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Abstract

Stochastic programming with step decision rules, SPSDR, is an attempt to over-
come the curse of computational complexity of multistage stochastic programming
problems. SPSDR combines several techniques. The first idea is to work with in-
dependent experts. Each expert is confronted with a sample of scenarios drawn at
random from the original stochastic process. The second idea is to have each expert
work with step decision rules. The optimal decision rules of the individual experts
are then averaged to form the final decision rule. The final solution is tested on a
very large sample of scenarios. SPSDR is then tested against two alternative meth-
ods: regular stochastic programming on a problem with 3 stages and 2 recourses;
robust optimization with affinely adjustable recourses on a 12-stage model. The per-
formance of the new method turns out to be competitive on those examples, while
it permits a tighter control on computational complexity than standard stochastic
programming.
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1 Introduction

Many real-life problems are concerned with sequential decision making under uncertainty.
Unfortunately, those problems are difficult. The authors of [22] “. . . argue that multi-
stage problems, even linear [. . . ] with complete recourse, generically are computationally
intractable already when medium-accuracy solutions are sought.” Indeed, the complex-
ity of computing expectations with respect to a multidimensional stochastic process in
discrete time grows exponentially with the dimensionality of the process and the number
of stages. The same authors add the reassuring statement: “Of course, this does not
mean that some specific cases of multi-stage stochastic programming problems cannot be
solved efficiently. Note that this claim is rather a belief than a statement which we can
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rigorously prove.” Other authors [9] argue that multistage stochastic programming is at
least as difficult as hard combinatorial problems. In view of the practical importance of
the problems to solve, it is not absurd to look for computationally tractable heuristics.
Because a heuristic approach does not produce solutions that are provably optimal, one
has to resort to empirical analysis to test the performance of the heuristic.

Stochastic programming with step decision rules (SPSDR) is one such heuristic. It
aims to find efficient contingent strategies for convex stochastic control problems, with
linear dynamic constraints and unconstrained state variables. The SPSDR scheme is as
follows. At each stage t, one constructs a partition of the set of scenarios based on past
history. The decision rule consists in assigning to a decision variable the same value for all
scenarios belonging to the same element of the partition. In general, one associate with a
scenario at stage t a multi-dimensional random variable representing past history. In this
setting, a decision rule as described above can be viewed as a step function on the space
of outcomes of the variable. Hence the name, step decision rule, SDR in short. A decision
rule based on the sole past history meets the non-anticipativity requirement, even though
the partition at stage t + 1 need not be a refinement of stage t. This property gives more
freedom in the design of the partitions. In particular, the number of contingent variables
in successive stages is not bound to grow in a multiplicative manner as it does on the
standard SP approach. This gives a way to get around the issue of exponential growth of
the event tree.

The main feature of SPSDR is that it applies to any given discrete realizations, or
scenarios, of the stochastic process. No preprocessing such as aggregation and scenario
reduction [15] is required. SPSDR works with the original stochastic information, but
replaces the original decision process by a more restrictive one. Thus, instead of approx-
imating the stochastic process by a computationally tractable event tree as in [15], we
restrict the original decision process to a sub-optimal but manageable one.

The choice of efficient partitions is a critical issue. The first concern is the number
νt of elements in the partition at stage t. Since a decision rule stipulates that the same
decision is to be applied at all sub-scenarios that hit the same element of the partition,
one sees that the partition reflects the knowledge or ignorance at t in the decision process
induced by the decision rule. The minimal value νt = 1 for all t means total ignorance:
the decision to be taken at t is unique, independent of the stochastic process realizations.
The problem of finding a good decision rule becomes simple, but the solution is likely
to be inefficient. The maximal value νt = N for all t, where N is the total number of
scenarios means perfect foresight: the decision to be taken at stage t is fully adapted to
the realizations. In that case, the problem of finding a good decision rule has N times
the size of the previous one. Intermediary values for νt reflect partial knowledge, but
we do not require that the partitions be nested. In other words, we allow, in our search
of decision rules, forgetfulness of the past. The intermediary case compromises between
perfect foresight versus total ignorance and small size versus large size for the decision
rule selection problem.

The second concern is to achieve a meaningful partition at each t when the number of
elements νt is given. To do this, we need a measure of quality of a partition. We proceed
as follows. We first associate with each element of the partition a realization (or sub-
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scenario) of the stochastic process. We call this sub-scenario the reference sub-scenario
for the element of the partition and we attach to it the probability that a scenario hits this
elemental set. This defines a reduced stochastic process. We then introduce a distance
between the reduced process and the process associated with the full set of sub-scenarios
(ending at t). Following [19] and [15], we choose the Kantorovitch functional to measure
this distance. The goal is to find a partition that minimizes this distance; this problem is
equivalent to solving a p-median problem.

We have no theoretical argument to select the sequence νt: we resort to empirical
testing. The efficiency of a decision rule is measured by its performance on the full set
of original scenarios instead of the small sampled subset that was used to compute the
rule. At this point, we must give a word of explanation on the way we extend a decision
rule computed on a sub-sample of scenarios to the entire set of scenarios. This is done by
extending the partition of the sub-sample to a partition of the original set of scenarios.
Each scenario in the original set is assigned to the closest reference sub-scenario in the
sense of the chosen distance measure.

The concept of linear decision rules, in short LDR, appeared in the early ’60 in the
context of optimal stochastic control. It has been developed to solve production planning
problems [16] with quadratic objectives. LDR, have been used long ago in the more gen-
eral context of stochastic programming and chance-constrained programming [12], but
somehow neglected since. They were recently resurrected in [5] in the framework of Ro-
bust Optimization under the name of Affinely Adjustable Robust counterpart (AARC).
AARC offers a computationally tractable alternative to multi-stage problems with uncer-
tain data. Successful applications of this approach to multistage inventory management
problems is reported in [1, 4, 6]. These works stimulated investigation of LDR in stochas-
tic programming [22]. With LDR the true decision variables are the coefficients of the
affine functions. They have to be fixed in the initial stage. In that respect, stochastic
programming with LDR (SPLDR) transforms a multistage SP in an Act-and-See prob-
lem, i.e., into a two-stage problem with no recourse. If the initial problem is linear, the
SPLDR restriction is also linear and tractable. Unfortunately, it does not seem possible to
assess the loss of optimality. The authors of [22] justify the use of LDR with the following
heuristic argument: “The rationale behind restricting affine decision rules is the belief
that in actual applications it is better to pose a modest and achievable goal rather than
an ambitious goal which we do not know how to achieve”. The concept of step decision
rules seems to be new. As SPLDR, it leads to computationally tractable problems.

It is possible to improve SPSDR by taking convex combinations of independent SDR’s.
By convexity of the problem, such combination is feasible and expected value of the
outcome is smaller (better) than the same convex combination of the outputs of the
individual SDR’s. It is convenient to view the optimization over a sample of scenarios as
the output of an “expert” facing a problem instance associated with a small size sample
of realizations of the stochastic process. The average solution can be interpreted as the
proposal of a pool of experts. The idea of building several decision rules from independent
samples is directly inspired by [18]. A similar use of experts is described in [10, 11] in the
framework of machine learning.

