

BACK PRESSURE

KIRK

Atthints

EXPERIMENT

PROGRESS DO NOT TOUCH

COLLEGE OF ENGINEERING

<u>Teaching</u> -Ecohydrology (BEE 313)

Stephen Good

Assistant Professor Biological & Ecological Engineering stephen.good@oregonstate.edu

Research

Focus on understanding the influence of ecosystems on the hydrologic cycle. When, where, and how are plants using water (transpiration) and how is this altering water resource availability?

Thesis Topic Ideas/Opportunities

-Remote Sensing of the hydrologic Cycle -Geochemical tracers in hydrology -Evapotranspiration partitioning -Role of climate variability -3D Vegetation modeling

- -3D Printers
- -Laser/plasma cutters -CNC routers
- -Ardunios/RasPy/etc.
- -Available Workspace
- -Professional support
- -Online repository

<u>The Open-source Published</u> <u>Environmental/Agricultural</u> <u>Sensing (OPEnS) Laboratory</u>

John.Selker@oregonstate.edu Chad.higgins@oregonstate.edu Stephen.good@oregonstate.edu

<u>Purpose</u>

Addressing climate change requires **new tools** for observation and management. The OPEnS Lab combines cutting edge technologies and makes them available to the OSU, the USA, and globally. OPEnS will create **Maker lab** space at OSU and a synergistic forum for environmental sensing technology.

Thesis Topic Ideas/Opportunities

-low cost precision agg sensors

-Novel environmental monitoring

-Improve data logging/processing

<u>Teaching</u>

- BEE 472/572 Intro to Food Engg. Principles
- BEE 473/573 Intro to Food Engg. Design
- BEE 585/586 Metabolic Systems Engg.

Frank Chaplen

Associate Professor Dept. of Biological & Ecological Engg.

Gilmore Hall, Rm. 203 frank.chaplen@oregonstate.edu Tel. 541-737-1015

Research

- Microbial soil nitrification processes, nitrogen cycling
- Microbial N₂O (Greenhouse Gas) production from agricultural and undisturbed soils
- Microbial community dynamics

<u>Skills:</u> Genome scale constraints-based modeling, bioinformatics, biochemistry, microbiology, programming, wet lab

Thesis Topic Ideas/

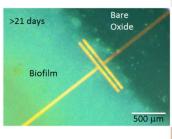
Opportunities

- Build and validate model of nitrifying archaea (*Nitrososphaera viennensis*). Objective: Develop and test hypotheses regarding role in soil nitrification processes
- Integrate models for Nitrosomonas europaea, Nitrobacter winogradskyi and Nitrobacter hamburgenesis; design improved processes for fertilizer application. Objective: Develop strategies for reducing agricultural N₂O emissions.

Fate and Transport of Chemicals in the Environment

Groundwater Remediation

ENVE Senior Capstone Design


Lewis Semprini School of Chemical, Biological, and Environmental Engineering 541-737-6895 lewis.semprini@oregonstate.edu

Bioremediation of Chlorinated Solvents and Emerging Contaminants

Biological Conversion of Methane to Liquid Fuels

Biofilm Processes for Wastewater Treatment

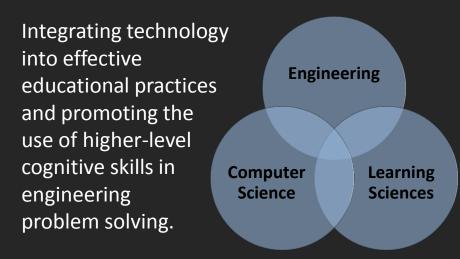
Kinetics of the Cometabolism of 1,4-Dioxane

Immobilizing Cells for the Biological Treatment of Emerging Contaminants

Reactor Studies to Evaluate the Bioremediation of Chlorinated Solvents

2-L and 5-L Chemostats with the EV Culture

Oregon State OSU College of Engineering and UHC Thesis Mixer



Milo D. Koretsky

School of Chemical, Biological, and Environmental Engineering Gleeson 201, 541-737-4591 milo.koretsky@oregonstate.edu

Research – Engineering Education

Thesis Topic Areas

Software Development

programming educational technology

- Student Learning

- in Virtual Laboratories through studentfaculty interactions, model development, etc.
- in Concept-based Instruction
- What can we learn from experts?

