
1

StenBOT Rover Kit

Stensat Group LLC, Copyright 2013

2

Legal Stuff

● Stensat Group LLC assumes no responsibility and/or liability for the use of
the kit and documentation.

● There is a 90 day warranty for the Quad-Bot kit against component defects.
Damage caused by the user or owner is not covered.

● Warranty does not cover such things as over tightening nuts on
standoffs to the point of breaking off the standoff threads, breaking wires
off the motors, causing shorts to damage components, powering the
motor driver backwards, plugging the power input into an AC outlet,
applying more than 9 volts to the power input, dropping the kit, kicking
the kit, throwing the kit in fits of rage, unforeseen damage caused by the
user/owner or any other method of destruction.

● If you do cause damage, we can sell you replacement parts or you can get
most replacement parts from online hardware distributors.

● This document can be copied and printed and used by individuals who
bought the kit, classroom use, summer camp use, and anywhere the kit is
used. Stealing and using this document for profit is not allowed.

● If you need to contact us, go to www.stensat.org and click on contact us.

http://www.stensat.org/

3

Table of Contents

● Overview

● Robot Kit Assembly

● Arduino Programming and Interfacing

● Robot Motor Control

● Robot Sensing

● Robot Remote Control

4

Overview

5

Goals

● The goal of this kit is to have a quad-bot platform that can operate on
uneven terrain and even in sand autonomously or by remote control.

● You will learn basic autonomous operations using the ultrasonic range
sensor.

● For remote operations, you will learn how to configure and program the
quad-bot to be controlled by a TV remote control.

 66

Program Overview

● Assemble Kit

● Programming to move

● Learning how to calibrate the motion

● Running the Maze

● Using sensors for collision avoidance

● Running the Maze using collision avoidance

● Remote control

 77

Robot Parts

● The robot is made
up structural parts,
mechanical parts
and electronics.

Gear Motors

Wheels

Rocker Arm

Base Plate

Cross Bar and
Linkages

Electronics Plate

Electronics

 88

Suspension System

● The rocker arm suspension system is made of a few main components
shown below

Rocker Arms

Cross Bar

Linkages

 99

How the Suspension Works

● Two motors are attached to the
ends of the rocker arms. The
center of the rocker arm is
attach to the base plate and
pivots. This lets both wheels
on the same side keep
touching the ground if one
drops in a dip or goes up on
something.

Pivot Point

 1010

How the Suspension Works

● When the one rocker arm
changes its angle, the cross
bar is pushed up or down to
push the other rocker arm in
the opposite direction. This
helps keep the wheels on the
other rocker arm touching the
ground. The linkages attach
the rocker arms to the cross
bar. The cross bar is attached
to the base plate so the base
plate changes its angle half
way between the two rocker
arms.

Pivot Point

Cross Bar
Pivot Point

Linkage

 1111

How the Electronics Works

● The robot electronics controls the
operations. It consists of a battery for
power, a processor board for the
brains, a motor controller to operate
the motors and an ultrasonic sensor
for detecting obstacles.

● The diagram to the right shows how
the electrical components are
interconnected.

● The battery powers everything.

● The processor board is the brains and
controls everything.

● The motor controller provides the
proper interfaces to the motors for the
processor board to control the motors.

● The radio provides a method for
remote control.

BatteryBattery

Processor
Board

Processor
Board

Motor
Controller

Motor
Controller

Left
Motor

Left
Motor

Right
Motor

Right
Motor

Ultra-
Sonic

Ranger

Ultra-
Sonic

Ranger

RadioRadio

 1212

Battery

● The power source for the robot is a battery. The battery is made up of four
AA cells.

● Multiple types of AA cells can be used in the robot. The simplest is alkaline
cells that cannot be recharged and must be discarded when they are used
up. Alkaline cells generate on average 1.5 volts. With four cells, a total of 6
volts is supplied. It will be noticed that over time, the robot will slow down as
the batteries drain.

● Rechargeable cells can be used. There is Ni-Cad and nickle metal hydride
or Ni-MH. These cells have a slightly lower voltage of 1.25 volts. The benefit
is the cells can be recharged and reused many times. Another benefit is
these cells can deliver more current without dropping the voltage unlike
alkaline cells. These types of batteries also maintain the same voltage
longer than Alkaline batteries. This allows the robot to maintain its speed.

● The four cells are connected in series to create a higher voltage.

 1313

Processor Board

● The processor board is the brains of
the robot. It controls everything and
connects to all the sensors. This is the
part that you program to control the
actions of the robot.

● The processor board has multiple
interfaces

● Digital signals

● Servo motor

● Communications

● Analog inputs

● More details will be covered later.

 1414

Motor Controller

● The motor controller is the interface between
the motors and the processor board. It has
circuitry to allow control of the motors and can
handle the high currents required to operate
the motors. The processor board cannot
directly power the motors. The controller is
capable of providing the needed current and
is used as the interface.

● The black square in the picture to the right is
the actual controller. It is an integrated circuit
that contains all the circuitry to translate
signals from the processor board to the
operations of the motors. This controller can
operate two sets of motors.

● More details are covered later.

 1515

The Motors

● The motors are connected to gears that
translate the high speed of the motors to a
slower rotations speed. This also increases
the power of the motor so the wheels can
turn to move the robot.

● The motor is a small DC brush motor shown
at the bottom. It is inserted into the yellow
gear box.

● At the top side of the picture on the opposite
side is a white shaft. The wheel attaches to
the shaft.

● The gears convert the high speed rotation of
the motor and produces a slower rotating
shaft. The torque is also increased at the
shaft.

Motor

Gear box

 1616

Ultrasonic Range Sensor

● The ultrasonic range sensor is
a device that sends a short
burst of sound and listens for
the echo.

● The processor board starts the
measurement by generating a
pulse on the Trig pin.

● It them measures the size of
the pulse on the Echo pin.

● The processor calculates the
distance based on the size of
the pulse width.

● Distance is calculated by
dividing the pulse width
measured in microseconds by
58. Answer is in centimeters.

Connections
5 Volt power

Trigger signal
Echo signal

Ground

 1717

Ultrasonic Range Sensor Operation

● The ultrasonic range sensor operates in a specific sequence.

● It waits for a trigger signal. The trigger is a 10us pulse. Once the trigger is
detected, the sensor generates a short signal at 40 KHz.

● It then waits for an echo and measures the time from sending the short burst
to receiving the echo.

● The sensor then generates a pulse on the echo with a length proportional to
the delay measured.

Trig

Transducer

Receiver

Echo

10us pulse on Trig pin

40 Khz burst signal

Echo from target Pulse on Echo pin
Delay

distance = pulse width (us) / 58

 1818

Base Plate

● The base plate is a fiberglass board with holes arranged in a .5 inch grid
pattern. There are also other holes to mount specific things such as the
suspension systems and the electronics. There are markings on the board
identifying specific functions for the holes.

 1919

Electronics Plate

● This is another fiberglass board that is used to hold the processor board and
solderless bread board.

 2020

Solderless Bread Board

● The solderless bread board allows you to wire up circuits. It will be used to
connect the motor controller to the motors and the processor board. It is also
used for connecting the sensors.

 2121

End of Section

● In this section, you learned the parts of the robot and how they all tie
together.

 2222

Assembly

 2323

Robot Assembly

● The robot assembly starts with the wheels, motors and suspension system.

● Once the suspension system with the motors and wheels installed are
attached to the base plate, the electronics plate is assembled and installed.

 2424

Parts List
● 6 – 3/8” 4-40 screws

● 5 – 1/4” 4-40 screws

● 8 – 1/2” 4-40 screws

● 9 – 1” 4-40 screws

● 2 – 1/4” 6-32 screws

● 2 – 3/8” 8-32 screws

● 2 – 8-32 nylon lock nuts

● 33 – 4-40 Kep nuts

● 7 – 4-40 nylon lock nuts

● 1 – 3/4” standoff

● 4 – 1.5” standoffs

● 3 – small right angle brackets

● 2 – large right angle brackets

● 1 – Fiberglass base plate

● 1 – Suspension System

● Dual H-Bridge Driver Module

● 4 – geared motors with wheels

● 1 – electronics plate

● 1 – processor board

● 1 – solderless bread board

● 10 – jumpers

● 1 – ultrasonic range sensor

● 1 – LED

● 1 – 270 ohm resistor

● 1 – Photoresistor

● 1 – 4.7K ohm resistor

● 1 – Infrared receiver

● 1 – battery holder

● 1 – USB cable

 2525

Tools Needed

● Philips screw driver

● 1/4 inch nut driver

● 11/32 inch nut driver

 2626

Definition of Components

● Screw – A cylindrical device with a raised helical thread running around it
used to join things together.