Our experiments apply to stochastic control problems in the area of inventory man-
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agement in the context of supply chain management. Our primary goal is to compare the
SPSDR approach to stochastic programming and robust optimization on two problems
on which those methods perform well. The first set of experiments compares SPSDR with
the standard stochastic programming (SP) approach on the well-known newsboy problem
with 3 stages. The main conclusion is that SPSDR can produce as good solutions as SP.
The second set of experiments deals with the model of retailer-supplier flexible commit-
ments contracts, (RSFC). The model has 12 stages; it is not easily amenable to standard
SP but AARC solutions are computed in [4]. On this problem, SPSDR is computationally
tractable and can accommodate a variety of objective functions, such as min-max, the
expected shortfall (or conditional value at risk), the total expected costs or criteria mixing
risk measures and expected costs.

The paper is organized as follows. Section 2 gives the general formulation of the
stochastic control problem. Section 3 discusses an implementation of standard stochas-
tic programming on this class of problems. Section 4 is devoted to the presentation of
stochastic programming with step decision rules. In Section 5, we report the results of
our empirical study on two different problems. The last section is a short conclusion.

2 The stochastic control problem

We consider the deterministic control problem with horizon T

min φ(x1, . . . , xT , u1, . . . , uT−1) (1a)

xt = Atxt−1 + Btut−1 + Ct, t = 2, . . . T (1b)

gt(u1, . . . , ut) ≤ 0, t = 1, . . . T − 1 (1c)

x1 = x̄1. (1d)

In that problem, ut and xt are multidimensional real variables, At and Bt are matrices
of appropriate dimensions and Ct is a vector. The variable ut is the control and xt is
the state variable. We assume that gt is convex in (u1, . . . , ut) and φ is jointly convex in
(x1, . . . , xT ) and (u1, . . . , uT−1), respectively. For the sake of simplicity, we shall use in
the sequel the more restrictive formulation with a separable objective

φ(x1, . . . , xT , u1, . . . , uT−1) =
T−1∑
t=1

ft(xt, ut) + fT (xT ).

The problem becomes stochastic when the components of (1) depend on the realization
{ξt}T

t=1 of the sequence of random variables {ξ̃t}T
t=1. We make a fundamental assumption

on the stochastic process

Assumption 1 The stochastic process is independent of the decision process.

The stochastic process {ξ̃t}T
t=1 is endowed with the probability space (Ξ,S, µ), where Ξ

is the sample space and S is the σ-algebra of measurable events with respect to µ. If the
sample space has finite support, S is made of all subsets of the finite set of outcomes. It

4



is also convenient to introduce the probability spaces (Ξt,St, µt)
T
t=1 of partial realizations

σt = (ξ1, . . . , ξt). The event spaces St form a nested sequence of subsets of S : S1 ⊂ S2 ⊂
. . . ,⊂ ST .

We follow the convention that the selection of the control at t (decision) follows the
unfolding of uncertainty at t. We have the sequence

[chance move]1 → [decision]1 → · · · → [chance move]t → [decision]t → . . .

If Ξ1 is not a singleton, the decision problem breaks down into independent subproblems.
Thus we assume that Ξ1 = {ξ1} is a singleton. The sequential structure of the problem
implies that the decision, i.e., control, at t must be made contingent to the history σt =
{ξ1, . . . , ξt}. That is, ut is a function of σt, denoted ut(σt). In view of the state equation
(1b), the state variable xt must also be made contingent to σt. The stochastic version of
the control problem (1) is thus

min E[
T−1∑
t=1

ft(xt(σt), ut(σt), ξt) + fT (xT (σT ), ξT )] (2a)

xt(σt) = At(ξt)xt−1(σt−1) + Bt(ξt)ut−1(σt−1) + Ct(ξt)

a.e., t = 2, . . . T (2b)

gt(u1(σ1), . . . , ut(σt)) ≤ 0, a.e, t = 1, . . . T − 1 (2c)

x1 = x̄1. (2d)

3 Stochastic programming

So far we only assumed independence of the stochastic process with respect to the deci-
sions. If we further assume finiteness of the sample space, the stochastic control problem
can be formulated as a stochastic programming problem and solved as a standard (large
scale) mathematical programming problem.

The main problem in sequential decisions under uncertainty is the way uncertainty
unfolds over time. If uncertainty unfolds at once at some stage t, the problem essentially
becomes a two-stage one and the flavor of sequential decision-making is lost. We are
interested in the case of progressive unfolding: the stochastic programming formulation
should reflect this fact.

We distinguish different phases in a stochastic programming approach to a control
problem. We review them quickly.

Phase 0: Statistical analysis and sampling

In sequential decision making under uncertainty, it is often the case that the underlying
stochastic process is best described in continuous time and space whereas the decision
process is in discrete time. Multi-stage stochastic programming starts with a statistical
pre-processing phase consisting in identifying the stochastic process and estimating its
parameters. The next operation consists in sampling scenarios using the distribution of
the estimated process. If the underlying process is continuous the scenarios obtained in
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that manner are almost surely all different as from stage 2 and look like a fan. This
representation does not capture the progressive unfolding of uncertainty over time and is
not fit, as such, to model the decision process.

Phase 1: Scenario reduction and aggregation

A multi-period decision process associated with a fan of scenarios is essentially a two-
stage problem. The usual remedy consists in building a new discrete time/discrete values
stochastic process that “best” approximates the fan of scenarios. This new process is
represented by a tree, that unfolds with time. If the tree gradually “opens up” with time,
as shown in Figure 1, the decision process based on that tree better captures the adaptive
nature of the decisions. It is shown in the literature that under suitable assumptions,
one can build a balanced tree with the property that the optimal solution of the problem
based on that tree provides an estimate of the optimal value of the original problem.
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Figure 1: A balanced tree approximating a fan

This phase is described as a scenario reduction and aggregation scheme. We refer
to the literature [15] for a detailed description of a scenario reduction and aggregation
scheme. To measure the quality of an approximation, some papers use the so-called
Kantorovitch functional [19, 15]. We postpone the definition of this distance measure to
the next section.

Phase 2: Formulating and solving the deterministic equivalent

In this phase, one adapt the decision process to the balanced tree generated in the pre-
vious phase. This operation consists in making the controls, the state variables and
the constraints at stage t contingent to each individual stage-t-node in the event tree.
This produces a new problem, the so-called deterministic equivalent, whose formulation
involves many more variables and constraints than the deterministic version. This oper-
ation is formal but tedious; it can be made easier by tools like the one described in [23].
The optimal solution of the deterministic equivalent problem provides a prediction of the
optimal value of the original problem. It also outputs a solution, consisting of values
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for the controls at each node of the tree. The solution is thus a stochastic process, with
well-defined values on the tree nodes.

Phase 3: Validation

There exist approximation theorems, e.g., [19], that stipulate that under some regularity
conditions the optimal expected value of the control problem on the approximation tree
tends to the optimal value of the original stochastic control problem. Such results do
not say much on how the optimal controls in the deterministic equivalent can be used
to determine controls for the original problem and, if this extension can be performed,
whether it achieves an objective function value close to the optimum. Those questions
are seldom addressed in the literature.

For our study, it is important to implement and test the computed solutions. We
proceed as follows. Suppose a scenario is drawn at random according to the probability
distribution of the original stochastic process. This scenario is almost surely different from
all scenarios of the event tree underlying the deterministic equivalent problem. To find
which control which control to apply at stage t, we consider the sub-scenario up to t and
look for the closest sub-scenario up to t of the event tree of the deterministic equivalent.
The latter determines the control to be applied at t.