Organizational Change Strategy

- What are ways we can get other people to use evidence-based educational innovations?

Teaching

- CHE 417/517 Instrumentation
- CHE 444/544 Thin Films
- CHE 451/551 Solar Energy Technologies
- CHE 541 Catalysis
- CHE/ECE 611 Electronic Materials Processing

Oregon State

Gregory S. Herman

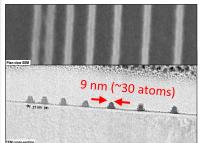
School of Chemical, Biological and Environmental Engineering; Gleeson 213 541-737-2496

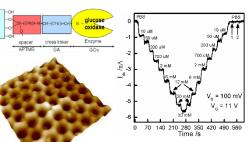
Greg.Herman@OregonState.edu

Research

The development of sustainable materials with specific functional properties for technologies ranging from devices, catalysts, sensing, and nanodimensional patterning.

Detailed characterization of materials to obtain a better fundamental understanding of structure/property relationships.

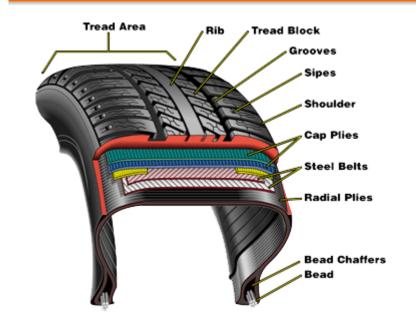

Apply materials and processes to commercially relevant applications to promote technology transfer between OSU and industry.


Thesis Topic Ideas/Opportunities

- Transparent field effect in-situ glucose sensing
- Characterization of amorphous thin film catalysts
- Materials for next generation photoresists

Enabling Moore's Law

Nanostructure Enhanced Sensing



Dr. Yué Zhang

Assistant Professor (Sr Res) School of Electrical Engineering and Computer Science

- Modeling and Simulation (fiberreinforced composite, polymer, wood)
- Data Field Visualization (fluid and solid mechanics data)
- Image Processing (extract deformation from a sequence of images)

Teaching

ENGR 201(H) : Electrical Fundamentals

ECE599 : Bioelectronic Sys. and Devices

Oregon State

Matt Johnston

School of EECS Kelley Engineering 4097 matthew.johnston@oregonstate.edu

Research

- Biosensors and bioelectronics
- Portable sensor systems
- Micro- and nanofabrication (MEMS, microfluidics)
- Gas sensing, environmental monitoring
- Protein sensing, medical diagnostics

Thesis Topic Ideas/Opportunities

- Low-cost biology and chemistry tools for the developing world
- Wireless sensors for air quality monitoring
- Wearable medical monitoring tools
- Internal sensors for lithium ion batteries

Teaching

ECE 534 Advanced Electric Machines ECE 438/538 Hybrid Electric Vehicles ECE 432/532 Electric Machine Controls

<u>Research</u>

- High power/torque density, high efficiency AC electric machines for road vehicles, aircraft, ships.
- System noise, vibration and harness issues caused by electric machine drive components interaction and mitigation methods applying novel machine design and control strategies.
- Circuit, cooling and packaging design of various types of power converters for vehicle systems.

High voltage: kV High current: kA High power: MW Julia Zhang Energy Systems Group

Assistant Professor, EECS zhangjul@eecs.oregonstate.edu

http://eecs.oregonstate.edu/people/zhang-julia

Thesis Topic Ideas

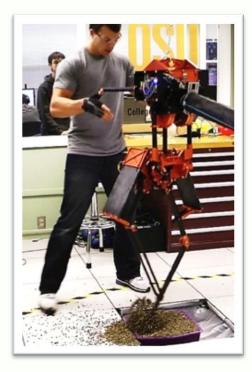
- Electric machine resolver aliasing study (Use finite element method)
- Electric machine winding insulation study
- Characterize GaN based power electronics
- Design of experiments for permanent magnet demagnetization study.