● Sizes

– 4-40 means it is a #4 size screw with threads that wrap around 40 times per
inch length.

– #4 size is .112 inches diameter

– #6 is .138 inches diameter

– #8 is .164 inches diameter
● Length is how long the threaded part of screw is.

Threaded part

Head

 2727

Definition of Components

● Nut – A device that mates to a screw to secure things together. The sizing is
specified the same way, ie 4-40 or 6-32.

● Kep nut is a nut with an integrated lock washer.

● A nylon lock nut is a nut with a piece of nylon material inserted to keep the
nut from spinning freely. It is used to join things together but let them move
against each other.

Nylon Lock Nut

Kep Nut

 2828

Definition of Components

● Right angle bracket – A device that allows two things to be attached at right
angles to each other.

● Standoff – A device that allows things to be attached to each other at a
distance. Allows stacking. One end can be threaded like a screw and the
other hollowed and threaded to be like a nut. They are made in different
lengths. The rovers uses a 1.5 inch and ¾ inch long standoffs.

Standoff Right Angle Bracket

 2929

Start of the Assembly

● The assembly will start with the wheels and suspension system.

● Below is a picture of the components. One side is shown. The second
side will be assembled as a mirror image.

Rocker Arm

Right Angle Bracket

Lock Nut

8-32 Screw

 3030

Rocker Arm Assembly

● The rocker arm will mount to the robot base plate
using the right angle bracket.

● The 8-32 screw is inserted into the larger hole on
the right angle bracket as shown in the top right.

● Insert the screw with the bracket through the hole in
the center of the rocker arm.

● Insert the lock nut onto the screw. The lock nut has
a nylon insert that makes the nut go on tight. A 11/32
nut driver or pliers will be needed to tighten the nut
onto the screw.

● Tighten the nut all the way. Once tight, turn back the
nut driver a little bit so the rocker arm can move
freely but have little side to side wiggle.

Right Angle
Bracket

8-32 Screw
Inserted
This Side

Nylon Lock Nut

 3131

Rocker Arm Assembly

● Assemble the second rocker arm the opposite
of the first one.

● The two rocker arms should look like the
picture to the right.

 3232

Motor Preparations

● The four motors are to be prepared the same.

● Take two 1 inch screws and insert them from
the white shaft side of the motors.

● Install a nut on each screw and tighten to be
snug. Do not over tighten as that can damage
the plastic structure of the motors.

● Prepare all four motors the same.

● The nuts are installed to offset the motor from
the rocker arm. This allows space for the wire
to be between the motor and the rocker arm.

● The tie wrap is used as a strain relief to
protect the wire from breaking off the motor
connection. This also allows the user to easily
make repairs or replace the wiring if desired.

Nuts

White Wheel Shaft
on Opposite Side

 3333

Motor Installation

● The motors are to be installed on the rocker arms.

● The motors mount on the opposite side of the right angle bracket.

● Secure each motor with two nuts.

● The nuts can be made tight.

Nuts

Right Angle Bracket Opposite Side of Motors

 3434

Mounting Motors

● Install the motors on the second
rocker arm.

● They should look like the mirror of
each other.

● Make sure the bracket is on the
opposite side of the rocker arm from
the motors.

● Make sure the wires from the motors
are router toward the center of the
rocker arms.

 3535

Suspension Linkage Bracket

● Before installing the rocker arms, small
right angle brackets for the suspension
linkage need to be installed.

● Locate the two small right angle
brackets, 4-40 lock nuts, and 3/8 inch 4-
40 screws.

● Insert the screws into the smaller hole of
the right angle brackets. The hole is
threaded so a screw driver is needed.
Screw in the screws as shown in the
lower right.

 3636

Suspension Linkage Bracket

● Mount the brackets onto the back side of the rocker arms as shown.

● Install the 4-40 lock nut on to the screw from the motor side and tighten with
a ¼ inch nut driver.

● Tighten until the nut does not turn any more.

● Loosen the nut one turn. The right angle bracket needs to be loose.

Bracket and screw
inserted opposite side of

motors

 3737

Mounting the Rocker Arms

● The rocker arms are to be mounted
to the base plate. The end of the
rocker arm with the right angle
brackets must be opposite the side
marked Front on the base plate.

● Use the ¼ inch 6-32 screws.

● Insert the screws at the center hole
along the edges marked
“suspension”

● Screw in the right angle bracket of
the rocker arm.

● Before tightening, adjust the rocker
arms so they are parallel with the
edge of the base plate.

● Tighten the screws when the rocker
arms are parallel.

Front Side

6-32 Screws

Brackets This End

 3838

Suspension Linkage

● Now, assemble the cross bar.

● Get a 1 inch 4-40 screw and 4-40 lock nut.

● Insert the screw into the center hole of the cross bar.

● Insert the lock nut and tighten all the way.

● Once tightened, loosen the lock nut about a ½ turn.

● The cross bar should rotate freely on the screw.

Cross Bar

4-40 1 Inch Screw
4-40 Lock Nut

 3939

Cross Bar Mount

● Install a ¾ inch standoff in the center back hole of the base plate. The hole is
marked “Suspension.” Insert the threaded side of the standoff in the hole
and secure with a 4-40 nut with washer from the underside of the base plate.
Do not over tighten as you may break the standoff. It is made of aluminum.
Once the nut is tightened by hand, a quarter turn with the nut driver is
sufficient. Too tight and you can break the standoff.

Standoff

 4040

Cross Bar Mounting Bracket

● Install a small right angle bracket on top of the standoff and secure with a ¼
inch 4-40 screw. Use the larger hole of the right angle bracket.

● Align the bracket as shown.

Right Angle Bracket
Threaded hole facing the back

¼ inch Screw

 4141

Installing Cross Bar

● Screw the cross bar into the right angle bracket secured on the standoff.
Don't screw in all the way. Leave about ¼ inch of threads.

 4242

Installing the Linkages

● Install the two linkages on to the cross bar. Use the 3/8 inch long 4-40
screws and lock nuts.

● Tighten the lock nuts and then loosen by a ½ turn of the nut driver.

3/8 Inch Screw
and Lock Nut

 4343

Linking the Linkages

● Use another 3/8 inch 4-40 screw and 4-40 lock nut and secure the bottom
end of the linkages to the brackets on the rocket arm.

● Tighten the lock nuts and then loosen with a half turn.

Secure Bottom of Linkages

 4444

Testing the Suspension

● Make sure all linkage
connections are loose.
This allows the rocker
arms to move freely
and keep the base
plate stable.

● Lift one motor and
make sure all the other
three motors stay on
the surface. Up two
three inches of height
should be possible.

 4545

Preparing for Mounting Electronics

● Install the threaded side of the four 1.5 inch standoffs in the holes marked
“MNT”.

● Secure the standoffs with the nuts and hand tighten. Use a nut driver to
tighten with no more than a quarter turn. Again, do not over tighten as the
standoff can be broken.

1.5 Inch
Standoffs

 4646

Install the Wheels

● Next, install the wheels on each motor. The motor shaft is keyed with two flat
spots. The motors slide onto the shaft.

 4747

Electronics Base Plate

●Base plate is for mounting
solderless bread board and
processor board
●Solderless bread board is to be
mounted in the marked rectangular
area .

● Use the 1/2 inch screws and
nuts to secure as shown in the
next page.

● Insert the screws from the top
through the solderless bread
board and secure with 4-40 nuts
on the back side.

● Make sure the solderless bread
board is oriented as shown in
the picture on the next page.

Solderless
Bread Board

Holes

 4848

Mount the Solderless Breadboard

● The solderless breadboard is
mounted as shown.

½ inch 4-40 Screws

 4949

Processor Board Mount

●The process board is mounted differently.
● Insert screws from the back side and install a nut on each screw. The nuts will

serve as standoffs for the processor board. Look at the picture what holes are
used.

½ inch Screws
with Nuts

 5050

Electronics Base Plate Assembly

● Place the processor board
on top of the nuts.

● Insert another set of four
nuts to secure the processor
board.

 5151

End of Section

● At this point, the robot structure and wheels are assembled along with the
suspension system.

● The electronics plate is assembled but not installed on the robot at this time.
The next section will focus on learning how the electronics works and how to
use it and add circuits.

 5252

Processor Board
and

Arduino Software

 5353

Overview

● In this section, you will be introduced to the processor board electronics and
the arduino software.

● At the end of this section, you will be able to write software, control things
and sense the environment.

 5454

Processor Specifications

● The processor is shown to the right. It is called
an embedded computer because it is to be
integrated or embedded in something, this case
a robot.

