Aim:

To write a C Program for addition of two numbers.

Algorithm:

STEP 1: Start the program.
STEP 2: Read the values of ' a ' \&'b'.
STEP 3: Compute the sum of the entered numbers ' a ', ' b ', $\mathrm{c}=\mathrm{a}+\mathrm{b}$.
STEP 4: Print the value of ' c '.
STEP 5: Stop the program.

Pseudo code:

BEGIN
READ 'a'\&'b'
COMPUTE $c=a+b$
WRITE 'c'
END

Flow chart:

Thus the addition of two numbers program was successfully executed and verified.

4(b) SWAPING OF TWO NUMBERS

Aim:
To write a C Program for swapping of two numbers by using arithmetic operator.

Algorithm

Step 1: Start the program.
Step 2: Declare the variable
Step 3: swap the number using two variable.
Step 4: Print the Results.
Step 5: Stop the program.

Pseudocode:

BEGIN
READ
CALCULATE $i=i+j$
$j=i-j$
$i=i-j$
WRITE i, j
STOP

Flowchart:

Result

Thus the swapping of two numbers program was successfully executed and verified.

4(c) TEMPERATURE CONVERSION

Aim:

To write a C Program for Celsius to Fahrenheit conversion.

Algorithm

STEP 1: Start the program.
STEP 2:Read the value of "Celsius "
STEP 3: Conversion of Celsius to Fahrenheit by using the formula

$$
\mathrm{F}=\left(1.8^{*} \text { Celsius }\right)+32
$$

STEP 4:Print the value of ' F '
STEP 5: Stop the program.
Pseudo code:
BEGIN
READ ' c '
COMPUTE F= (1.8*Celsius) +32
WRITE 'F'
END

Flow chart:

Result:

Thus the Temperature conversion program was successfully executed and verified.

Aim:

To write a C program for determine roots of a real type quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$.

Algorithm:

Step 1 : Start the program.
Step 2 : Read co-efficient values of a, b and c
Step 3: Compute roots r1 = (-b + sqrt(d)) / $\left.2.0^{*} a\right)$;
r2 = (-b - sqrt(d)) / (2.0* a);

Step 4 : Print r1, r2
Step 5 : Stop the program.

Pseudo code:
BEGIN
READ a,b,c
COMPUTE roots $r 1=(-b+\operatorname{sqrt}(d)) /\left(2.0^{*} a\right)$;

$$
r 2=(-b-\operatorname{sqrt}(d)) /\left(2.0^{*} a\right)
$$

WRITE r1,r2
TERMINATE

Flow chart:

Result:

Thus the roots of a quadratic equation were obtained using math library functions.

Aim:

To write a C program for compute area and circumference of a circle.

Algorithm:

Step 1 : Start the program
Step 2 : Define constant pi= 3.14
Step 3 : Read the value of radius
Step 4 : Calculate area using formulae pi*radius ${ }^{2}$
Step 5 : Calculate circumference using formulae 2^{*} pi*radius
Step 6 : Print area and circumference
Step 7 : Stop the program

Pseudo code:

BEGIN
READ r
COMPUTE
Area $=$ pi* ${ }^{*}$ radius ${ }^{2}$
Circumference $=2 *{ }^{*}{ }^{*}$ radius
WRITE area, circumference
END

Flowchart:

Result:
Thus the area and circumference of a circle program was successfully executed and verified.

4(f) LEAP YEAR OR NOT

Aim:
To write a C program for find whether a year is a Leap Year or not.

Algorithm

Step1: Start the program
Step2: Declare year as int data type
Step3: Read the year
Step4: Check if (ye\%4==0)
STEP4.1: Print "It is a leap year"
Step5: Else
Step5.1: Print "It is not a leap year"
Step6: stop the program.

Pseudo code

Set initial year.
READ the year.
IF (ye\%4 == 0) THEN
WRITE the year is leap year.
ELSE
WRITE the year is not a leap year.
ENDIF
END

Flow Chart

Thus the leap year program was successfully executed and verified.

4(g) ODD OR EVEN

Aim

To write a C program to find whether the given number is even or odd.

Algorithm

Step-1: Start the program.
Step-2: Read num
Step-3: If the number is divided by 2 , print the given number is even .
Step-4: If the number is not divided by 2, print the given number is odd.
Step-5: Stop the program.