Robotics Oregon State University http://robotics.oregonstate.edu/

October 9, 2015

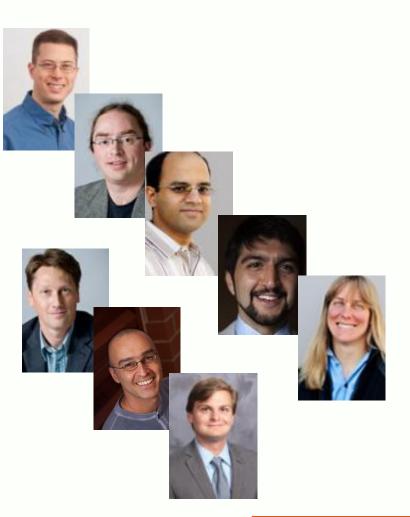
Program Director Kagan Tumer kagan.tumer@oregonstate.edu Co-director Bill Smart bill.smart@oregonstate.edu

We're in the Midst of a New "Industrial Revolution"


• Our robots are

- Cruising the ocean to collect valuable scientific data
- Allowing people with disabilities to retain their independence
- Working in the fruit orchards in the Northwest
- Improving the supply chain of the US Navy
- Helping prevent injuries in foundries
- Improving efficiency of air traffic

Oregon State University: Early Lead in Robotics


- 30+ robotics faculty across OSU
 - Mechanical Engineering
 - Computer Science
 - Electrical Engineering
 - Manufacturing Engineering
 - Oceanography
- Third Ph.D. program in robotics in the US
 - First program in the West
 - One of five in the US
 - 180 applications for 15 positions for Fall 2015
- NSF REU site: *Robots in the Real World* (2014-2017)
 - 10 Undergrads/year for 3 years

OSU Robotics: Undergraduate involvement

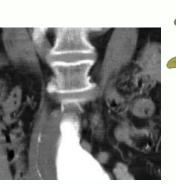
- Building things:
 - Jonathan Hurst, legged robotics
 - Ross Hatton, casting robots
 - Ravi Balasubramanian, tendons for hands
 - Yigit Menguc, soft sensors, actuators
 - Cindy Grimm, bat ears for robots
- Robot-human interaction:
 - Cindy Grimm/Bill Smart, privacy and robots
 - Bill Smart, automatic wheel chair control
 - Kagan Tumer, long term space missions
- Exploring of the world:
 - Geoff Hollinger, underwater and aerial
 - Kagan Tumer, many, many robots

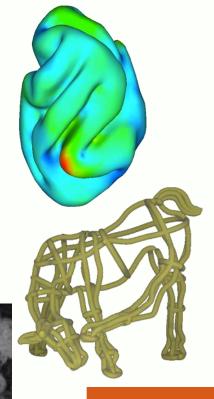
Home of OSU Robotics: Graf Hall

Robotics and Human Control Systems Ravi Balasubramanian

- Research Interests:
 - Robotic Control and Dynamics
 - Human neuro-biomechanics
- Applications:
 - Mobile Robotics
 - Robotic Hands
 - Robotic Manipulation
 - Biomedical implants

Oregon St




Modeling and Human Computer Interfaces Cindy Grimm

- Research Interests:
 - Shape analysis for biomedical applications
 - Geometric modeling
 - User interfaces
- Applications:
 - How do heart defects form?
 - How does bat ear shape influence sonar function?
 - How do brains develop?
 - 3D Image Segmentation
 - Sketching 3D shapes

Oregon

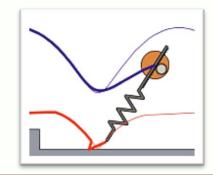
Robotics and Applied Mechanics Ross Hatton

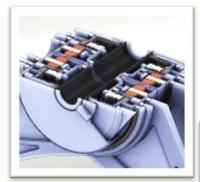
- Research Interests:
 - Robotic control and dynamics
 - Applied geometric mechanics
 - Snake robots and full-body locomotion
 - Casting manipulation (free cables and whip-like objects)
 - Spiders and spider webs
 - Vibration
- Applications:
 - Locomotion in novel environments
 - Distributed mechanical sensing
 - Micro air vehicle monitoring and interception
 - Biological understanding