It is easy to see that the above operation induces a partition on the set of scenarios
at each stage t. This partition can be performed on the full set of scenarios of the
original process or on any random sample of such scenarios. An element of the partition
is associated with a sub-scenario up to t of the deterministic equivalent tree. We name the
sub-scenario on the tree, the reference sub-scenario. The element of the partition includes
all scenarios whose sub-scenarios up to t are closer to the reference sub-scenario than to
any other sub-scenario on the tree. The extension scheme is pictured on Figure 2.
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Figure 2: Decision sets to implement the stochastic programming solution

The decision rule consists in applying at any given element of the partition the same
control as the one that is prescribed at the reference scenario. Quite naturally, we name
each element of the partition a decision set.
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4 Stochastic programming with a step decision rule

A step decision rule consists in i) a sequence of partitions of scenarios —one partition
per stage t—, each element of a partition being a decision set, ii) a sequence of control
values, one per decision set. SPSDR involves several operations. First a finite sample of
scenarios is drawn at random from the original process. This sample may form a fan. The
second operation consists in the design of decision sets and the computation of an optimal
decision rule with respect to those decision sets. The last operation is a validation on a
very large sample of scenarios.

4.1 Step decision rule

It is convenient to discuss the two-stage case first. We assume that we are given the
discrete set of outcomes of the chance move. A step decision rule consists in a partition
into decision sets of this finite set of outcomes and a unique value for the control in each
decision set. The partition is built on heuristic grounds. Our approach is inspired by [15].
To this end, we need a distance measure between scenarios, e.g., a l1, l2 or l∞ norm on the
sample space Ξ2. To each element of the partition we associate a representative scenario.
We then endow the set of representative scenarios with a probability distribution. Finally,
we compute a distance between the two distributions: the original set of scenarios and the
set of representative scenarios. This distance is computed as the solution of the so-called
the Monge-Kantorovitch transportation problem, which we detail below.

Let Ξ = {ξ1, . . . , ξN} be the sample space with elements in Rn and let µ and µ̄ be two
discrete probability measures on that space. We denote

pi = µ{ξ = ξi} and p̂i = µ̂{ξ = ξi}.

We assume that the support of µ̂ is ΞJ , where J ⊂ {1, . . . , N}. Thus p̂i = 0 for all i 6∈ J .
Given a norm c : Ξ × Ξ → R, we estimate the distance between the two probability
measures via the Kantorovitch functional κ:

κ(µ, µ̂) = min{
N∑

i,j=1

c(ξi, ξj)ηij | ηij ≥ 0,
N∑

i=1

ηij = p̂j,
N∑

j=1

ηij = pi}. (3)

The above problem is known as the Monge-Kantorovitch mass transportation problem.
In our experiments, we explore different norms c: the l1, l2 and l∞ norms.

We are interested in finding a set of indices J , with |J | = s, and a probability measure
µ̂ on Ξ with support ΞJ such that the distance κ(µ, µ̂) is minimized. This problem is
equivalent to a p-median problem. We briefly sketch the proof of the equivalence. Let us
assume first that J is given. The problem is then to find µ̂ with support ΞJ such that
the distance is minimized. This amounts to solving the finite dimensional problem in the

8



variables p̂ and η

min
p̂,η

N∑
i,j=1

c(ξi, ξj)ηij

N∑
i=1

ηij = p̂j and
N∑

j=1

ηij = pi

ηij ≥ 0, ∀i, j
N∑

j=1

p̂j = 1, p̂j ≥ 0, j ∈ J and p̂j = 0, j 6∈ J.

An optimal solution of the mass transportation problem with fixed J is easily obtained
as follows. First, we construct a partition of the set {1, . . . , N} by assigning each i ∈
{1, . . . , N} to the “closest” element j ∈ J . In case of ties, an element i is assigned to the
smallest index j. Assuming that there is no tie, the elements of the partition are defined
by

I(j) = {i ∈ {1, . . . , N} | j = arg min
k∈J

c(ξi, ξk)}, ∀j ∈ J.

Since c(ξj, ξj) = 0, then j ∈ I(j). It is easy to show that the minimum in the mass
transportation problem is attained at

p̂j =

{ ∑
i∈I(j)

pi, j ∈ J

0 otherwise

and

ηij =

{
0 if i 6∈ I(j)
pi otherwise.

In view of the above analysis, we conclude that finding the set J of cardinality s and
a probability measure µ̂ on Ξ with support ΞJ whose distance to µ is minimal amounts
to solving a combinatorial optimization problem. Let cij = pic(ξ

i, ξj). The optimization
problem is

min
N∑

i=1

N∑
j=1

cijαij (4a)

N∑
j=1

αij = 1, ∀i (4b)

0 ≤ αij ≤ βj,∀i, j, (4c)

βj ∈ {0, 1},∀j, and
N∑

j=1

βj = s. (4d)

This is precisely the formulation of the p-median problem. It consists in defining s medians
among N possible “locations” and assigning each i (for instance, “client”) to the closest
median. Location j is a median, if and only if βj = 1.
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Given a solution of the p-median problem with s medians, we construct the decision
sets as follows. Let

J = {j1, . . . , jk, . . . , js | βjk
= 1, k = 0, . . . , s}.

For each jk, define Ik by

Ik = {i ∈ {1, . . . , N} | jk = arg min
j∈J

cij}. (5)

The p-median problem is known to be NP-hard [17]. Nevertheless, there exist efficient
algorithms to generate an exact solution (e.g., see the annoted bibliography [20]). There
also exist powerful heuristics [14] which generate near-optimal solutions.

Next, we consider the multistage case. We simply extend the concept of decision sets
of two-stage case to all stages t ≥ 3. Like in the traditional approach, we comply with the
non-anticipativity requirement by making the decision sets dependent on the past history
only. But, contrary to the traditional approach, we do not require that the partition in
decision sets at stage t + 1 be a refinement of the partition at t. Therefore, the partition
at any stage t can be built independently of the partitions at any other stage. The only
difference with the two-stage case lies in the description of the sample space and the norm
c on which the distance between elements of this space is computed. Indeed, at stage t,
an element of the space is a scenario σi = (ξi

1, . . . , ξ
i
T ), but the relevant information taken

into consideration in the definition of the norm c is only the subscenario (ξi
1, . . . , ξ

i
t). If c

is a norm on the space RN×t of outcomes, one can define the problem of constructing νt

decision sets at stage t in the very same way as it was done in the two-stage case.
Let us summarize the decision set design process. We are given an initial set of

scenarios as realizations of a T -stage stochastic process. We select a sequence of integer
values {ν2, . . . , νT−1} with 0 < νt ≤ N for all t. At each stage t, we solve a problem like
(4) and construct a partition of the sample space using (5). We thus have the sequence
of partitions P2, . . . ,PT−1 with Pt = {I1

t , . . . , Iνt
t }.

In our experiments we tried different norms. The one which seem more suitable is a
weighted l1 norm. The weighted norm is defined as follows. Let σt = {ξ1, . . . , ξt} and
σ̂t = {ξ̂1, . . . , ξ̂t} be two scenarios up to t. The norm is defined by the recurrence relation

c(σt, σ̂t} = (1− α)c(σt−1, σ̂t−1) + α||ξt − ξ̂t||, for t ≥ 3, (6a)

= ||ξ2 − ξ̂2||, for t = 2. (6b)

Here, α is a coefficient between 0 and 1. Values taken by α in our experiments are
described in next section.