Pseudo code

BEGIN
READ num
IF (num\%2==0)
WRITE even
ELSE
WRITE odd
ENDIF
END

Flowchart

Result

Thus the odd or even program was successfully executed and verified.

Aim:

To write a C program to find the biggest of two numbers using ternary operator.

Algorithm:

Step 1 : Start the program
Step 2 : Read the input value of X, Y
Step 3:Compute biggest among two numbers X, Y and print it
Step 4 : Stop the program

Pseudo code:

BEGIN
READ X,Y
COMPUTE big=(X>Y)?X:Y;
WRITE BIG
STOP

FLOWCHART:

5(a) GREATEST OF TWO NUMBERS BY USING IF STATEMENT

Aim:

To write a C Program to find greatest among two numbers using if else statement.

Algorithm:

STEP 1: Start the program
STEP 2: Read the values of ' a ' \&'b'
STEP 3: Compare the greatest among the two values
STEP 4: Print the greatest number
STEP 5: Stop the program

Result

Thus the greatest of two number program was successfully executed and verified.

5(b) GREATEST AMONG THREE NUMBERS USING NESTED IF STATEMENT

Aim :

To write a C Program to find the greatest among three numbers.

Algorithm:

STEP 1:Start the program
STEP 2:Read the values of ' a ', ' b ' \&' c '.
STEP 3:Compare the greatest among the three values
STEP 4:Print the greatest number
STEP 5:Stop the program

Thus the greatest among three numbers program was successfully executed and verified.

5(C) CALCULATOR USING SWITCH CASE

Aim:
To write C Program for simple calculator using switch case statement.

Algorithm:

STEP 1: Start the program
STEP 2: Read the values of ' a ' $\&$ ' b^{\prime}
STEP 3: Read the choice from 1 to 4
STEP 4: If the choiceis 1 means then go to perform addition and print result else STEP 5: If the choiceis 2 means then go to perform subtraction and print result else
STEP 6: If the choiceis 3 means then go to perform multiplication and print result else
STEP 7: If the choiceis 4 means then go to perform division and print result else
STEP 8: go to default statement
STEP 5: Stop the program

Result

Thus the calculator program was successfully executed and verified.

5(d) FIND THE SUM OF DIGITS

Aim:

To write a C Program to find the sum of digits of given number.

Algorithm:

STEP 1: Start the program.
STEP 2:Read the value of "r"
STEP 3: Compute the entered digits WHILE ($n>0$)
$x=n \% 10$
$S=s+x$
$N=n / 10$

STEP 4:Print the value of ' s '
STEP 5: Stop the program.

Result

Thus the sum of digits program was successfully executed and verified.

5(e) FINDING WHETHER A GIVEN NUMBER IS ARMSTRONG OR NOT

Aim:

To write a C program to find the given number is Armstrong or not.

Algorithm:

STEP 1: Start the program.
STEP 2: Declare n and sum
STEP 3: Read the value of n
STEP 4: till the a is not equal to 0 the following step is executed
STEP 5:Compute the following

$$
\begin{aligned}
& a=n \% 10 \\
& b=b+a^{*} a^{*} a \\
& n=n / 10
\end{aligned}
$$

STEP 6: Print the answer whether it is an Armstrong or not STEP 7: Stop the program.

Result

Thus the Armstrong or not program was successfully executed and verified.

Aim:

To write C Program to find whether a given number is palindrome or not.

Algorithm:

STEP 1: Start the program.
STEP 2:Declare n,a,temp and rev
STEP 3:Read the value of n
STEP 4: Compute the following
$a=n \% 10$
$\mathrm{n}=\mathrm{n} / 10$
rev=rev*10+a
STEP 5: If(temp=rev) follow step 6
STEP 6: Print the answer whether it is a palindrome or not
STEP 7: Stop the program.

Result
Thus the given number is palindrome or not program is successfully executed and verified.

5(g) PRIME NUMBER
Aim:
To write a C program whether the given number is prime or not

Algorithm:

Step 1:Start the program

Step 2: Read the values of the n
Step 3:check the IF statement if(n\%i==0)
Step 4:The looping statement is executed[for($\mathrm{i}=2 ; \mathrm{i}<=\mathrm{n} / 2 ; \mathrm{i}+\mathrm{+})$]
Step 5:print prime or not.
Step 6: Stop the program.