● The processor board has connections that allow
devices to be interfaced such as lights, motors
and sensors.

● There are two types of interfaces that will be
used for the robot, digital interfaces and analog.

● The digital interfaces can be configured as an
input or output.

● As an input, the digital interface can detect
the state of switches or other signals as
being on or off.

● As an output, the digital interface can turn
things on and off such as lights.

● The analog interface is an input only can can
measure voltages.

 5555

Digital Pins

● The digital pins are highlighted in
green.

● There are six digital ports identified as

● D3, D5, D6, D9, D10, D11

● The digital pins can be used to control
things and detect things.

● When the digital pin is set low, the
voltage is set to zero volts.

● When the digital pin is set high, the
voltage is set to 5 volts.

Digital Pins

 5656

Processor Board Pinout

Digital Signal
5 Volts

Ground

● The digital pin configuration is shown to
the right.

● The digital pin is the most inward pin. This
is the digital signal that can be set to high
or low, logic level 1 or 0, 5 volts or 0 volts.

● The next pin is 5 volts. This is power that
can be used. It is available when the power
switch is set to on and an external power
source is connected. The USB port does
not power this 5 volts for the protection of
the host computer.

● The last pin closest to the edge of the
board is the ground. This is the reference
voltage of zero volts.

● The pins are positioned so a servo motor
can be directly plugged in.

● Each pin can be configured as an input or
output.

 5757

Power Selection

● There is a three pin jumper that
lets you select how the
processor board is powered.

● A shorting jumper is required to
make the selection.

● The picture below shows the
shorting jumper connecting EXT
which connects the battery to
power.

● With the shorting block in the
USB position, the USB port
would power the processor
eliminating the need for
batteries.

 5858

Other Features

● The power switch allows the
processor and anything
connected to be turned on and
off when the battery is
disconnected.

● The power selection shorting
jumper also has to be set to
EXT.

● The micro USB port is used for
uploading programs and also
interacting with the processor.

Micro USB Port

Power Switch

 5959

Software

● Now that the processor features have been covered, it is time to learn about
programming it.

● The processor uses the arduino software. This software allows you to write
programs, compile them and upload them to the processor. It also allows
you to interact with the software running on the processor.

● Only one program can be installed and run at a time. The processor is small
and does not have an operating system.

● Embedded computers are designed to perform a specific task and not
operate like a desktop computer or laptop.

● More information about the arduino software can be found at

● www.arduino.cc

 6060

Loading and Configuring Arduino Software

● Copy the arduino-1.6.5 folder from the provided CD to the computer.

● The software can also be downloaded from www.stensat.org/products

● Just find the robot product and the software will be there.

● It can be installed anywhere on the computer.

● Open the folder and double click Arduino.

● The first step is to select the correct processor. Arduino software supports
many different variations.

● In the arduino program select menu “Tools”

● Select “Board”

● Select “Arduino Pro or Pro Mini” at or near the top of the menu.

● Go back and select “Processor” under the “Tools” menu.

● Select “Atmega328 (5V, 16MHz)”

http://www.stensat.org/products

 6161

Configuring Arduino Software

● Plug the processor board into the computer USB port

● Let the operating system find the drivers. (network connection required)

– The driver is also included with arduino software
● In the arduino program select menu “Tools”

● Select “serial Port”

● Select the appropriate COM port.

– If you have a modem built in or existing COM ports, the COM number for the
processor will usually be the highest number.

 6262

Using Arduino

● This is the arduino software.

● The software will let you
enter programs and upload
the code to the processor
board.

● The large white area is
where the code is entered.

● The black area below is
where error messages will
be displayed such as when
there is an error in the code
or the software cannot
upload code for some
reason.

Area for entering code

error message area

 6363

Using Arduino

● The buttons below the menu
have different functions.

● The first called Verify Code
will compile the code and
check for errors but not
upload the code.

● The next button will do the
same as the first but also
upload the code.

● New Program button opens
a new copy of the program
allowing you to start writing
another program.

● Open and Save are for
opening and saving the
code you have written.

Verify
Code

Upload
Code

New
Program

Open
Save

 6464

Using Arduino

● Serial Monitor button opens
a new window allowing you
to interact with the
processor.

● The Serial Monitor window
allows the processor to
display information and you
to send information.

● This will be used quite a bit
in this section.

Serial
Monitor

 6565

Power Selection for Programming

● Before continuing, the power
selection shorting jumper needs
to be moved to the USB side.

● Pull the shorting jumper from the
two pins and insert where it is
marked USB.

 6666

First Program to Test

● Enter the program in the editor on the
right. Do not copy and paste from
the pdf file. It doesn't work. The
compiler is case sensitive so pay
attention to capitalized letters.

● Plug the processor board into the USB
port.

● Click on the upload Code button to
compile and upload the program.

● When the status message at the
bottom of the window says done
uploading, click on the serial monitor
button.

● The Serial Monitor window pops up
with the message being displayed.

● Experiment by changing the message.

● Save your program. Pick a file name.

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.print(“Hello World”);
}

Serial Monitor Window

 6767

What are Functions

● A function is basically a set of
instructions grouped together. A function
is created to perform a specific task.

● The set of instructions for a function are
bounded by the curly brackets as seen
to the right.

● The setup() function is used to
initialize the processor board, variables,
and devices.

● Inside functions, you can call other
functions. Serial.begin() is a
function. It is located somewhere else in
the arduino software.

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.print(“Hello World”);
}

 6868

Other Syntax Requirements

● You will notice that some lines end with
a semi-colon. This is used to identify the
end of an instruction. An instruction can
be an equation or function call.

● When you create a function such as
setup(), you do not need a semi-
colon.

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.print(“Hello World”);
}

 6969

Arduino Programming Basics

● The program is made up of two
functions.

● setup() function is run at reset,
power up or after code upload
only once.

● It is used to initialize all the
needed interfaces and any
parameters.

● loop() function is run after the
setup() function and is
repeatedly run hence the name
loop.

● This program configures the serial
interface to send messages at
9600 bits per second.

● The message is “Hello World” and
is repeatedly displayed.

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.print(“Hello World”);
delay(500);

}

●Serial.begin() is a function that intializes the serial
interface and sets the bit rate.
●Serial.println() sends the specified message over
the serial interface and move the cursor to down one line.
●delay(500) is a command to stop the program for 500
milliseconds.

 7070

What is in the Software

● In the setup() function, it executes
the function Serial.begin(9600);

● This function initializes the UART
which is connected to the USB port to
allow for communications.

● In the loop() function, it executes the
function Serial.print(“Hello
world”);

● This function send the text in quotes to
the UART. This is displayed in the
Serial Monitor window.

● The other function is called delay().

● This function stops the program for a
specified period of time. The unit is in
milliseconds. The code to the write
displays the text every half second.

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.print(“Hello World”);
delay(500);

}

 7171

What is in the Software

● In the Serial Monitor window, you may
have noticed that the text displayed
scrolls to the right. That is just how
Serial.print() works.

● To have the text displayed on its own
line, change the Serial.print() to
Serial.println().

● Serial.println() adds a line feed which
forces the text in the Serial Monitor to
move down one line.

● Make the change, upload the code
and open the Serial Monitor window.

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.println(“Hello World”);
delay(500);

}

 7272

Electronics

● At this point, you should be able to run the arduino software.

● You should know that the software consists of two functions

● setup()

● loop()

● You should know how to initialize the UART and write a program to display
text in the Serial Monitor window.

● You should know how to open the Serial Monitor window.

● Next is learning a little about electronics and how to control things.

 7373

Electrical Circuits

● In this section, you will learn how to connect electrical circuits.

● Electrical circuits is nothing more than connecting wires between devices to
allow the flow of electrons. A lamp plugged into an outlet has two wires to
make an electrical circuit.

 7474

How the Solderless BreadBoard Works

● The solderless bread board allows circuits to be quickly connected.

● Each row of holes that go left to right on the top and bottom are all connected
together.

● The columns of 5 holes are all connected together.

● The lines in the picture show the connections.

● Components and wires are inserted in the holes to make connections.

Back side showing how
holes are connected

 7575

First Circuit

● The first circuit will use a Light Emitting Diode
or LED.

● The LED is a polarized device and only works
in one direction and gives off light when
current flows through it.

● The positive pin on the LED is the longer pin. It
is called the anode. The other end is the
cathode.

● LEDs need the current to be limited otherwise
it will take too much and burn out. A resistor
will be used to limit the current flow through
the LED.

LED Resistors

 7676

First Circuit

● The first circuit will connect the LED straight to 5 volts
so the LED will always be lit when there is power.

● The schematic for the circuit is shown to the right.

● The symbol at label R1 is for the resistor.