4.2 SPSDR at work

We consider Phase 0 described in Subsection 3 is common to both SP and SPSDR ap-
proaches. If the scenario base set is very large, the problem of finding an optimal decision
rule may be too large, even with small cardinality νt of the partitions Pt, because the
number of constraints is still the same. To cope with this difficulty, we propose to draw
a sample Σ′ of moderate size N ′ out of the large base set Σ that was originally given.
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Phase 1: Building decisions sets

To build decision sets on Σ′ consists in solving T − 2 p-median problems.

Phase 2: Optimizing the step decision rules

We now assume that we are given decision sets for each stage. Equivalently, we are
given a sequence of partitions P2, . . . ,PT−1, with Pt = {I1

t , . . . , Iνt
t }. We formulate the

optimization problem

min
N ′∑
i=1

pi[fT (xT (σi
T ), ξi

T ) +
T−1∑
t=1

ft(xt(σ
i
t), ut(σ

i
t), ξ

i
t)] (7a)

xt(σ
i
t) = At(ξ

i
t)xt−1(σ

i
t−1) + Bt(ξ

i
t)ut−1(σ

i
t−1) + Ct(ξ

i
t)

i = 1, . . . N ′, t = 2, . . . T (7b)

gt(ut(σ
i
t)) ≤ 0, i = 1, . . . N ′, t = 1, . . . T − 1 (7c)

ut(σ
i
t) = vk

t , ∀i ∈ Ik
t , t = 2, . . . T − 1, k = 1, . . . νt (7d)

x1 = x̄1. (7e)

In this problem, the new constraints (7d) play the role of the non-anticipativity constraints
in standard stochastic programming. The true decision variables are the v’s.

There is an alternative way of expressing the constraints (7d) of identical decisions on
a decision set. Let δIk

t
(σi) be the Dirac function

δIk
t
(σi) =

{
1 if i ∈ Ik

t

0 otherwise.

Then, we may replace (7d) with the handier expression

ut(σ
i
t) =

νt∑
k=1

δIk
t
(σi)vk

t , i = 1, . . . N ′, t = 2, . . . T − 1 (8)

With this notation we can give a formal definition of a decision rule policy for problem
(2) with a given finite set of scenarios.

Definition 1 A decision rule policy for problem (2) with a given finite set of scenarios
Σ is a sequence of partitions P = P2, . . . ,PT−1, with Pt = {I1

t , . . . , Iνt
t }, of respective

cardinality νt and a set of control values vk
t , k = 1, . . . , νt, t = 2, . . . , T − 1. A decision

rule policy is made operational via equation (8).

Note that the number of control variables at any given stage is proportional to the
cardinality of the partition in Pt. An optimal solution of Problem 7 is a prediction for
the optimal value of the original problem.
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Phase 3: Validation

We extend the decision rule defined on the small sample to the large base set of scenar-
ios. Computing the performance of the decision rule on each scenario becomes a simple
decision-free process.

Let us discuss the process of extrapolating a decision rule to the entire base set of
scenarios. It consists in assigning to each scenario in the base set and at any stage t a
value for the control variables chosen among the values proposed by the decision rule at
that stage t. This can be done as follows. Let Pt = ∪νt

s=1I
s
t be the partition of Σ′. The

first step consists in assigning to each decision set Is
t a reference scenario σs that has been

computed solving the p-median problem. Next, using the distance measure c introduced
in (3), we look for the reference scenario that is closest to the current scenario under
analysis σt. This is given by

s = arg min
k≤νt

c(σt, σ
k
t ). (9)

The extrapolated decision rule assigns the control vs
t to the scenario under scrutiny.

Computing the performance of the constructed decision rule on the selected scenario is
just routine calculation. By repeating this routine calculation on the full set of scenarios,
one obtains a full set of cost realizations. This output can be summarized by statistics
like the mean, the median, the α-quantile, and for a better measure of risk, the standard
deviation, the absolute mean deviation or the γ-expected shortfall.

4.3 Convex combination of step decision rules

The quality of a decision rule can be improved in different ways. The most obvious one
is to increase the size of the sample of scenarios Σ′. However, the complexity of designing
the decision sets and computing the decision rules increases notably. Another possibility
consists in drawing several samples independently and building for each of them decision
sets and decision rules. The computed decision rules can be viewed as advices of experts.
It is possible to combine those advices, for instance by taking the average of the rules
defined by (8). It turns out that the rule built on the pool of experts is more efficient
than the individual advices.

Combining expert advice is summarized by the following procedure.

Initialization We are given a (possibly very large) set of scenarios Σ that provide a
statistically satisfactory representation of the stochastic process. This set can be
constructed.

Experts Repeat for h = 1 to H.

1. Draw a sub-sample Σh = {σh,1, . . . , σh,nh} with cardinality |Σh| = nh.

2. Construct decision sets ∪kI
h,k
t according to the heuristics.

3. Compute an optimal decision rule DRh with respect to Σh and the constructed
decision sets. The decision rule takes the following form

uh
t (σ

h,j
t ) =

νh
t∑

k=1

δIh,k
t

(σh,j
t )vh,k

t .
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Pooling experts

1. Extend the decision rule DRh of expert h to all scenarios in Σ. This amounts

to constructing, at each t, a partition
⋃νh

t
k=1 Jh,k

t of Σ. Recall that σh,k is the

reference scenario associated with the decision set Ih,k
t . In view of (9), one

assigns σ ∈ Σ to the closest reference scenario. By breaking ties if necessary,
one obtains the desired partition with the property Ih,k

t ⊂ Jh,k
t . This expert

decision rule is then

uh
t (σt) =

νh
t∑

k=1

δJh,k
t

(σt)v
h,k
t

on Σ.

2. Take a convex combination of the single-expert decision rules, usually, the
average

ut(σt) =
1

H

H∑
h=1

uh
t (σt). (10)

Prediction To compute a prediction of the expected performance of the multiple-expert
decision rule we use the

⋃H
h=1 Σh generated scenarios. Rule (10) defines the control

and, via (2b), the state variables values on each scenario. The prediction is the
average of the associated costs.

Validation

1. Proceed like with the single expert and extend the multiple expert rule (10)
to the full set of validation scenarios. Compute the associate state and cost
values.

2. Compute statistics, such as the average cost, over the set of all scenarios.

The next theorem justifies the merit of taking a convex combination of decision rules.

Theorem 1 The expected cost of a convex combination of decision rules is less or equal
than the convex combination of the expected costs of the individual decision rules.

Proof: In view of the convexity of Problem (1), we can formally state that the expected
cost of the convex combination of individual decision rules is less than the same convex
combination of the expected costs of the individual experts. To prove this statement, it
is sufficient to prove it on an individual scenario. Recall that on a scenario, the sequence
of controls uniquely defines the sequence of states by equation (7b). First, it is clear that
the convex combination of the decision rule satisfies the convex constraint (7c). Next,
due to the linearity of the state equation (7b), the state trajectory associated with the
combination of decision rules is the convex combination of the individual trajectories.
Finally, the convexity of the objective function implies that the function value of the
convex combination of decision rules is less or equal to the convex combination of the
individual function values. Since the expectation is itself a convex combination, the
result follows. A very similar scheme has been used in [18]. The value of combining
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expert advices has also been exploited in the context of machine learning and statistics
[8].

4.4 Tractability of SPSDR

The computational effort with SPSDR can be split into three components, the design
of the decisions sets, the computation of optimal decision rules for each expert and the
pooling of the expert decision rules to predict performance.