Result

Thus the given number is prime or not program was successfully executed and verified.

Aim

To write a C program to print the Fibonacci series.

Algorithm

1. Read the value r.
2. Assign $a=0, b=1$ and $c=0$.
3. Print the value of a and b.
4. Compute $\mathrm{c}=\mathrm{a}+\mathrm{b}$.
5. Check the condition (c<=r),goto step 6.Otherwise step 7.
6. Print the value of c.
7. Assign $a=b$ and $b=c$.
8. Repeat the steps 4 to 7until (c<=r)

Result

Thus the Fibonacci series program was successfully executed and verified.

5(i) FACTORIAL

Aim:

To write a C program for finding the factorial of given number.

Algorithm:

Step 1: Start the program
Step 2: Read the n value
Step 3: Execute the for looping until the entered n
Step 4:compute fact=fact*i
Step 5:Print the factorial for the entered number
Step 6: Stop the program

Result

Thus the factorial program was successfully executed and verified.

Aim:

To write the C program for the number divisible by 2 but not divisible by 3 and 5 upto 100

Algorithm:

Step 1:Start the program
Step 2:Use the for ($a=0 ; a<100 ; a++$)
Step 3:Check the if condition
($\mathrm{a} \% 2==0 \& \& a \% 3!=0 \& \& a \% 5!=0$)
Step 4: print the number divisible by 2
Step 5: Stop the program.

Thus the program was successfully executed and verified.

Aim:

To write a C program for sorting of elements by using one dimensional array

Algorithm

Step 1.start the program
STEP2. Read the number of values (n).
STEP 3. Initialize the iterative value (i) to 0 .
STEP 4. Repeat the steps 4 to 5 until the number of values minus $1(n-1)$.
STEP 5. Read the elements in an array a[i].
STEP 6. Increment the iterative value.
STEP 7. Initialize the iterative value (i) to 0 .
STEP 8. Repeat the steps 8 to 12 until the number of values minus $1(n-1)$.
STEP 9. Assign the iterative value j as $\mathrm{i}+1$.
STEP 10. Repeat the steps 10-11 until iterative value (j) less than no. of values(n).
STEP 11.If a[i]>a[j] then
Swap the values using temporary variable.
STEP 12.Increment the iterative value (j)
STEP 13.Increment the iterative value (i)
STEP 14. Display the array elements in the ascending and descending order Step 15.stop the program.

Result

Thus the sorting program was successfully executed and verified.

6(b) SEARCHING

Aim:

To write a C program for searching the element by using one dimensional array

Algorithm:

Start the program

1. Read the number of values (n).
2. Initialize the iterative variablei=0.
3. Repeat the steps $4 \& 5$ until no. of values minus $1(n-1)$.
4. Read the elements in an array.
5.Increment the iterative variable.
5. Assign the first element of an array to the small and big variables.
6. Repeat the steps 8 to 10 , until no of values minus 1 ($n-1$).
8.If the array element is greater than big element, Assign the element to the bigvariable.

Otherwise go to step 10 .
9.If the array element is smaller than small element, Assign the element to the small variable.

Otherwise go to step 10 .
10. Increment the iterative variable.
11. Display the biggest element in the list.
12. Display the smallest element in the list.

Stop the program

Result

Thus the searching program was successfully executed and verified.

6(c). MATRIX ADDITION

Aim:

To write a C program for matrix addition by using two dimensional array

Algorithm:

Start the program

1. Read the total number of rows \&columns for the matrix
2. Read the elements for A Matrix and store it in to two dimensional arrays.
3. Read the elements for B Matrix and store it into other two dimensional array.
4. Add the elements of 2 matrixes namely A\&B through the nested for Loops and store the result into a resultant 2 -dimesional array C .
5. Display the result

Stop the program.

Thus the matrix addition program was successfully executed and verified.

6(d) MATRIX MULTIPLICATION

Aim:

To write a C program for matrix multiplication by using two dimensional array

Algorithm:

Start the program

1. Read the total number of rows \&columns for the matrix
2. Read the elements for A Matrix and store it into two dimensional arrays.
3. Read the elements for B Matrix and store it into other two dimensional array.
4. Multiply the elements of 2 matrixes namely A \& B through the nested for Loops and store the result into a resultant 2-dimesional array C .
5. Display the result

Stop the program

Result

Thus the matrix multiplication program was successfully executed and verified.