Oregon

Robotic Decision Making Laboratory Geoff Hollinger

- Research Interests:
 - Robot motion planning
 - Autonomous robots
 - Machine learning
 - Multi-robot systems
- Applications:
 - Inspection and monitoring
 - Aerial and marine robotics
 - Agricultural robotics
 - Ubiquitous sensing





Legged Robotics and Passive Dynamics Jonathan Hurst

- Research Interests:
 - Legged Locomotion
 - Legged Control Strategies
 - Emphasis on Robot Prototypes
 - Improving Robotic Actuators
- Applications
 - Dynamic running on rugged terrain
 - Agile field robots
 - Human-assistive "co-robots"
 - Prosthetics

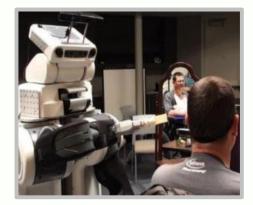
Biologically-Inspired and Soft Robotics Yiğit Mengüç

- Research Interests:
 - Soft sensors and actuators
 - Gecko-inspired adhesion
 - Wearable soft robotics
 - 3D printing
 - Laser micromachining
 - Material selection in robot design
- Applications:
 - Smart clothing
 - Robotic fabric and rubber prostheses/orthoses
 - Wall-climbing search and rescue robotics
 - Pressure-resistant deep sea robotics

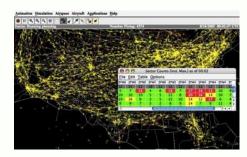
Oregon S

Personal Robotics & Machine Learning Bill Smart

Research Interests:


-Human-robot interaction

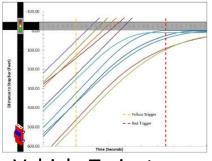
- -Long-term robot autonomy
- -Shared-autonomy human-robot systems
- -Open-source software architectures for robotics
- -Robots in the theatre
- -Machine learning for the control of physical systems
- -Advanced user interfaces for robot assistants
- Applications:
 - -Body surrogates for persons with severe motor disabilities
 - -Robot assistants for industrial tasks
 - -Biomechanical modeling and optimization



Autonomous Agents and Distributed Intelligence Kagan Tumer

- Research Interests:
 - Multi-Robot Coordination
 - Autonomous Robots
 - Control of Complex systems
 - Multi-objective Optimization
 - Evolutionary Algorithms
- Applications:
 - Robot navigation
 - Multiple autonomous vehicle coordination
 - Traffic flow optimization
 - UAV traffic management
 - Energy system control
 - Wave energy buoy shape optimization

Oregon



Driving Simulator

Bicycle Simulator

Vehicle Trajectory

Object Rendering

Eye Tracking in the field and lab

David S. Hurwitz

Associate Professor School of Civil & Construction Engineering Director OSU Driving & Bicycling Research Lab Owen 305 541-737-9242 david.hurwitz@oregonstate.edu

Thesis Topic Ideas/Opportunities

Traffic Control Devices:

- Determine the effectiveness of innovative signs, signals, pavement markings

Transportation User Behavior:

- Assess glance patterns, perception reaction times, and comprehension of drivers, pedestrians, and cyclists

Safety:

- Determine the contributing causes of a particular crash type (i.e. right hook crashes at signalized intersections)

Engineering Education:

- Identify commonly held misconceptions regarding an aspect of transportation engineering (i.e. signalized intersection design)

Oregon State

Teaching

- Transportation Engineering
- Transportation System Analysis and Planning
- Traffic Flow Analysis and Control
- Traffic Modeling and Simulation

<u>Haizhong Wang</u> School of Civil and Construction Engineering; Owen 307 541-737-

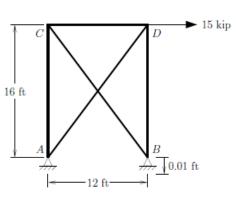
8538haizhong.wang@oregonstate.

<u>edu</u>

Research

The impacts of emerging technologies such as connected vehicle or autonomous vehicle on traffic operation and infrastructure management.

The Agent-based Modeling and Simulation of Evacuees' Decision-Making in Near-field Tsunami.


The Post-disaster Transportation Network Resiliency and Recovery.