Decision sets design Once the norm to evaluate the distance between scenarios and
the number of decision sets per stage have been selected, the computational effort consists
in solving for each stage a p-median problem. This problem is NP-hard [17], but we need
not solve it exactly. A crude heuristic as in [15] may suffice. In our experiments we used
the very efficient Variable Neighborhood Decomposition Search metaheuristic of Hansen et
al. [14]. The implementation of the VNDS heuristic we use can handle p-median problems
with up to 4000 clients, that is 4000 nodes in our case. Note that the computations for
each stage and each expert can be performed independently.

Optimal decision rule With the help of equation (8), Problem (7) can be reformulated
in the variables v only, which assign values of the control u in each decision set. The
number of variables v is equal to the total number of decision sets, a small number in our
experiments. In view of the linearity of the state equation, it is easy to compute the value
of the objective function on each scenario. If the objective function is non-differentiable,
as it is the case in our examples, it is also possible to compute a subgradient of this convex
function of v. This information can be exploited to compute an optimal solution with
precision ε in O( ν

ε2
) iteration, where ν is the dimension of v.

When the number of scenarios per expert is not too large, it is also possible to for-
mulate the problem of finding an optimal decision rule as a deterministic mathematical
programming problem. In that framework, each state variable and each state equation
must be made contingent to the individual nodes of the scenario tree.

Compute a prediction By pooling the scenario samples submitted to the experts, we
obtain a larger sample on which one can evaluate the performance of the decision rule of
the pool of experts. This provides a prediction, which appears to be fairly reliable in our
experimental study.

5 Empirical study

In this section we propose to assess on empirical grounds the merits of stochastic program-
ming with step decision rules. We face numerous difficulties. Some stem from the fact
that we have to decide on the scenario sample size, on the number of decision sets at each
stage and on the number of experts, to speak of the most obvious required specifications.
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Unfortunately, we are not given clear guidelines to perform this task. The other difficulty
is to find benchmarks for our method. We have to choose multistage stochastic problems
that can be solved by well-established methods such as standard stochastic programming
or robust optimization.

In this paper, we focus on two simple models that have been studied in the literature
on supply chain management. The first one is the celebrated newsboy problem in its
multistage version. We consider a model with only four periods, an initial decision and
two recourse decisions. (There is no recourse in the fourth period. The problem has thus
three stages.) This model can be solved by regular stochastic programming with excellent
precision. The second model is more complex. It deals with a supply/purchase contract
between a producer and a retailer. Monthly target orders are to be set in advance, but
adjustments are possible in terms of costly recourses. The model has 13 periods (i.e., 12
stages). A robust solution is proposed in [4].

The solutions obtained by SPSDR in one hand, and by standard stochastic program-
ming and robust optimization in the other hand are tested on very large samples, from
one hundred of thousands to one million scenarios. Performance criteria such as expected
shortfall, ESf, (at levels 1% or 5%), mean values, and empirical standard deviation are
computed. Other criteria can be computed: critical quantiles (at 1% and 5%), median
and absolute mean deviation, but we did not use them.

5.1 SPSDR vs. SP on the newsboy problem

The main objective of this example is to show that SPSDR can be applied on a standard
multistage stochastic problem and can compete with standard SP approach. Let the
deterministic version of the multistage newsboy problem be displayed below.

max
( T∑

t=2

ptdt − pT [−xT ]+
)
−

T∑
t=2

(
at−1ut−1 + ht[xt]

+ + st[−xt]
+
)

(11a)

xt = xt−1 + ut−1 − dt, t = 2, . . . T, (11b)

ut ≥ 0, t = 1, . . . T − 1, (11c)

x1 = x̄1, (11d)

with [xt]
+ = max{0, xt}. In this model, ut is the order at stage t and dt is the demand.

The inventory level is xt: a positive value means a physical inventory, and a negative one
a shortage. Initial inventory is fixed at x̄1 ≥ 0. Unsatisfied demand is backlogged. The
parameter ht is the unit holding cost, and st the unit shortage cost. The purchase cost
is at and the selling prize is pt. The objective is written as the difference between the
revenue and the costs. The total revenue is computed as follows: a demand dt generates
an immediate revenue ptdt, even though the delivery may be postponed to a later period.
At the horizon time, the revenue from the unsatisfied demand [−xT ]+ must be deduced
or paid back at the price pT . (The maximization problem can be modified in a cost
minimization if one remarks that the revenue component

∑T
t=2 ptdt is independent of the

decision process.)
To make the problem a little more challenging, we choose a model with correlated

demands as in [24]. More specifically, the demands form a conditionally heteroskedastic
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Gaussian process with unconditional mean and variance µt and σt. The conditional mean
is

E(dt+1 | dt = d) = µt+1 + ρt
σt+1

σt

(d− µt) (12)

and the conditional variance

Var(dt+1 | dt = d) = σ2
t+1(1− ρ2

t ), (13)

where ρt is the correlation coefficient between the successive demands dt and dt+1. The
one-step transition is given by

dt+1(dt, ξt+1) = µt+1 + ρt
σt+1

σt

(dt − µt) + σt+1

√
1− ρ2

t ξt+1,

where ξt+1 follows a standard normal distribution. We further assume that the ξ1, . . . , ξT

are independent and identically distributed.
The data for the numerical example are:

• T = 4.

• µt = 15, for all t = 2, . . . T .

• at−1 = 1, st = 0.2, ht = 0.1 for all t = 2, . . . T .

• pt = 1.4 for all t = 2, . . . T .

• σ2 = 2, and σt = σ2√
1−ρ2

for all t = 3, . . . T .

• ρ = 0 or 0.5.

We first discuss a standard implementation of stochastic programming. The main
task is to construct a discrete stochastic process that approximates the continuous one.
This is done by approximating the standard normal distribution with a discrete one with
s elements. The distance between the continuous law and the discrete one is measured
according to a suitably adapted version of (3) (to account for the continuous distribution)
with the l1 norm. It is easy to show that the optimal solution in (3) is given by a partition
of the real line in s contiguous intervals [αi, βi] and each interval is represented by its

relative median mi. The total distance is thus
∑s

i=1

∫ βi

αi
|mi−u|f(u)du, where f(u) is the

density of the standard normal distribution. The bounds of the intervals are determined
by the minimization of the total distance. In this way, we obtain a balanced tree with
s×s×s = s3 scenarios. Note that the number of contingent order decisions ut at t = 1, 2, 3
is 1 + s + s2, but the formulation of the deterministic equivalent as a linear programming
problem also involves state variables at t = 4. This means (st+1− 1)/(s− 1) nodes. With
s = 20, the deterministic equivalent is a medium size linear programming problem with
17,261 variables, 8,420 equality constraints and 17,261 non-negativity constraints. With
s = 40, there are 132,922 variables and non-negativity constraints and 65,640 equality
constraints.

To implement SPSDR we chose to work with 10 experts and to submit to each expert a
sample of 200 scenarios drawn at random using the continuous distribution of the random
process. These samples are all fans. Our second modelization choice is to endow each
expert with decision sets of cardinality 10 and 30 in stage t = 2 and t = 3 respectively.
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The decision sets are constructed so as to minimize the distance in (3), that is by solving
the p-median problems defined in (4). The norm c is the l1 norm at t = 2 and a convex
combination of the l1 norms on d2 and d3 with coefficients 0.35 and 0.65. The expert
problem is a linear programming one of moderate size. For instance, with 200 scenarios,
and 10 + 30 = 40 decision sets, the problem has 1, 241 variables and non-negativity
constraints, and 640 equality constraints. This size is about the same as one would get
with the deterministic equivalent for an 8× 8× 8 event tree.