● LED1 is next to the symbol for the LED.

● The symbol at the top is the +5V connection. It is called
VCC.

● The GND symbol is for ground. This is the zero volt
reference.

● The LED has an anode and a cathode. The anode is
the long pin.

● When the anode is at a higher voltage than the
cathode, the LED will light.

Anode

Cathode

Resistor

5V

 7777

Resistor Code

Color Name Digit 1 Digit 2 Multiplier Tolerance
Black 0 0 x1

Brown 1 1 x10 1%

Red 2 2 x100 2%

Orange 3 3 x1,000 3%

Yellow 4 4 x10,000 4%

Green 5 5 x100,000

Blue 6 6 x1,000,000

Violet 7 7

Grey 8 8 Gold 5%

White 9 9 Silver 10%

270 ohm

A resistor is a device that is used
to limit the flow of current or
reduce the voltage depending on
how it is used.

Resistor values are determined
by the color bands. The picture
to the left shows how to decipher
the color bands. The first two
bands determine numerical value
and the third band is the
multiplier. A 270 ohm resistor has
a red, violet, and brown band.
The last band indicates the how
far off the value can be.

The bands start at one end of the
resistor.

 7878

Wiring Diagram for LED

Insert the LED into the bread board as
shown. The short lead on the LED should
be on the left side.

Insert the 270 ohm resistor as shown.
One lead should be installed in the same
column as the long lead of the LED. The
other resistor lead is inserted in any other
column.

Take the black jumper wire and insert the
pin into the column of the short LED lead.
Plug the other end into the ground pin as
shown.

Take a red jumper and connect the pin
into the same column as the resistor lead
and the other end into 5V pin as shown.

Plug the processor board into the
computer USB port. The LED should light
up. If not, reinsert the LED in the opposite
orientation.

Long LeadLED Resistor

 7979

LED Connected to Digital Pin 3

Move the red jumper from the 5V pin on
the processor board to the pin marked
D3.

Leave everything else as is.

 8080

Connecting the LED to a Digital Pin

● The LED is not lit at this time
because the digital pin 3 needs to be
programmed to generate a voltage.

● The program to the right will cause
the LED to blink.

● Create a new program and enter the
code.

● Upload the code to the processor
board. Make sure the processor boar
is plugged into the USB port.

● Save the program and use a new file
name such as “blinky”.

void setup()
{

pinMode(3,OUTPUT);
}

void loop()
{

digitalWrite(3,HIGH);
delay(500);
digitalWrite(3,LOW);
delay(500);

}

 8181

Connecting the LED to a Digital Pin

● In the setup() function, digital pin 3 is configured
as an output.

● The function pinMode() configures digital pin 3
to be an output.

● pinMode() takes two arguments separated by
a coma.

– The first argument selects the digital pin.

– The second argument configures the digital
pin as an output.

● in the loop() function, digital pin 3 is set high which
causes the pin to generate 5 volts. The LED turns
on.

● The delay() function halts the program for 500
milliseconds.

● The next digitalwrite() command sets digital
pin 3 to 0 volts turning off the LED.

● Save the program and use a new file name such as
“blinky”.

void setup()
{

pinMode(3,OUTPUT);
}

void loop()
{

digitalWrite(3,HIGH);
delay(500);
digitalWrite(3,LOW);
delay(500);

}

 8282

digitalWrite()

● The digitalWrite() function controls a pin and can set it
high or low.

● The function has two arguments separated by a
coma.

– The first argument selects the digital pin.

– The second argument sets the digital pin.
● When set high, the pin is set to 5 volts.

– In logic terms, a high signal is logic level 1.
● When set low, the pin is set to 0 volts.

– In logic terms, a low signal is logic level 0.
● The function is written as

– digitalWrite(pin,setting)
● setting is HIGH or LOW

– The letters need to be capital.

HIGH = 5 volts = Logic 1
LOW = 0 volts = Logic 0

 8383

Next Example

● The next example will be to detect light intensity.

● Remove the LED and switch circuit.

 8484

Resistor Voltage Divider

● There is a simple circuit that uses two
resistors to divide a voltage from a
higher level to a lower level.

● Voltage dividers can be used to
reduce a voltage that is too high to a
lower voltage that can be handled.

● Another use for this type of circuit is if
one of the resistors is a sensor like
temperature or light sensor where its
resistance changes with what it
measures. This circuit makes it
simple to connect to an analog-to-
digital converter.

R1

R2

Battery

Vout

+V

0V

Vout = +V * R2/(R1+R2)

 8585

Resistor Voltage Divider

● The resistors are connected together
in series.

● The voltage source which is the
battery in the picture to the left is
connected across both resistors.

● The divided voltage is located at the
connection between the two
resistors.

● The voltage can be calculated by the
equation to the left.

● V is the voltage across both
resistors.

● R1 and R2 are the resistors of
some value. They can be any
value to get a variety of different
voltages.

R1

R2

Battery

Vout

+V

0V

Vout = V * R2/(R1+R2)

 8686

Analog-to-Digital Converter

● An analog-to-digital converter or ADC is a device that generates a number
based on the voltage level it measures.

● The ADC on the processor board can measure a voltage range from zero to
5 volts. If a higher voltage needs to be measured, the voltage divider circuit
could be used to reduce the voltage to 5 volts or less.

● The ADC is 10 bits. This gives a numerical range of zero to 1023. It is a
linear relationship to the voltage range of 0 to 5 volts.

● The ADC will generate a value of 0 for 0 volts, 1023 for 5 volts, and 511
for 2.5 volts. The resolution of the ADC is 5/1023 or 0.00489 volts per bit.

● Voltage the ADC measures can be calculated by the equation

V = (ADC value/1023) * 5.0

 8787

Processor Board Pinout

● The analog ports are highlighted in yellow.

● Six analog inputs are available: 0,1,2,3,6,7.

● The analog ports allow the measurement of
voltages from sensors that generate a voltage
based on what is being measured.

● Each analog port has 10 bit resolution and an
input range of 0 to 5 volts. Signals beyond this
range need to be converted to operate within the
0 to 5 volts or damage may occur.

● The processor has an analog to digital converter
or ADC to convert the analog voltage to a digital
value. The ADC has a 10 bit resolution which
converts 0 to 5 volts to a number with a range of
0 to 1023. It is a linear relationship.

● To calculate the voltage

● voltage = ADC/1023.0 * 5.0

8888

Photo Cell

● The photo cell is a light sensitive device that changes
its resistance based on light intensity.

● The photocell can be used in a simple voltage divider
circuit with a 4.7Kohm resistor. The color code is
yellow, violet and red.

● The photo resistor will have a resistance ranging from
20 Mohm in darkness to 5K ohms in bright light.

● Install the photo cell and 4.7 K resistor on the
solderless bread board as shown to the right.

● Connect the free end of the resistor to GND at the
analog connector.

● Connect the free end of the photo cell to 5 volts.

● Connect the resistor and photo cell connection to pin
0 of the analog connector.

● To the right is the schematic.

8989

Photo Cell Software

● The program to the right will get an ADC value
from analog port 0.

● Create a new program and enter the program
to the right.

● To measure the voltage, the function
analogRead(port) is used.

● Six ports are available on the processor board.

● 0,1,2,3,6,7

● Refer to page 5 for the location.

● Once the ADC value is read, it can be
converted to a voltage value. The code to the
right shows the equation which can be used for
all the analog ports.

● The Serial.println function that displays the
volts, includes a numeric argument which
specifies the number of decimal places.

● Save the program. Use a new name like
photocell.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 Serial.println(a);
 volts = (float)a/1023.0 * 5.0;
 Serial.println(volts,2);
 delay(200);
}

9090

Ultrasonic Range Sensor Exercise

● The next exercise will be to learn how to use the ultrasonic range sensor.

● The sensor uses bursts of sound and listens for an echo similar to a bat.

● Remove the photocell circuit.

 9191

Sensing the Environment

● To detect things in the environment for purpose of collision avoidance, an
ultrasonic range sensor will be added to the robot.

● This sensor sends out a burst of audio signal at 40 Khz and detects the
echo.

● The processor needs to measure the time it takes for the echo to return.

● This sensor has four pins

● Ground

● 5 Volt power input

● Trigger

● Echo

9292

Ultrasonic Range Sensor

● Insert the ultrasonic ranger as shown. It
should be mounted close to the center of
the robot. The pins are inserted at the
end of the rows.

● Connect jumpers from the sensor to the
processor

● GND to Analog GND

● ECHO to pin D3

● TRIG to pin D5

● VCC to Analog 5V

● Look on the processor board for the
word ANALOG. The power connections
are done there to isolate the sensor from
the motor power to reduce electrical
noise.