6(e) MATRIX TRANSPOSE

Aim:

To write C program for Transpose of matrix by using two dimensional array

Algorithm:

Start the program

1. Read the total number of rows \&columns for the matrix
2. Read the elements for A Matrix and store it into two dimensional arrays.
3. Transpose of matrix A is computed
4. display the result.

Stop the program.

Result

Thus the transpose of matrix program was successfully executed and verified.

7(A) STRING CONCATENATION

Aim:

To write C program for string concatenation using string function.

Algorithm:

Start the program

1. Read two Strings (str1,str2).
2. Copy each character from string1 to another string(str3) until the null character of string1 is reached.
3. Continuously copy each character from string 2 to string(str3)until the null characterof string 2 is reached.
4. Add the null character to the end of the String(str3).
5. Display the concatenated String(str3).

Stop the program.

Thus the concatenation program was successfully executed and verified.

7(b) STRING PALINDROME USING STRING FUNCTION

Aim:

To write a C program for string palindrome using string function

Algorithm:

STEP1: Start the program
STEP2: Read the character input of string1 variable
STEP3: Assign the value of string1 in to string2 variable
STEP4: find the reverse of string2 using string function strrev()
STEP5: compare the string1 and string2 if return value true means print palindrome
STEP6: otherwise print not palindrome
STEP7: stop the program

Thus the string palindrome program was successfully executed and verified

8(a) SWAPING OF TWO NUMBERS USING CALL BY VALUE

Aim:

To write C Program for swapping of two numbers using call by value function

Algorithm:

STEP1: Start the program
STEP2: Read the input value ' a ' \&'b'
STEP3: Call function swap (a,b)
STEP4: print the value of ' a ' and ' b '
STEP5: stop the program
STEP1: function swap start
STEP2: swap two numbers using temporary variable
STEP3: return swap value to main function

Result
Thus the swapping program was successfully executed and verified

8(b) SWAPING OF TWO NUMBERS USING CALL BY REFERENCE

Aim:

To write a C Program for swapping of two numbers using call by reference

Algorithm:

STEP1: Start the program
STEP2: Read the input value ' a ' \&'b'
STEP3: Call function $\operatorname{swap}(\& a, \& b)$
STEP4: print the value of ' a ' and ' b '
STEP5: stop the program

STEP1: function swap start
STEP2: swap two numbers using temporary variable and pointer variable
STEP3: return swap value to main function

Thus the swapping program was successfully executed and verified

9. FACTORIAL USING RECURSION

Aim:

To write a C program to calculate the factorial of the given number using recursive functions.

Algorithm:

Start the program

1. Read the number (a)
2. Call the function rec() by passing the number(a)
3. If the number is 0 Return the factorial value as 1 .
4. Else Compute the factorial value by recursively calling rec() function by decrementing the number(x).
5. Return the factorial value(f).
6. Display the factorial value.

Stop the program.

Flow chart:

Result

Thus the factorial program was successfully executed and verified

10(a) EMPLOYEMENT PAYROLL USING STRUCTURE

Aim:

To write a C program to print employee details using structure

Algorithm:

STEP1: start the program
STEP2: Define structure employee with the following members
char name[15];
int empid;
float bsal;
float nsal;
float gross;
STEP3: Read employee details of name, id and basic salary
STEP4: Calculate
hra=((10*emp.bsal)/100);
da=((35*emp.bsal)/100);
tax=((15*emp.bsal)/100);
gross=bsal+hra+da;
net=gross-tax;
STEP5: Display the employee details with hra, da, tax, gross and net salary
STEP6: stop the program

RESULT:
Thus the employee payroll program was successfully executed and verified

10(b) STUDENT MARKLIST USING UNION

Aim:
To write a C program to print student grade using union.

Algorithm:

Step 1: start the program.
Step 2: define union student with the following members
char name[20];
char regno[12];
int avg;
char grade;
step 3: read the student details and marks
step 4: calculate average and grade
step 5: display the student details with average and grade.
Step 6: stop the program.

Result:
Thus the student mark list program is successfully executed and verified.