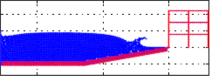
Thesis Topic Ideas/Opportunities

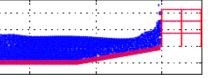
- Connected/Automated Vehicles and Their Implications to Future Driving
- Smart Cities and Big Data Initiatives in Transportation
- An Agent-based Modeling and Simulation of Individual or Group Movements in Emergency

Oregon State

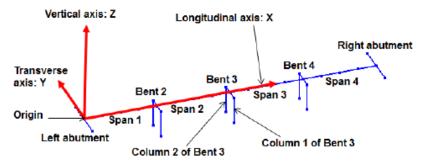
Teaching (this year)

- Statics (ENGR 211)
- Structural Theory II (CE 382)
- Matrix Structural Analysis (CE 585)
- Nonlinear Structural Analysis (CE 537)


Michael H. Scott


Associate Professor School of Civil & Construction Engineering Owen 346 541-737-6996

michael.scott@oregonstate.edu
web.engr.oregonstate.edu/~mhscott


Some Current Research

Simulation of fluid-structure interaction

Earthquake simulation of highway bridges

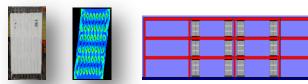
<u>Thesis Topic</u> Ideas/Opportunities

- Validate numerical simulation models for tsunami loading on bridges
- Calibrate earthquake simulation models across disparate software packages
- Develop OpenSees/Python educational modules for courses in engineering mechanics and structural analysis

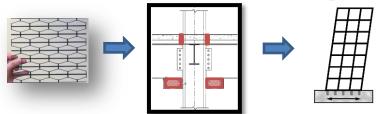
Oregon State

Teaching (this year)

- Seismic design of steel buildings
- Design loads for buildings
- Design of steel structures (intro to design of steel members, connections and systems)


<u>Judy Liu</u>

Professor School of Civil & Construction Engineering Owen 242 541-737-1552


judy.liu@oregonstate.edu

Some Current Research

 Steel slit panel frames for seismic design of steel buildings

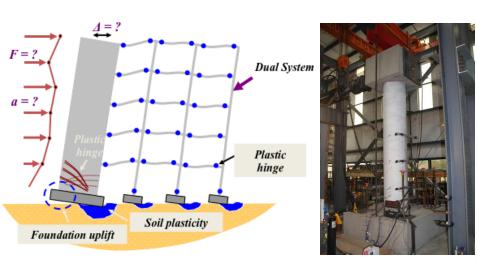
 3D-printed energy dissipation elements and seismic fuses for steel buildings

<u>Thesis Topic</u> Ideas/Opportunities

- Innovate and optimize steel slit panel geometries for multi-hazard design (e.g., earthquake, windstorm, disproportionate collapse resistance)
- Refine modeling and design tools for steel slit panel frames
- Design 3D-printed energy dissipation elements or seismic fuses for steel buildings

Oregon State

Teaching (this year)


- CE 382 Structural Theory (spring)
- Probabilistic design and analysis of structures
- Performance-based design

Andre Barbosa

Assistant Professor & Kearney Faculty Scholar School of Civil & Construction Engineering Owen 342 541-737-7291 Andre.Barbosa@oregonstate.edu

Some Current Research

Soil-structure Interaction

Lab Testing

<u>Thesis Topic</u> Ideas/Opportunities

- Computer modeling of building models to multi-hazard loadings (e.g., earthquake, windstorm)
- Design and testing of rocking crosslaminated timber structures
- Design and testing of reinforced concrete columns retrofitted with titanium rebars
- Fiber-reinforced concrete bridge column modeling and testing

Oregon State

<u>Teaching</u>

- Introduction to CBEE
- Polymer Science and Engineering
- Transport Phenomena
- UHC Colloquia Plastics for Poets and Energy IQ

Skip Rochefort

School of Chemical, Biological, and Environmental Engineering Gleeson 205 541-737-2408

skip.rochefort@oregonstate.edu

Research

Anything related to POLYMERS!

Biomaterials Environmental Sustainability Engineering Education K-12 Outreach

Thesis Topic Ideas/Opportunities

- Plastics Recycling Building Insulation in Third World Countries and Green Building
- Plastics Recycling 3D printing filaments
- Equine Synovial Fluid Characterization for treatment of Lameness in Horses (with VetMed)
- Hydrogels for Spinal Disc Replacement
- Biodegradeable agricultural films from waste biomass for organic farming
- ... or anything that might interest You and Me!