 9393

Ultrasonic Sensor

● The ultrasonic sensor has two
signals, trigger and echo.

● A pulse is sent to the trigger and
then the processor is to time when
the echo returns.

● This requires two digital pins, one
configured as an output and the
other as an input. A new command
that will be used is called
pulseIn(). This measures the
time it takes a pulse to occur in
microseconds. Try the program to
the right.

● The results are in centimeters.

● Create a new program and enter
the code to the right. Save the
program and upload it.

void setup()
{

Serial.begin(9600);
pinMode(3,INPUT);
pinMode(5,OUTPUT);

}

void loop()
{

digitalWrite(5,LOW);
delayMicroseconds(2);
digitalWrite(5,HIGH);
delayMicroseconds(10);
digitalWrite(5,LOW);
long distance = pulseIn(3,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

}

 9494

Making a Function

● To make this useful for other
programs, this program needs to
be turned into a function.

● A function is a subroutine or
chunk of code that can be called
by a name instead of the code
being inserted where ever it is
needed. This function will return a
result.

● The return command specifies
which variable is sent back to the
calling code.

long ultrasonic()
{

digitalWrite(5,LOW);
delayMicroseconds(2);
digitalWrite(5,HIGH);
delayMicroseconds(10);
digitalWrite(5,LOW);
long distance = pulseIn(3,HIGH);

 if(distance == 0) return(1000);
distance = distance/58;
return(distance);

}

The function pulseIn() returns
the number of microseconds.
The result is then divided by 58 to
calculate the distance in
centimeters.

 9595

Using the Function

● The program to the right
shows how the function
is included in the
program and where it is
located relative to the
setup() and loop
functions.

● The function has to be
located before the code
that calls the function.

long ultrasonic()
{

digitalWrite(5,LOW);
delayMicroseconds(2);
digitalWrite(5,HIGH);
delayMicroseconds(10);
digitalWrite(5,LOW);
long distance = pulseIn(3,HIGH);

 if(distance == 0) return(1000);
distance = distance/58;
return(distance);

}

void set()
{
 Serial.begin(9600);
 pinMode(3,INPUT);
 pinMode(5,OUTPUT);
}

void loop()
{
 long a = ultrasonic();
 Serial.println(a);
}

 9696

Infrared Proximity Sensor

● The Infrared proximity sensor is used to measure the distance of an object
from the sensor. The sensor sends out a pulse of light and measures the
light beam angle. The wider the angle, the closer the object is. The narrower
the angle, the further the object is.

Angle

Object

Light Reflection

 9797

Infrared Proximity Sensor

● The output of the sensor
is analog. It generates a
voltage based on
distance. The plot shows
how voltage is correlated
with distance. Notice at
about 15cm, the voltage
starts dropping. This can
confuse the rover and is
the minimum distance
where the sensor is
useful. Any objects within
15 cm will not be
detected properly.

 9898

Infrared Proximity Sensor

● The bracket has two holes. One
is larger than the other.

● Insert the 3/16 inch long screw
into the mounting hole of the
sensor and screw it into the
small hole of the bracket. The
small hole is threaded.

● Align the brackets as shown and
tighten the screws until it is snug.
Do not overtighten as that may
break the plastic.

 9999

Infrared Proximity Sensor

● Attach the sensor to the rover as shown and use a pair of ¼ inch screws
and nuts to secure in place as shown. Insert the screw from below the
plate.

 100100

Infrared Proximity Sensor

● The sensor comes with a long cable and a connector at the end. The
connector has three wires from the cable colored in the order of red, black
and white. This allows the sensor to be plugged directly into the analog port
connector.

● Orient the connector so that the red wire is connected to the pin marked 5V.
The white wire will be aligned to the number 2 which is analog port 2.

IR Proximity Sensor
Connector

 101101

Infrared Proximity Sensor

● Now it is time to write a program
to get a measurement from the
proximity sensor.

● Since the measurement is to be
viewed, the serial interface is
configured.

● Run the program. Use a ruler or
yard stick and record the
measurement at 3 inch intervals.
Start at 3 inches from the sensor
and continue for 24 inches.
Record the values in the table on
the next page.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int a = analogRead(2);
 Serial.println(a,DEC);
 delay(200);
}

 102102

Infrared Proximity Sensor

Distance ADC Value Voltage

3

6

9

12

15

18

21

24

 103103

Infrared Proximity Sensor

● The raw analog converter
measurements were recorded.

● Now let's convert the value to a
voltage.

● Run the program again and
measure the distances again
and record the voltage value in
the table on the previous page.

● Once completed, compare the
values with the plot. You will
need to convert inches to
centimeters. That is done by
multiplying the distance by 2.54.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int a = analogRead(2);
 float v = (float)a/1023.0*5.0;
 Serial.println(v,2);
 delay(200);
}

 104104

Completing The Robot
Motion

 105105

Overview

● At this point, you should know how to use the digital pins and analog ports.

● You had an introduction to conditional programming.

● Next is completing the robot and write software to make the robot move.

● First move the power selection shorting jumper to EXT. This will be needed
for motor control.

● Remember when uploading code to turn the processor power switch the ON
position.

 106106

Mounting Electronics Plate

● Place the electronics plate on top of the standoffs. Make sure the solderless
breadboard faces the front of the rover.

● Secure the electronics plate with four ¼ inch 4-40 screws at the corners.

¼ inch screws

 107107

Installing the Battery Holder

● To install the battery holder,
take a pieces of double sided
tape and stick it to the
underside of the battery
holder.

● Peel the other side and stick it
to the base plate under the
electronics plate.

● Plug the battery wires into the
processor board.

 108108

Motor Control

● Controlling the motors is the same as controlling the LED except two signals
are needed.

● With two signals, you can control the direction of the motors and turn them
on and off.

● The following pages will describe how to hook up the motors.

● A motor driver module is needed. This module allows a computer to control
the motors. The motors require more power than the computer signals can
provide so the module provides the power.

● The motor driver uses what is called an H-Bridge Driver.

 109109

Motor Control

Dual H-Bridge Driver is used to control the motors. It uses four transistors to
control the polarity of the voltage supplied to the motor. The transistors are used
as switches turning on and off. Below shows the H-bridge driver circuit and the
current flows.

Motor Battery

+

-

+

-

 110110

Motor Control

To make the motor turn on one direction, two switches need to be turned on to
let power get to the motor. One switch connects the positive side of the battery to
to one side of the motor and another switch connects the negative side to the
other side of the motor.

Motor Battery

+

-

+

-

+-

 111111

Motor Control

Flip all the switches to the opposite position and the motor turns in reverse.
Notice the polarity signs on the motor switched sides.

Motor Battery

+

-

+

-

+ -

 112112

Motor Controller

● The motor controller is the
interface between the motors
and the processor board. It
has circuitry to allow control
of the motors and can handle
the high currents required to
operate the motors. The
processor board cannot
directly power the motors.
The controller is capable of
providing the needed current
and is used as the interface.

 113113

H-Bridge Driver

● The motor controller module consists of two H-bridge
drivers to control two motors.

● The circuit side is shown at the top right. The square
block in the center contains the two motor drivers.

● The bottom picture shows the signal names next to
the pins.

● Power is supplied at pins GND and VIN.

● Control signals for each motor is A1 IN, A2 IN, and B1
IN, B2 IN.

● The motors connect to the pins marked OUT.

● The other pins are not used.

 114114

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=0

AIN2=0

● This drawing shows how the H-Bridge driver works. Only one is shown.

● There are two signals that control the direction and operation. Control logic
decodes the two signals and turns on the appropriate switches to control the
motor. The drawing shows the condition of AIN1 and AIN2 set to logic zero.

 115115

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=1

AIN2=0

● When AIN1 is set to logic 1, the motor drives in the forward direction.

● You will notice that setting AIN1 = 1, and AIN2=0 turns on two signals that turn
on the two switches.

 116116

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=0

AIN2=1

● When AIN1 is set to logic 1, the motor drives in the reverse direction.

● You will notice that setting AIN1 = 0, and AIN2=1 turns on two signals that turn
on the two switches.

 117117

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=1

AIN2=1

● When you set both AIN1 and AIN2 to logic 1, you get a breaking action.

● This turns on the two bottom switches which shorts the motor connections
together. The inductance created by the motor turning in one direction will
power the motor to turn in the opposite direction. It causes the motor to slow
down quickly.

 118118

Power Selection for Programming

● Before continuing, the power
selection shorting jumper needs to
be moved to the EXT side.

● Pull the shorting jumper from the two
pins and insert where it is marked
EXT.