5.1.1 Comparison SP / SPSDR

Table 1 presents the results obtained by solving a standard SP with three different dis-
cretization factors (s = 5, 10 or 20) and by using the SPSDR approach with the previously
defined parameters. The results are given for two versions of the stochastic process, one
without correlation, the other one with correlation ρ = 0.5.

SP SPSDR

ρ = 0 s = 5 s = 10 s = 20

achieved 15.780 15.868 15.933 15.907
predicted 16.251 16.024 15.974 15.944
prediction error 2.66% 0.92% 0.26% 0.23%

ρ = 0.5

achieved 15.679 15.838 15.927 15.885
predicted 16.251 16.024 15.974 15.919
prediction error 3.52% 1.15% 0.29% 0.21%

Table 1: Newsboy problem: predicted and achieved profit

We observe that the quality of the SP solution and the prediction improve with the
level of discretization. Note that the predicted value is always above the achieved value.
SPSDR achieves profits that are almost as good as the profit reported by SP with the
finer discretization (s = 20). The prediction error is small.

The following subsections analyze the variability of the results due to parameter set-
tings. They also study the impact of the random choice of the sample submitted to the
experts. Finally they discuss the variability due to the random selection of the validation
scenarios.

5.1.2 Variability due to parameter setting

In the experiments of Table 1, the parameters have been fixed to the reported values by a
trial and error process. We summarize the main experiments that led to the final choice.
In each experiment, we let one parameter vary while the other ones were kept fixed.

Let us first discuss the choice of the norm. Table 2 displays the results with 6 different
norms. We recall that a weighted l1 norm in period 3 is the convex combination of
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the l1 norm on d2 and d3. The coefficients of the combination are 1 − α and α, with
α = 0.5, 0.65, 0.8.

l1 l2 l∞ weighted l1

ρ = 0 α = 0.5 α = 0.65 α = 0.8

achieved 15.904 15.895 15.895 15.904 15.907 15.904
predicted 15.978 15.979 15.979 15.978 15.943 15.983

ρ = 0.5

achieved 15.890 15.877 15.876 15.890 15.885 15.896
predicted 15.840 15.828 15.830 15.840 15.919 15.917

Table 2: Newsboy problem : influence of the norm

The first line represents the value found after a validation over 100,000 randomly se-
lected scenarios. (The influence of the random choice of the validation sample is discussed
in subsection 5.1.3.) The second line displays predicted values for the objective function.
Clearly, the choice of the norm has limited influence on the performance. The l1 norm
seems to perform better than the l2 and l∞ norms.

Table 3 displays the influence of the size of the sample submitted to the individual
experts. We observe an increase in the size of the sample improves the quality of the
solution in the uncorrelated case, but with decreasing gains. In the correlated case, we
observe the paradoxical fact that with 400 scenarios the performance is worse than with
200 scenarios only. However, one must recall that we kept the number of decision sets,
10 and 30, fixed. With 400 scenarios and more decision sets, the performance would have
improved. The computational cost increases more than proportionally with the number
of scenarios. The value 200 seems to be a good compromise.

ρ = 0 ρ = 0.5

sample size 100 200 400 100 200 400

achieved 15.846 15.907 15.919 15.771 15.885 15.843
predicted 15.827 15.944 15.922 16.578 15.919 16.595

Table 3: Influence of the size of the sample submitted to an individual expert

Table 4 shows the influence of an increasing number of experts. If the number of
experts in the pool increases, the combined SDR is improved, but the gain from 10
experts to 20 is marginal.

The last parameter under study is the number of decision sets at each period. We
tried several combinations: the same number of decision sets per period, or an increasing
one. The results can be seen on Table 5.

The table shows that a large number of decision sets (figures on the left-side of the
table) has a negative effect on the achieved performance. Indeed, with a large number of
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ρ = 0 ρ = 0.5

number of experts 5 10 20 5 10 20

achieved 15.879 15.907 15.923 15.864 15.885 15.896
predicted 15.936 15.944 15.975 16.009 15.919 15.917

Table 4: Influence of the number of experts

decision sets 25, 100 30, 100 50, 50 10, 30
ρ = 0

achieved 15.835 15.838 15.842 15.907
predicted 15.978 15.975 15.955 15.944
pred. error 0.89% 0.86% 0.71% 0.23%

ρ = 0.5

achieved 15.832 15.806 15.828 15.885
predicted 16.599 16.758 16.537 15.919
pred. error 4.62% 5.68% 4.29% 0.21%

Table 5: Influence of decision sets distribution

decision sets, the expert tends to adjust tightly his decision rule to the particular values
of the sample. Such decision rule is less efficient on the validation sample.

5.1.3 Variability in the performance

Since the sample of scenarios submitted to an expert is random, the issuing decision rule is
also random. To study this effect, we repeated 10 times the construction of a decision rule
with 10 experts each time. The other source of randomness in the performance evaluation
is the selection of the validation sample itself. To this end, we validated the same decision
rule on 10 independent samples of size 100,000. The results of the two experiments are
displayed on the same Table 6.

Different SDR’s Different validation samples
same validation sample same SDR

correlation 0 0.5 0 0.5

achieve mean 15.907 15.885 15.908 15.885
std dev. 0.004 0.006 0.006 0.009
recorded min 15.903 15.876 15.899 15.872
recorded max 15.912 15.894 15.916 15.898

Table 6: Variability of the performance

We observe that the variability of the expected profit is very limited. The relative
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difference between the extreme values min and max is significantly smaller than the pre-
diction error reported in Table 1.

5.2 SPSDR vs. robust optimization on a retailer-supplier con-
tract model

This section is devoted to an empirical study of SPSDR on a multistage problem with
a larger number of stages, the retailer-supplier flexible commitment problem, in short
RSFC. In the Newsboy problem we could compare SPSDR to plain stochastic program-
ming, which, due to the small number of stages, provides near optimal solutions. Unfor-
tunately, the RSFC has too many stages to allow for an easy implementation of stochastic
programming. We have to look for another benchmark. In the present study, we shall use
the approach and the results of [4]. In that paper, the RSFC problem of [2] is solved by
a variant of Robust Optimization, named AARC, the affinely adjustable robust counter-
part. This variant is designed for dynamic problems. The adaptive nature of the recourses
is captured by making them linear functions of the observed stochastic process [5]. The
unknown in that formulation are the coefficients of the linear functions.

The deterministic dynamic model is

min
x,w,q

−s[xT ] +
T−1∑
t=1

ctqt +
T∑

t=2

ht[xt]
+ + st[−xt]

+

+
T−1∑
t=1

α+
t [qt − wt]

+ + α−t [wt − qt]
+ (14a)

+
T−1∑
t=1

β+[wt − wt−1]
+ + β−[wt−1 − wt]

+ (14b)

s.t. xt = xt−1 + qt−1 − dt, t = 2, . . . , T, (14c)

Lt ≤ qt ≤ Ut, t = 1, . . . , T − 1 (14d)

x1 = x̄1, w1 = w̄1. (14e)

This model represents a single-product, two-echelon, multi-period supply chain in
which inventories are managed periodically over a finite horizon of T periods. At the
beginning of the planning horizon the retailer specifies a vector of commitments w =
w1, ..., wT for the product. These commitments serve as forecasts for the supplier who
uses them to determine his production capacity. At the beginning of each period t, the
retailer has an inventory of size xt and he orders a quantity qt from the supplier at a
unit cost ct. The customers demands dt are then revealed. The retailer’s status at the
beginning of the planning horizon is given through the parameters x1 (initial inventory)
and w0 (a nominal value that might represent the last order prior to the planning horizon
or some average of previous orders). Consequently, the following costs are incurred:

• Holding cost = ht[xt]
+, where ht are the unit holding costs.

