator, the smaller the fraction.	Generalisation	Ordering the fractions:

Enigma

Year 3: 3.2 5:4	When we compare fractions, the whole has to be the same.	Generalisation	Emma looks at these two diagrams. Shesays that they prove that $\frac{1}{4}>\frac{1}{2}$. Do you agree or disagree?' - 'Disagree: to compare fractions, the wholes must the same'
$\begin{aligned} & \text { Year 3: } \\ & 3.2 \\ & 6: 4 \end{aligned}$	If one \qquad is a part, then the whole is \qquad times as much. Take \qquad parts and put them together to make a whole.	Structure	First: If one half is a part, then the whole istwo times as much. Take two parts and put them together to make one whole.' Second: If one-third is a part, then the whole is three times as much. Take three parts and put them together to make one whole.'
	Non- Unit Fractions		
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.3 \\ & 1: 4 \end{aligned}$	I have \qquad one tenths. I have \qquad tenths.	Structure / language	$\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$$\frac{1}{10}$ - 'I have three one-tenths. I have three-tenths.'
$\begin{aligned} & \text { Year 3: } \\ & 3.3 \\ & 1.6 \end{aligned}$	There are \qquad equal parts in the whole. There are \qquad parts shaded. \qquad is shaded.	Structure / language	'There are five equal parts in the whole.' - There are fourparts shaded.' - Four-fifths is shaded.'
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.3 \\ & 2: 1 \end{aligned}$	The whole has been divided into \qquad equal parts. \qquad of the parts are shaded. That is \qquad of the whole.	Structure / language	- 'The whole has been divided into six equal parts.' - 'Five of theparts areshaded.' - 'That is five-sixths of the whole.'
$\begin{aligned} & \text { Year 3: } \\ & 3.3 \\ & 2: 5 \end{aligned}$	The whole has been divided into \qquad equal parts. \qquad of the parts have been shaded; that is \qquad of the whole.	Structure / language	 The whole has been divided into 7 equal parts. 5 of the parts have been shaded; that is $5 / 7$ of the whole.

Enigma

Counting in fractional steps

$\begin{aligned} & \hline \text { Year 4: } \\ & 3.5 \\ & 2: 3 \end{aligned}$	The line is divided into \qquad equal parts. This allows us to count in \qquad .	Structure	
$\begin{aligned} & \hline \text { Year 4: } \\ & 3.5 \\ & 2: 4 \end{aligned}$	The interval is divided into \qquad equal parts. This allows us to count in \qquad -	Structure	'Each interval on the line is divided intofour equal parts. This allows us to count inquarters'

Enigma

Enigma

Enigma

$\begin{aligned} & \hline \text { Year 5: } \\ & 3.7 \\ & 3: 8 \end{aligned}$	is not in its simplest form because \qquad is a common factor of \qquad and \qquad is in its simplest form because one is the only common factor of \qquad and _. \qquad	Language / structure.	'Sort the following numbers according to whether they are expressed in their simplest form or not.' $\begin{array}{lllllllllll} \frac{3}{15} & \frac{2}{5} & \frac{4}{20} & & \frac{25}{36} & & \frac{1}{6} & & \frac{7}{21} & \frac{18}{30} & \frac{9}{17} \\ & & \frac{5}{15} & & \frac{11}{20} & & \frac{23}{30} & & & \end{array}$ 4/20 is not in its simplest form because four is a common factor of 4 and 20 $23 / 50$ is in its simplest form because one is the only common factor of 23 and 30 .
	Comparing Fractions		
$\begin{aligned} & \text { Year 3: } \\ & 3.3 \\ & 7: 2 \end{aligned}$	is \qquad lot of 1 ' \square \square is \qquad lots of \square $\stackrel{1}{\square}$ \square 'I know that \qquad is less than ...' \qquad	Language / structure	$\frac{1}{4}<\frac{3}{4}$ $1 / 4$ is 1 lots of $1 / 4$ $3 / 4$ is 3 lots fo $1 / 4$ I know that 1 is less than 3 so $1 / 4$ is less than $3 / 4$.
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.3 \\ & 7: 5 \\ & 3.5 \\ & 3: 3 \end{aligned}$	When we compare fractions with the same denominator, the greater the numerator, the greater the fraction.	Generalisation	$\frac{3}{8}<\frac{5}{8}$ $\begin{array}{cc}\frac{18}{24} & \frac{23}{24} \\ \downarrow & \downarrow \\ \text { 18 lots of } \frac{1}{24} & 23 \text { lots of } \frac{1}{24}\end{array}$ $\frac{18}{24}<\frac{23}{24}$
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.3 \\ & 8: 1 \\ & 8: 4 \end{aligned}$	When comparing unit fractions, the greater the denominator the smaller the fraction.	Generalisation	
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.3 \\ & 8: 12 \end{aligned}$	When we compare fractions with the same numerator, the greater the denominator, the smaller the fraction.	Generalisation	
$\begin{aligned} & \hline \text { Year 5: } \\ & 3.8 \\ & 5: 1 \end{aligned}$	To compare fractions with different numerators and denominator convert to common denominators.	Generalisation	$\begin{array}{ccc} \frac{1}{3} & \text { (}) & \frac{3}{4} \\ \downarrow & & \downarrow \\ \frac{4}{12} & \text { (} & \frac{9}{12} \end{array}$