● Since the USB port cannot provide
enough power to operate the motors
and should not be connected
anyway, the power selection needs
to be switched to external. This will
allow the batteries to power the
processor and the motors.

● Now that external power is selected,
the power switch must be in the ON
position for programming. Don't let
the robot drive off the table during
programming.

 119119

Mount the Motor Controller

● Orient the motor controller
module so that the words
OUT are toward the
processor board. This is so
the wires from the motors
can reach.

● Insert the motor controller
module into the solderless
breadboard as shown. The
rows of pins need to on
either side of the gap down
the center of the board.

 120120

Connect the Motors

● Take the pin connectors from
the motors and connect to the
motor driver.

● With the rover front facing
you, take the left rear motor
wires and plug into OUT A1
and OUT A2. It doesn't matter
which wire is connected
where.

● Do the same for the front left
motor.

● Take the wires from the rear
right motor and connect to
OUT B1 and out B2.

● Do the same for the front right
motor.

● Make sure the wires are
connected in the correct rows.

 121121

Connecting Power

● Connect a jumper wire
from the pin marked
BAT to the signal VIN
on the motor driver
module.

● Connect a jumper wire
from the pin next to BAT
marked GND to GND
on the motor driver
module.

● The next page shows
the jumpers.

 122122

Motor Controller Power Connection

● Use a black wire and connect
the pin to the solderless bread
board where the motor
controller has GND. There are
two. Either will work.

● Connect the other end of the
black wire to GND on GND
below D11 on the processor
board.

● Connect the pin of a red wire to
VIN on the solderless bread
board and the other end to a
single pin next to the power
connector. This pin connects
directly to the battery.

 123123

Wiring The Motor Controller

● Use the jumper wires to
connect the motor
controller.

● Connect A1 IN to D6

● Connect A2 IN to D9

● Connect B1 IN to D10

● Connect B2 IN to D11

● This completes the
connections between the
motor controller and the
processor board.

 124124

Digital Signal Connections

 125125

Testing the Motors

● To operate the motors, A1 or A2 need to be
set high or low.

● Operation is simple if A1 and A2 are set off,
the motors do not operate.

● If A1 is set high and A2 is low, the motors will
turn one direction.

● If A1 is low and A2 is high, the motors will turn
in the opposite direction.

● The same applies for B1 and B2.

● Enter the program on the right to turn the
motors on.

● See which way the wheels are turning and
swap the motor pins if needed to make the
wheels spin forward.

● These pin settings will be used for forward
motion.

void setup()
{

pinMode(6,OUTPUT);
pinMode(9,OUTPUT);
pinMode(10,OUTPUT);
pinMode(11,OUTPUT);

}

void loop()
{

digitalWrite(6,HIGH);
digitalWrite(9,LOW);
digitalWrite(10,HIGH);
digitalWrite(11,LOW);
delay(5000);
digitalWrite(6,LOW);
digitalWrite(10,LOW);
delay(2000);

}

 126126

Direction Control

● The digital pins D6 and D9 control the right motors.

● Setting D6 high and D9 low makes the right wheels spin forward.

● Setting D6 low and D9 high makes the right wheels spin reverse.

● Setting D6 low and D9 low turns off the motors.

● The digital pins D10 and D11 control the left motors.

● Setting D10 high and D11 low makes the left wheels spin forward.

● Setting D10 low and D11 high makes the left wheels spin reverse.

● Setting D10 low and D11 low turns off the motors.

● Making the left motors go forward and the right motors go reverse turns the
robot right.

● Making the left motors go reverse and the right motors go forward turns the
robot left. The next page shows the code for each direction.

 127127

Direction Control Code

Forward Motion
digitalWrite(6,HIGH);
digitalWrite(9,LOW);
digitalWrite(10,HIGH);
digitalWrite(11,LOW);

Reverse Motion
digitalWrite(6,LOW);
digitalWrite(9,HIGH);
digitalWrite(10,LOW);
digitalWrite(11,HIGH);

Stop
digitalWrite(6,LOW);
digitalWrite(9,LOW);
digitalWrite(10,LOW);
digitalWrite(11,LOW);

Right Turn
digitalWrite(6,LOW);
digitalWrite(9,HIGH);
digitalWrite(10,HIGH);
digitalWrite(11,LOW);

Left Turn
digitalWrite(6,HIGH);
digitalWrite(9,LOW);
digitalWrite(10,LOW);
digitalWrite(11,HIGH);

 128128

Creating Functions

● To make programming easier,
functions will be created to specify
the motions of the robot.

● A function is a collection of
instructions that are grouped and
given a name.

● The format is shown to the right
with one of the motions.

● The code in the loop function can
call the forward function
eliminating the need to rewrite the
digitalWrite() functions
every time.

● The motion functions should be
inserted at the top of all programs.

void forward()
{
 digitalWrite(6,HIGH);
 digitalWrite(9,LOW);
 digitalWrite(10,HIGH);
 digitalWrite(11,LOW);
}

 129129

Motion Functions

void forward()
{
 digitalWrite(6,HIGH);
 digitalWrite(9,LOW);
 digitalWrite(10,HIGH);
 digitalWrite(11,LOW);
}

void reverse()
{
 digitalWrite(6,LOW);
 digitalWrite(9,HIGH);
 digitalWrite(10,LOW);
 digitalWrite(11,HIGH);
}
void stop()
{
 digitalWrite(6,LOW);
 digitalWrite(9,LOW);
 digitalWrite(10,LOW);
 digitalWrite(11,LOW);
}

void right()
{
 digitalWrite(6,LOW);
 digitalWrite(9,HIGH);
 digitalWrite(10,HIGH);
 digitalWrite(11,LOW);
}

void left()
{
 digitalWrite(6,HIGH);
 digitalWrite(9,LOW);
 digitalWrite(10,LOW);
 digitalWrite(11,HIGH);
}

 130130

Creating a Separate Function File

● Start a new program with the
Arduino program.

● Click on the down arrow to the right
where circled in red.

● A menu will open. Select “New
Tab”

● Below, it will ask for a name.
Enter 'move'

– Do not put .c on the end of the
name or the program will not
compile properly.

● Click 'OK'

● A new tab is created called
'move'

● You will enter all the movement
functions here.

● Enter the functions listed in the
previous page.

 131131

Driving Around

● Click on the tab to the left of 'move'
tab. Enter the code to the right.

● The code to the right is a start.

● Notice the delay() function is
included after each motion function.
This give the robot time to perform
that motion. The value included in
the delay function is time in
milliseconds.

● Add directions to the program and
change up the delays. Come up with
a complex set of motions. Always
remember to include a delay after
the function to move the robot.

void setup()
{

pinMode(6,OUTPUT);
pinMode(9,OUTPUT);
pinMode(10,OUTPUT);
pinMode(11,OUTPUT);

}

void loop()
{
 forward();
 delay(1000);
 left();
 delay(400);
 reverse();
 delay(1000);
}

 132132

Speed Control

● It may be noticed that the robot may tend
to drift to the left or right. This is due to the
motors not being equally powerful.

● There is a way to attempt to equalize them
by controlling their speed.

● A simple way to control the speed is to
pulse power to the motors. This technique
is called pulse width modulation.

● On the arduino, the analogWrite()
function performs this. It generates a
repeating pulse at about 250 Hz.

● The size of each pulse is the duty cycle.
The higher the duty cycle the more power
the motor gets.

● Adjusting the duty cycle will adjust the
motor speed.

 133133

analogWrite()

● The function analogWrite() function takes two values.

● First is the pin number.

● Second is the duty cycle represented as a value from 0 to 255.

– 0 is 0% duty cycle.

– 255 is 100% duty cycle.

– 127 is 50% duty cycle.
● The function is written as

– analogWrite(pin,duty);

 134134

Controlling Motor Speed

● Enter the program to the right. This program
generates a PWM signal to the motor. Only one
side needs a PWM signal. The other is set to 0
so no PWM signal is present.

● The code sets the PWM signal to 255 which is
100% duty cycle meaning it is on all the time.
This is the same as digitalWrite()
function.

● Run the code and see which direction the robot
drifts.

● Reduce the value for the opposite direction by
10 and try again. Keep adjusting until the robot
drives relatively straight. It won't be perfect.

● The analogWrite() functions can replace
the digitalWrite() functions in the motion
functions.

void setup()
{

pinMode(6,OUTPUT);
pinMode(9,OUTPUT);
pinMode(10,OUTPUT);
pinMode(11,OUTPUT);

}

void loop()
{

analogWrite(6,255);
analogWrite(9,0);
analogWrite(10,255);
analogWrite(11,0);
delay(5000);
analogWrite(6,0);
analogWrite(10,0);
delay(2000);

}

 135135

Calibrating Travel Distance

● Since there is no feedback on the motors
to detect distance or wheel rotation, time
will be used to specify the distance and the
amount of turning.