• Shortage cost = st[−xt]
+, where st are the unit shortage costs.
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Moreover, due to the stipulations in the contract, the retailer incurs the following addi-
tional costs:

• Penalty due to deviations between committed and actual orders α+
t [qt − wt, 0]+ +

α−t [wt−qt]
+, where α+

t , α−t are the unit penalties for positive and negative deviations,
respectively.

• Penalty on deviations between successive commitments β+
t [wt−wt−1]

+ +β−t [wt−1−
wt]

+, where β+
t , β−t are the associated unit penalties.

Inventory xT+1 left at the end of period T has a unit salvage value s. To make sense
in our context, the parameter s must be smaller than cT . To maintain convexity of the
objective function in the model, s must satisfy for the terminal period T the inequality

hT − s ≥ −sT .

This model is an extension of the multistage newsboy problem (11), but the interpretation
of the salvage value s is somehow different. In the above model with commitments we use
the definition given in [4] for the sake of consistency.

The original model includes a constraint on cumulative orders, but this constraint
turned out to be inactive on the selected instances W12 and A12.

We shall derive SPSDR solutions for different objectives: the total expected cost, the
minimization of the maximum cost, a bound on expected shortfall ESf, or conditional
value at risk CVaR [3], at the level γ, with γ = 1% or 5%, and a convex combination of
the total expected cost and the ESf at 5%. The expected shortfall is a convex functional
that can be computed in a stochastic programming framework with discrete events using
the following trick [21]. Let Ci the cost associated with the i-th scenario and πi its
probability. The expected shortfall at the level γ is the solution of the problem

min{z +
1

γ

N∑
i=1

πiui | ui ≥ Ci − z and ui ≥ 0, i = 1, . . . , N}.

5.2.1 Results with instance W12

The first set of numerical experiments aims to compare the AARC solution and the
solution obtained with SPSDR. To this end, we choose the set of data W12 on which [4]
shows that the AARC performs much better than the standard RC solution. The model
parameters are displayed on Table 7. The demands are taken to be i.i.d. with a uniform

T x1 w0 ct ht pt s α+
t α−t β+

t β−t Lt Ut

12 0 100 10 2 10 0 10 10 10 10 0 200

Table 7: Data for problem W12 in [4]

distribution on the interval 100±70. The base set of scenarios is obtained by Monte-Carlo
sampling on the demand. Its size is 100,000. The AARC solution is the one reported in
[4].
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It is important to note that robust optimization approach gives us a guaranteed min-
imum level, but no prediction on the mean cost. This is why the values presented below
are difficult to compare. With the best parameter settings given in next paragraph, the
SPSDR approach predicts a mean cost of 15985 whereas the RO approach bounds the
worst scenario cost by 22722.

Impact of design factors The design factors are: the size of the samples assigned to
individual experts, the distance function between scenarios, the number of decision sets
at each stage and the number of experts. We tried different combinations, but we report
only the results with

• 10 experts.

• 200 scenarios per expert.

• Number of decision sets per stage: 10, 10, 10, 12, 12, 12, 14, 14, 14, 16 and 16

Note that the first two figures are similar to those used in the Newsboy problem. With
this configuration, the total number of decision variables for each expert is 140+1 = 141,
that is 5.9% of the total number of nodes in 200 scenarios forming a fan.

In the Newsboy problem, the choice of a distance between scenarios was not critical.
For the RSFC problem, this is not so. We tried four different possibilities. The results
are given in Table 8.

l1 l2 l∞ weighted l1

achieved cost 16044 16030 16077 15980
predicted cost 16013 15978 16000 15985

Table 8: W12: influence of the norm

In this table, the weighted l1 norm is as defined in Equation (6), with α = 0.65. The
weighted l1 norm gives the best results; we shall use it in all subsequent experiments.

Stability As noted in the Newsboy problem, the SPSDR solution is random. We study
here the effect of this randomness. We also study the stability of a step decision rule
(SDR) with respect to different validation samples.

Table 9 displays the results for two types of stability. The first two columns correspond
to the performance of 10 different SPSDR solutions; each SPSDR is obtained by the
usual process: drawing 10 samples of size 200, building the individual expert SDR’s and
averaging them. The last two columns of the table correspond to the same decision rule
(obtained by pooling 10 expert decision rules) tested on 10 samples of size 100,000. The
column header “StD(a)” means the standard deviation between the 10 different means
(achieved and predicted). The row entry “StD(b)” is the mean of the standard deviation
of the outcomes i) of 10 different SDR and the same validation sample ii) of the same
SDR on 10 different validation samples.
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10 SDR’s 10 validation samples
same validation sample same SDR

mean cost StD(a) mean cost StD(a)

achieved cost 15992 9 15990 10
StD(b) 2098 2107
predicted cost 15949 52 15943 44

Table 9: W12: variability of the performance

The table shows that the variability in both cases is limited. Recall that the SDR’s
are built on samples of fairly small sizes. In that respect, the variability is not surprising,
but the table shows that it is very limited.

SPSDR with different objectives The goal of this section is to analyze the SPSDR
solutions with different objective functions, some geared towards risk control, other fo-
cusing on the expected costs.

The different objective functions are

• The expected cost,

• One of the risk measures: ESf at 5%, ESf at 1% and maximum cost value.

• The combination with equal weights of the expected cost and the ESf at 5%.

Objectives mean cost mixture expected shortfall max value

Perf. criterion 5% 1%

predicted mean 15985 16554 17105 17409 17409
achieved mean 15980 16587 17140 17441 17441
standard dev. 2047 1131 857 768 767
ESf 1% 24644 22748 22271 22031 22028
min recorded cost 12744 14748 15612 16007 16011
max recorded cost 31200 31251 30458 29674 29676

Table 10: W12: performance criteria with different objective functions

In Table 10, the columns are ranked by increasing concern for risk in the objective
function. One observes that the risk performance deteriorates when moving from right
to left, while the expected cost performance improves. This result is in line with the
intuition. The row “standard dev.” displays the standard deviation on the validation
sample.

Clearly, the sample size on which the expert decision rule is designed and optimized
is too small to lead to accurate prediction when the objective is a risk measure. For
instance, the pool of expert predict a worse case of 17409, but the achieved worse case is
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29676. The results are more satisfactory for the first two criteria: the expected cost and
the mixture. With the mean cost criterion, the prediction error is less than 0.1%. Notice
that the standard deviation decreases steadily when the risk content of the optimized
criterion increases.

Robust optimization with different immunization levels In [4], the focus was on
minimizing the maximum cost for all demands within a given uncertainty set. This result
is an implementable policy to be evaluated on the validation sample. This policy is very
conservative. It perfectly controls the worse case, but does poorly on the mean cost. This
is not surprising, because the mean cost is not part of the model. An alternative to this
conservative approach consists in looking for a worse case policy on a reduced uncertainty
set, e.g., shrinking the original uncertainty set by a certain percentage. However, the
validation process will still be performed on a sample drawn from the original distribution.
This sample is likely to include scenarios lying outside the reduced uncertainty, and on
some of these scenarios, the robust optimization policy may behave worse than expected.
However, the reduced uncertainty set eases the constraints in the AARC model and makes
it possible to achieve better performance on the average cost.