Teaching

- <u>CBEE 102: Engineering and Problem</u>
 <u>Solving Fundamentals</u>
- HC 407: Exploring the Magic of Engineering Physics
- <u>CHE 525: ChemE Analysis</u>
- <u>CHE 514: Fluid Flow</u>
- <u>CHE 599: Colloids & Interfaces</u>

Research

I am a *transport engineer*, who develops both theoretical and experimental methods to study complex fluids, soft solids, miscible fluid interactions, and biological systems. I am interested in multiphase systems and mechanics of materials.

My ultimate goal is to provide detailed insight into the macroscopic characteristics of materials and processes through an in-depth understanding of the fundamental physics found at a molecular level.

Travis Walker

Assistant Professor of CBEE Faculty of Materials Science

web.engr.oregonstate.edu/~walkert2 travis.walker@oregonstate.edu

ravis.waiker@oregonstate.ea

Thesis Topic Ideas

- Dilatational interfacial viscosity
- Biofilm characterization
- Magnetic bead microrheology
- Chocolate 3D printer
- Fibrin formation

Research

Human Factors/Ergonomics in Operating Room

Work Safety

Touch Control

Xinhui Zhu School of Mechanical, Industrial, and Manufacturing Engineering

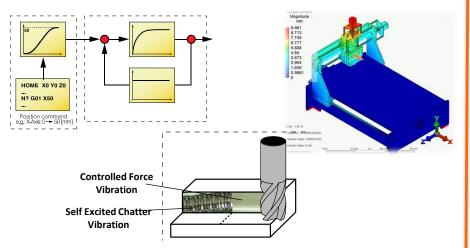
Dearborn 108 Xinhui.Zhu@oregonstate.edu

Thesis Topic Ideas/Opportunities

- Investigate relationships between workrelated factors and musculoskeletal injuries/disorders for divers occupations including surgeons and office workers
- Evaluate the usability of touch control devices, such as smartphone and laptop

Oregon State

MFGE 336: Production Engineering


General understanding of the production engineering function within industry and process design.

MFGE 437: Comp. Control of Manu. **Process**

Automated manufacturing system design and operations.

MFGE 599: Precision Motion **Generation**

- **Dynamics and Controls**
- Optimization
- **Process Machine Interaction**

ocess Contra on MPLC MPLC **Burak Sencer, Ph.D Assistant Professor**

MIME - Advanced Manufacturing Manufacturing Process Control Laboratory http://research.engr.oregonstate.edu/mpcl/

full (non-proportional damping) FRF: displacament

Design of a Automatic **Dynamics** Identification Software on Matlab/Dspace III.

at

Design of a Precision Linear Motor Driven Motion Stage

Milling Cutting **Process Simulation** Software

Oregon State

Teaching

- MIME 101: Intro. to MIME
- ME 373: Mech. Eng. Methods
- ME 331: Intro. Fluid Mechanics

Kyle Niemeyer

Assistant Professor, MIME Rogers 320

kyle.niemeyer@oregonstate.edu www.kyleniemeyer.com

Research

- Combustion modeling
- Computational fluid dynamics
- High performance computing; graphics processing units

Thesis Topic Ideas/Opportunities

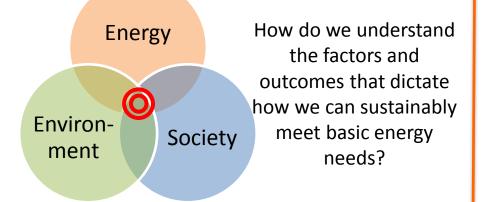
- Reduce chemical model for hydrocarbon fuels
- Simulate turbulent flames
- Simulate fluid-structure interaction

<u>Teaching</u>

Introduction to MIME Thermal-Fluid Sciences Humanitarian Engineering

→ Developing an interdisciplinary study Abroad course for this summer

Nordica MacCarty


Assistant Professor Mechanical Engineering 309 Dearborn nordica.maccarty@oregonstate.edu

Thesis Topic Ideas

Research

Imagine if the only energy you could access was provided by a three-stone fire...