● Mark off two feet on the floor. Floor tile is
usually 1 foot square.

● Write a program to move forward two feet
and stop. Start with a delay of 1000 ms.

● Adjust the delay until the robot travels two
feet. Keep this value.

● If necessary, adjust the PWM values to
keep the robot as straight as possible.

2 Feet

Start

Stop

 136136

Calibrating Turns

● Now mark on the floor a right angle. If
the floor has tiles, use the corner of a
tile for your right angle.

● Program the robot to turn right and set
the delay to 400 ms and turn off.

● Place the robot on the corner of the
right angle facing the left line.

● See how much the robot turns and
adjust the delay until it turns 90
degrees.

● Verify the value turning left and adjust
if necessary.

Floor
Tile

 137137

New Movement Functions

● The movement functions can be modified using the analogWrite() function.
Go back to the move file and replace all the digitalWrite() functions with
analogWrite().

● The pin numbers stay the same but the second parameter gets changed.
Anywhere there is a 'LOW', replace it with 0. Anywhere there is a 'HIGH',
replace it with the number to set the speed.

● Save the program under a new name so the original is not overwritten.

● Example is below:
void forward()
{
 digitalWrite(6,HIGH);
 digitalWrite(9,LOW);
 digitalWrite(10,HIGH);
 digitalWrite(11,LOW);
}

void forward()
{
 analogWrite(6,250);
 analogWrite(9,0);
 analogWrite(10,248);
 analogWrite(11,0);
}

 138138

Obstacle Course Time

● Now for the fun part. Modify and expand the program to go through the
obstacle course shown below. The large square represent 2 foot grids.

● This attempt through the course is called dead reckoning. Write a program to
go through a sequence of motions to reach the end of the course. Adjust the
delays between each motion so the rover travels to the finish line without
going on off the squares.

● Change the course and make it more complex if you want.

S
ta

rt

Finish

 139139

Robot Sensing

● This section, you learn about using sensors to control the robots
movements.

 140140

Photo Cell

● The photo cell is a light sensitive device
that changes its resistance based on light
intensity.

● The photocell can be used in a simple
voltage divider circuit with another
resistor. The resistor is 4.7Kohms.

● The photo resistor will have a resistance
ranging from 1 Mohm in darkness to 100
ohms in bright light.

● Install the photo cell and 4.7 K resistor on
the solderless bread board. Make sure
the photo cell and resistor are connected.

● Connect the free end of the resistor to
GND at the analog connector.

● Connect the free end of the photo cell to
5 volts.

● Connect the resistor and photo cell
connection to pin 0 of the analog
connector.

 141141

Photo Cell Program

● The program to the right will get an ADC
value from analog port 0.

● Create a new program and enter the code.

● To measure the voltage, the function
analogRead(port) is used.

● Six ports are available on the processor
board.

● 0,1,2,3,6,7

● Refer to page 5 for the location.

● Once the ADC value is read, it can be
converted to a voltage value. The code to
the right shows the equation which can be
used for all the analog ports.

● The Serial.println() function that
displays the volts, includes a numeric
argument which specifies the number of
decimal places.

● Save the program to a new file.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 Serial.println(a);
 volts = (float)a/1023.0 * 5.0;
 Serial.println(volts,2);
 delay(200);
}

 142142

Light Seeking Program

● The photo cell can be used to have the robot chase after a light source.

● Get a flash light and run the program in the previous page. Shine the light on
the photo cell at some distant and observe the ADC value. The value should
increase. Pick a number a little lower. If the value was around 600 then use
500. Adjustments may need to be made.

● The program will have the robot turn in place when the flash light is not
detected and drive straight when enough light is detected.

 143143

Light Seeking Code

● Don't forget to include the movement
functions in a separate tab.

● The code uses a conditional statement
called if.

● If the photocell circuit detect light, the value
from the ADC goes up. If the value is
greater than 500, the robot goes forward
which should be toward the light source.

● If the photocell does not detect enough light,
the robot turns in place. This motion lets the
robot scan around until it finds a strong
enough light source.

● Depending on the ambient light in the room
and the brightness of the flash light, you
may need to adjust the number in the if
statement.

● When the program is loaded see if the robot
will chase the flash light.

void setup()
{
 pinMode(6,OUTPUT);
 pinMode(9,OUTPUT);
 pinMode(10,OUTPUT);
 pinMode(11,OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 int a = readAnalog(0);
 Serial.println(a);
 if(a > 500) forward();
 else left();
}

● Serial.println is included to
allow you to see what the
ambient light level is and
adjust.

 144144

Sensing the Environment

● To detect things in the environment for purpose of collision avoidance, an
ultrasonic range sensor will be added to the robot.

● This sensor sends out a burst of audio signal at 40 Khz and detects the
echo.

● The processor needs to measure the time it takes for the echo to return.

● This sensor has four pins

● Ground

● 5 Volt power input

● Trigger

● Echo

 145145

Mounting the Ultrasonic Ranger

● Insert the ultrasonic ranger as shown. It
should be mounted close to the center of
the robot. The pins are inserted at the end
of the rows.

● Connect jumpers from the sensor to the
processor

● GND to Analog GND

● ECHO to pin D3

● TRIG to pin D5

● VCC to Analog 5V

● Look on the processor board for the word
ANALOG. The power connections are
done there to isolate the sensor from the
motor power to reduce electrical noise.

 146146

Ultrasonic Sensor

● The ultrasonic sensor has two
signals, trigger and echo.

● A pulse is sent to the trigger and
then the processor is to time when
the echo returns.

● This requires two digital pins, one
configured as an output and the
other as an input. A new command
that will be used is called
pulseIn(). This measures the
time it takes a pulse to occur in
microseconds. Try the program to
the right.

● The results are in centimeters.

● Create a new program and enter
the code to the right. Save the
program and upload it.

void setup()
{

Serial.begin(9600);
pinMode(3,INPUT);
pinMode(5,OUTPUT);

}

void loop()
{

digitalWrite(5,LOW);
delayMicroseconds(2);
digitalWrite(5,HIGH);
delayMicroseconds(10);
digitalWrite(5,LOW);
long distance = pulseIn(3,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

}

 147147

Making a Function

● To make this useful for other
programs, this program needs to
be turned into a function.

● A function is a subroutine or
chunk of code that can be called
by a name instead of the code
being inserted where ever it is
needed. This function will return a
result.

● The return command specifies
which variable is sent back to the
calling code.

long ultrasonic()
{

digitalWrite(5,LOW);
delayMicroseconds(2);
digitalWrite(5,HIGH);
delayMicroseconds(10);
digitalWrite(5,LOW);
long distance = pulseIn(3,HIGH);

 if(distance == 0) return(1000);
distance = distance/58;
return(distance);

}

The function pulseIn() returns
the number of microseconds.
The result is then divided by 58 to
calculate the distance in
centimeters.

 148148

Conditional Programming

● Now it is time to use the ultrasonic sensor
to do collision avoidance.

● The 'if' command will be used to test if the
robot will collide with an object.

● The format for the if statement is shown to
the right.

● Multiple statements can be inserted
between the brackets and will be
executed if the condition is true.

● To test for equals, use '=='

● else allows two sets of codes to be
executed depending on the condition.

if(a < c) {
execute code here

}

if(a == c) {
execute this code

}

if(a > c) {
execute this code

} else {
otherwise execute this code

}

 149149

Collision Avoidance Program

● The program on the next page will use the code used to control the
motors, the ultrasonic function, and the conditional command.

● Put together, the program will keep the robot from bumping into anything.

● Enter the code on the next page. The code should be written in a single
file. The code is split on the next page since it wouldn't fit in a single
column.

● Test it and see if you need to tweak the timing for going reverse and
turning.

● Don't forget to include the movement functions in a separate tab.

● Save the program and then upload it.

● Change the code to turn a different direction.

 150150

Collision Avoidance Program

long ultrasonic()
{

digitalWrite(5,LOW);
delayMicroseconds(2);
digitalWrite(5,HIGH);
delayMicroseconds(10);
digitalWrite(5,LOW);
long distance = pulseIn(3,HIGH);

 if(distance == 0)
return(1000);

distance = distance/58;
return(distance);

}

void setup()
{

pinMode(3,INPUT);
pinMode(5,OUTPUT);
pinMode(6,OUTPUT);
pinMode(9,OUTPUT);
pinMode(10,OUTPUT);
pinMode(11,OUTPUT);

}

void loop()
{
long distance;

forward();
distance = ultrasonic();
if(distance < 10) {

reverse();
delay(1000);
left();
delay(700);
stop();

}
}

 151151

Obstacle Course Time

● Now for the fun part. Modify and expand the program to go through the
obstacle course shown below. The large square represent 2 foot grids. The
red rectangles represent a barrier that can be detected with the ultrasonic
range sensor. Set up some barriers out of any solid material. Card board
boxes, poster paper, or other large materials will work.