To illustrate that point, we computed the AARC solution with various levels of immu-
nization. In W12, a level of immunization ρ defines an uncertainty set for the individual
demands equal to 100 ± ρ × 70. The policies corresponding to the different levels of im-
munization are simulated on the same validation sample. The results appear on Table
11. In this table, the AARC solution is a prediction on the maximum cost and not on the

immunization 29% 43% 57% 71% 86% 100%

achieved mean cost 18158 18367 18777 19386 20195 21204
std dev 1458 1116 795 516 316 253
AARC solution 15064 16595 18127 19659 21191 22722
max recorded cost 25998 24760 23724 22732 21840 22284

Table 11: W12: AARC with different levels of immunization

mean. The table shows that a lower level of immunization makes it possible to achieve
lower mean costs, but the maximum recorded cost increases. Moreover the prediction
error on the worse case cost increases significantly. With the W12 data, the constraints
on the recourse are always respected, wathever the immunization level.

SPSDR versus AARC It is possible to compare SPSDR and AARC from Tables 10
and 11. To highlight the differences, we have plotted on Figure 3 the empirical densities
of the distribution of costs. For SPSDR we used the optimization criteria “mean cost”,
“mixture” and “worst case”; for AARC, we chose the immunization levels 29%, 71% and
100%.

The picture confirms the figures in the two tables. The shift to the right (higher cost)
of the curves when the objective focuses on risk (SPSDR) or the immunization increases
(AARC) is striking. In the meantime, the density is increasingly concentrated. As far
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Figure 3: W12: empirical density curves

as average costs are concerned, the SPSDR is certainly more efficient, but one must not
forget that the AARC is concerned with the rightmost part of the curve. For costs above
22000, the curves seem to coincide, but this is not so. The AARC dominates SPSDR in
this area.

The last picture (Figure 4) shows the commitments selected by SPSDR and AARC.
Commitments are first stage decisions. They cannot be modified at later stage, while all
other decisions can be re-evaluated in a rolling or folding horizon perspective.

Figure 4: W12: commitments
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5.2.2 Results with instance A12

This data set, as described in Table 12, is caracterized by a positive lower bound Lt =
44, ∀t = 1, . . . T , and an upper bound which varies with time. The shortage cost is
constant until t = T − 1 and increases at T . The demands are taken to be i.i.d. with a
uniform distribution on the interval 64± 44.8 (70% uncertainty). The validation sample
of size 100,000 is obtained by Monte-Carlo sampling on the demand process. The AARC
solution is the one reported in [4]: with a 100% immunization, the RO guaranteed level
is 5863.32.

T x1 w0 ct ht s α+
t α−t β+

t β−t
12 57 12 1.01 0.3 1.13 0.43 0.58 0.37 0.04

t 1 2 3 4 5 6 7 8 9 10 11 12

Lt 44 44 44 44 44 44 44 44 44 44 44 44
Ut 76 54 66 88 68 60 82 53 53 78 72 63
pt 1 1 1 1 1 1 1 1 1 1 1 6.7

Table 12: Data set A12 for RSFC problem in [4]

The SPSDR design parameters for this experiment are the same as for W12, namely,
samples of 200 scenarios for each of the 10 experts and a number of decision sets per stage
10, 10, 10, 12, 12, 12, 14, 14, 14, 16 and 16. The distances between sub-scenarios are taken
with respect to the weighted l1 norm (6), with α = 0.65. We performed the same analyses
as with W12, but we only discuss the main results.

Stability Table 13 displays results of two distinct stability computations.

10 SDR’s 10 validation samples
same validation sample same SDR

mean cost StD(a) mean cost StD(a)

achieved mean 1084.6 0.9 1084.2 1.3
StD(b) 284.3 285.2
predicted mean 1081.9 7.5 1079.6 5.5

Table 13: A12: variability in the performance

The rows and columns have the same meaning as in Table 9. We observe the same
stability properties as before.

SPSDR with different objectives Table 14 displays predicted and achieved mean
costs with different objective functions.

We can observe that the prediction error is very small (< 0.5%).
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Objectives mean cost mixture expected shortfall max value

Performance criterion 5% 1%

predicted mean 1083 1092 1121 1200 1172
achieved mean 1086 1093 1123 1202 1175
standard dev. 287 236 236 356 332
ESf 1% 2602 2433 2453 2764 2674
min recorded cost 801 812 845 820 828
max recorded cost 4158 3962 3975 4143 4044

Table 14: A12: performance criteria with different objective functions

Immunization level Table 15 displays the results of AARC with different levels of
immunization.

immunization 29% 43% 57% 71% 86% 100%

achieved mean cost 1159 1153 1194 1216 1238 1267
std dev. 260 255 299 328 354 386
AARC solution 1397 2191 3088 4006 4935 5863
max recorded cost 3961 3961 3961 3987 4117 4242

Table 15: A12: AARC with different levels of immunization

We observe that the AARC solution value is way above the achieved mean cost when
the immunization level is high. One must be careful using those results: when the immu-
nization level is low, the majority of scenarios generates recourses which do not respect
constraints. if the recourse does not lie between the upper and lower bound, it is simply
truncated to its appropriate bound.

We also notice that the SPSDR with the “mean cost” and “mixture” objectives give
better results. Figures 5 and 6 illustrate a comparison between SPSDR with the mean
objective (respectively, the worse case) and AARC with 29% (resp., 100%) immunization
levels.

6 Conclusion

Multistage stochastic programming problems are computationally intractable [22]. The
main reasons are the complexity of computing expectations with respect to a multidimen-
sional stochastic process and the exponential growth of the event tree as the number of
stages increases. To get around these difficulties we propose a heuristic approach based on
step decision rules. The idea is to solve several independent random problems. Each prob-
lem corresponds to a sample of scenarios drawn at random according to the distribution
of the stochastic process. These samples, which often take the form of a fan of scenarios,
need not be large. For each sample, one constructs decision sets and associates to them
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Figure 5: Empirical density of the cost for A12: SPSDR (mean cost objective) vs. AARC
(immunization level 29%)
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Figure 6: Empirical density of the cost for A12: SPSDR (worse case objective) vs. AARC
(immunization level 100%)
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a step decision rule. Optimal step decision rules for each sample are then computed as
solutions of tractable convex programs. The optimal step decision rules associated with
the different samples are combined to generate the final solution. We named this process,
pooling the experts advices. Finally the solution is validated on a very large sample of
scenarios.

The new approach has been tested against two alternative methods: regular stochastic
programming on a problem with only 3 stages and 2 recourses; robust optimization with
affinely adjustable recourses on a 12-stage model. Our experimental results show that
SPSDR is competitive on these models and probably has a potential on other problems.
SPSDR has several nice characteristics. Contrary to regular stochastic programming, it is
not necessary to construct event trees that progressively unfold with time. It is possible to
start with a sample of scenarios forming a fan and build decision sets whose number grows
mildly with stages. An other nice feature is the small dimension and the computational
tractability of the individual expert problems. The last feature is the flexibility in choosing
the objective function, a definite plus over robust optimization.
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