Enigma

	Adding and subtracting Fractions			
$\begin{aligned} & \text { Year 3: } \\ & 3.3 \\ & 5: 2 \end{aligned}$	\square is \qquad lot of \square 1	Language / structure	$\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$$\begin{aligned} & \frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{3}{5} \\ & \frac{3}{5}=\frac{1}{5}+\frac{1}{5}+\frac{1}{5} \end{aligned}$ $3 / 5$ is 3 lots of $1 / 5$.	$\frac{1}{5}$
$\begin{aligned} & \text { Year 3: } \\ & 3.4 \\ & 1: 7 \end{aligned}$	\qquad tenths and \qquad more tenths make \qquad tenths.	Structure	6 tenths and 2 more tenths make 8	
$\begin{array}{\|l} \text { Year 3: } \\ 3.4 \\ 1: 9 \end{array}$		Structure	, $\frac{6}{10}$ is six lots of $\frac{1}{10}$.' , $\frac{2}{10}$ is two lots of $\frac{1}{10}$. 'I know that $6+2=8$.' '...so, I know that $\frac{6}{10}+\frac{2}{10}=\frac{8}{10}$.	
$\begin{array}{\|l} \hline \text { Year 3: } \\ 3.4 \\ 1: 12 \end{array}$	When adding fractions with the same denominators, just add the numerators.	Generalisation		
$\begin{aligned} & \text { Year 3: } \\ & 3.4 \\ & 2: 3 \end{aligned}$	\qquad /10 is \qquad lots of $1 / 10$ \qquad /10 is \qquad lots of $1 / 10$ I know that \qquad $=$ \qquad So I know that \qquad /10 \qquad $=\ldots / 10$	Structure	Method 3-verbal reasoning: - $\frac{8}{10}$ is eightlots of $\frac{1}{10}$. - ' $\frac{2}{10}$ is two lots of $\frac{1}{10}$.' - I know that $8-2=6$.' '...so, Iknow that $\frac{8}{10}-\frac{2}{10}=\frac{6}{10}$.'	
$\begin{aligned} & \hline \text { Year 3: } \\ & 3.4 \\ & 2: 5 \end{aligned}$	When subtracting fractions with the same denominators, just subtract the numerators.	Generalisation	$\begin{aligned} & \frac{8}{9}-\frac{3}{9}=\frac{5}{9} \\ & \frac{8}{10}-\frac{2}{10}=\frac{6}{10} \end{aligned}$	
$\begin{aligned} & \text { Year 4: } \\ & 3.4 \\ & 4: 3 \end{aligned}$	To subtract from one whole, first convert the whole to a fraction where the denominator and numerator are the same.	Generalisation	'A watermelon is cut into 8 equal pieces.' ' $\frac{6}{8}$ of the watermelon is eaten' What fraction of the watermelon is left?'	$\begin{aligned} & -\frac{6}{8}=\frac{2}{8} \\ & -\frac{6}{8}=\frac{2}{8} \end{aligned}$

Enigma

$\begin{array}{\|l} \hline \text { Year 4: } \\ 3.5 \\ 4: 2 \end{array}$	The parts are \qquad and \qquad The total or whole is . \qquad	Language / structure.	'The parts are $\frac{2}{5}$ and $1 \frac{1}{5}$. The total, or whole, is $1 \frac{3}{5}$.'
$\begin{aligned} & \text { Year 5: } \\ & 3.8 \\ & 1: 6 \end{aligned}$	Related fractions have denominators where one denominator is a multiple of the other.	Generalisation	$\frac{1}{3} \text { and } \frac{1}{9}$ We can change $\frac{1}{3}$ to $\frac{3}{9}$.'
$\begin{aligned} & \text { Year 5: } \\ & 3.8 \\ & 1: 8 \end{aligned}$	and \square are realted fractions because the denominator \qquad is a multiple of the other denominator \qquad	Structure / language	$\frac{1}{16}$ and $\frac{1}{4}$ are related fractions because the denominator, "16", is a multiple of the other denominator, "4"."
Year 5: 3.8	Fractions must have the same denominator before they can be added or subtracted.	Generalisation	
Year 5: 3.8	When fractions have the same denominator, we call this a common denominator.	Generalisation	
Year 5: 3.8	To add or subtract fractions with different denominators, first convert to fractions with a common denominator.	Generalisation	$\begin{aligned} \frac{2 x}{36}+\frac{1}{6} & =\frac{2}{6}+\frac{1}{6} \\ & =\frac{2+1}{6}=\frac{3^{1}}{52}=\frac{1}{2} \end{aligned}$ To solve $1 / 3+1 / 6$, convert $1 / 3$ to $2 / 6$ by scaling 1 and 3 up by two then add $2 / 6$ and $1 / 6$ together.
Year 5: 3.8	To find a common denominator, identify the lowest common multiple of the denominators then create an equivalent fraction.	Generalisation	Multiples of 3: 3, 6, 9, 12, 15 Multiples of 5: $5,10,15$ The lowest common multiple of 3 and 5 is 15 .
Year 5: 3.8	We can find a common denominator for two nonrelated fractions by multiplying their denominators.	Generalisation	If you multiply the two denominators 3 and 5 you will get the common denominator product of 15 .

Enigma

Enigma

Enigma

Enigma

Year 6: 3.10 $6: 2$	To find 10\% of a number, divide it by ten.	Generalisation	'Rishi has completed 10% of the same bike ride. How far hashe cycled?'