● Use the ultrasonic range sensor to avoid crashing into the barriers and turns
the right direction every time a barrier is detected.

● Hint, use the collision avoidance program and expand it so that it will
complete the maze. This requires the rover to back up and turn in specific
directions at specific points of the maze.

S
ta

rt

Finish

 152152

IR Proximity Sensor for Collision Avoidance

● The same collision avoidance
will be attempted with the
infrared proximity sensor.
Review how the proximity
sensor was used.

 153153

Installing the Infrared Proximity Sensor

● The bracket has two holes. One
is larger than the other.

● Insert the 3/16 inch long screw
into the mounting hole of the
sensor and screw it into the
small hole of the bracket. The
small hole is threaded.

● Align the brackets as shown and
tighten the screws until it is snug.
Do not overtighten as that may
break the plastic.

 154154

Installing the Infrared Proximity Sensor

● Attach the sensor to the rover as shown and use a pair of ¼ inch screws
and nuts to secure in place as shown. Insert the screw from below the
plate.

 155155

Installing the Infrared Proximity Sensor

● The sensor comes with a long cable and a connector at the end. The
connector has three wires from the cable colored in the order of red, black
and white. This allows the sensor to be plugged directly into the analog port
connector.

● Orient the connector so that the red wire is connected to the pin marked 5V.
The white wire will be aligned to the number 2 which is analog port 2.

IR Proximity Sensor
Connector

 156156

IR Proximity Sensor for Collision Avoidance

● Write a program to perform the
same collision avoidance
operation.

● Replace the ultrasonic sensor
code with the analogRead()
for the infrared proximity
sensor.

● Review the table on distance
and measured value. Pick a
distance for the rover to stop
and review and insert the value
in place of the underlined
number.

● Attempt the same obstacle
course with the infrared sensor.

void setup()
{

pinMode(3,INPUT);
pinMode(5,OUTPUT);
pinMode(6,OUTPUT);
pinMode(9,OUTPUT);
pinMode(10,OUTPUT);
pinMode(11,OUTPUT);

}

void loop()
{
int distance;

forward();
distance = analogRead(2);
if(distance < 100) {

reverse();
delay(1000);
left();
delay(700);
stop();

}
}

 157157

Remote Control

 158158

Infrared Remote Control

● Find a TV remote. Chances are very good that it uses an infrared LED to
send signals to control the TV. The remote will be used to control the robot.

● First, the control codes need to be captured. The first program will do that.

● There are two ways remotes work. One way is for the remote to resend the
code for the key pressed repeatedly until the key is released. The second is
to send the code for the key pressed then send a code that equals all '1's.

● The next program will be used to capture the codes to be inserted into the
robot program. The program decodes the key code and displays it in
hexidecimal.

● First, remove the Ultrasonic sensor from the solderless bread board.

 159159

How IR Remotes Work

● The IR remote uses an LED that operates in the infrared range, specifically
990 nanometers. The emitter pulses the infrared light at 38 KHz, 38,000
times per second. The pulsed signal is then turned on and off at a lower rate
so that bursts of 38 KHz light is transmitted. The LED is modulated to help
the receiver detect the signal from other light in the room including sun light.

● The turning on and off of the modulated light is done in different sequences
to generate different codes.

26 uS

Infrared
Emitter 1 0 1 1 10 0 0

 160160

IR Receiver

● The infrared Receiver is a device that includes an IR detector and a circuit to
detect IR signals modulated at 38 Khz.

● A photo diode is the sensor and connects to an input circuit that converts the
current to a voltage.

● The signal goes through a bandpass filter. This is a filter that only lets a
signal of a specific frequency to pass. All other signals cannot pass.

● The filtered signal is then sent to a demodulator that converts the modulated
signal to the codes being sent.

Input Bandpass
Filter

Demo-
dulator

Signal

Photo
Diode

 161161

IR Receiver

● Add the IR receiver to the
solderless breadboard. Note the
orientation as the connections
need to be made in a specific order
or the receiver may be damaged.

● Look at the picture to the right of
the IR receiver. The leads on the
IR receiver are numbered in a
specific orientation.

● When mounting on the solderless
bread board, have the rounded
side face forward.

Pin 1 – OUT
Pin 2 – 5V
Pin 3 - GND

 162162

Wiring the IR Sensor

● Connect pin 3 of the IR
sensor to GND under
Digital pin D3.

● Connect pin 2 of the IR
sensor to 5V under Digital
pin D3.

● Connect pin 1 of the IR
sensor to Digital pin D3.

● Be careful to not connect
power backwards or the the
IR sensor will be damaged.

1 2 3

 163163

IR Receiver Connections

● Connect pin 3 of the IR
sensor to GND under
Digital pin D3.

● Conenct pin 2 of the IR
sensor to 5V under Digital
pin D3.

● Connect pin 1 of the IR
sensor to Digital pin D3.

 164164

Remote Code Capture Program

● In the Arduino software, select File then Examples. Look for Irremote and
select IRrecvDemo.

● When the program is loaded, look for the line 'int RECV_PIN = 11;' and
change the pin number to 3.

● Upload the program into the robot.

● Open the Serial Monitor.

● Now point the remote control at the IR receiver and press a button.

● Numbers should be displayed in the serial monitor.

● Remotes operate in one of two ways. One type of remote keeps repeating
the code for the button pressed as long as the button is pressed. The other
type will send the code once and then all logic level 1 after that.

● The codes are generally 32-bit numbers. The program displays the numbers
in hexidecimal. There should be 8 digits. There are some remotes that will
send smaller codes.

 165165

Capturing the Remote Codes

● With the program running, press
the button for forward and record
the result.

● Do the same for left, right, and
reverse.

Forward _______________

Left _______________

Right _______________

Reverse _______________

 166166

Robot Control Program

● The next program will receive the IR commands and active the motors for
the selected operation.

● The sequence is to receive a key code, compare it, then execute the proper
code then go back and wait for the key code to be sent again.

 167167

IR Remote Code

● Start a new program.

● Under the 'Sketch' menu, select the
'IRremote' library.

● This will insert an include file statement
at the top of the program. Two are
inserted. Delete the one not shown to
the right.

● Enter the program to the right and next
page.

● Replace the underlined words with the
appropriate code. Since the numbers
are in hexidecimal, insert 0x in front of
the number.

● Make sure the move tab is included.
Retype it in if it is not.

#include <IRremote.h>

unsigned long tt;
IRrecv irrecv(3);
decode_results results;

void setup()
{
 irrecv.enableIRIn();
 pinMode(6,OUTPUT);
 pinMode(9,OUTPUT);
 pinMode(10,OUTPUT);
 pinMode(11,OUTPUT);
}

 168168

IR Remote Code (contintued)

void loop()
{
 if(irrecv.decode(&results)) {
 if(results.value == FORWARD) {
 forward();
 } else if(results.value == LEFT) {
 left();
 } else if(results.value == RIGHT) {
 right();
 } else if(results.value == REVERSE) {
 reverse();
 }
 tt = 0;
 irrecv.resume();
 }
 tt++;
 if(tt > 3400) { // increase value if robot stutters
 stop();
 tt = 0;
 }
}

 169169

Running the Robot with the Remote

● Make sure the code includes the movement functions from earlier in the
lesson material. All those functions should be placed just above the setup()
function.

● Now that the code is complete, test the program and verify the robot moves
as expected.

● To get better angle, bend the IR receiver so the rounded side points upward.
This will allow you to use the remote from wider angles.

 170170

Driving on Sand

● The suspension system allows the robot
to operate over a variety of terrain.

● Sand is another surface that is a
challenge to robots. Try driving the robot
in sand and turn. Build a sand mound
and try driving up the slope.

● Get a bunch of 4 inch tie wraps.

● To give the wheels more grip, secure tie
wraps across the tires as shown. Loop
the tie wraps between the spokes. 10 tie
wraps per wheel is sufficient.

● Try driving through the sand again and
see the difference.

● If the robot doesn't move well, it may be
that the motors need more power. The
motors are a bit weak. Adding two more
AA cells in series will provide plenty of
power.

 171171

Conclusion

● At this point, you should have a functioning rover that can drive through
sand, gravel, and dirt. It can be controlled with a TV remote control and can
be configured for collision avoidance.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 152
	Slide 153
	Slide 154
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171