Modeling...

Oregon State

- Adoption and usability of energy technologies
- 2. Performance and cost of technologies such as solar water heaters or lighting
- 3. Fuel harvest renewability and climate impact

→ Work with other disciplines across the university

<u>Teaching</u>

- <u>ME 383 Mechanical Component</u> <u>Design</u>
- Mentor of ME Capstone Projects

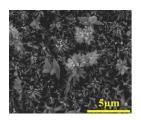
<u>Research</u>

- Waste Heat Recovery --- Combustion Engin e
 Oregon State
 Power Plants, and Data Centers (DOD ICE, DOE
 Supertruck, Facebook)
- Energy Storage/Conversion --- Alternatives to Batteries to Enable Renewables
- Thermal Management and Engine Emission Technology Enhancement



<u>Hailei Wang</u>

Research Assistant Professor MBI, HP Building 11 541-713-1354

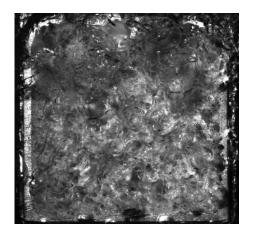

Hailei.wang@oregonstate.edu

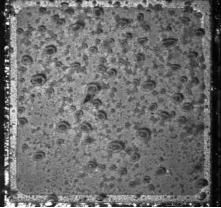
Thesis Topic Ideas/Opportunities

- High Performance, Low Cost and Low Impact
 Heat Exchangers
- Supercooling for Energy Storage/Desalination
- Boiling Enhancement Using Nanofilms
- Dual Functional Catalytic converters
- Hydrogen Storage for Fuel Cell Vehicles
- Solar thermal and PV interactions

MIME

Mechanical Engineering Thermal Fluid Sciences Dr. Joshua Gess joshua.gess@oregonstate.edu Dearborn 113


Electronics Thermal Management


Air Ricsonling is the edge merent sycar Cepatient for a of

What do I get to play with?

High Speed Camera

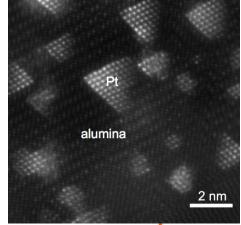
Oregon State

Teaching

Winter 2016:

MATS 581 Thermodynamics of Solids

In planning for 2016/17:


Course(s) on transmission electron microscopy theory and practice

Research

Experimental studies on:

- kinetics of phase transformations
- interface science

Transmission electron microscopy techniques play a key role in the research program for characterizing materials from the nano- to the atomic scale.

Melissa K. Santala

Assistant Professor School of Mechanical, Industrial, and Manufacturing Engineering 307 Dearborn Hall

melissa.santala@oregonstate.edu

Thesis Topic Opportunities

 Crystallization kinetics of phase change materials for memory

devices

 Characterization of metaloxide interfaces related to catalysis

Undergraduate projects may focus on processing or characterization techniques complementary to TEM

Teaching

- Capstone Design
- Solid Mechanics
- Component Design
- Mechanical Mechanisms

John P. Parmigiani School of Mechanical, Industrial,

and Manufacturing Engineering; Dearborn 303F 541-737-7023

parmigjo@engr.orst.ed**u**

Research

Computational (e.g. FEA) modeling, typically with experimental validation, of mechanical and material systems. Design, fabrication, and testing of technically interesting and relevant mechanical devices

Current project topics include chainsaw lubrication and safety, characterization of high-performance adhesives, modeling of carbon fiber panels, and cutting mechanics.

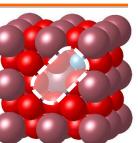
Thesis Topic Ideas/Opportunities

- OFF-GRID WATER SYSTEM: Fairfield Farm is a certified organic farm. Currently, water is provided by an electric pump. When the power is out, there is no access to water. This is an opportunity to create a water system using solar, wind, and perhaps even bicycle power.
- CHAINSAW PERFORMANCE: Participate in the development of improved chainsaws

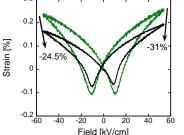
Oregon State

<u>Teaching</u>

- MATS 321 Intro to Materials Science
- MATS 571 Electronic Properties of Materials
- MATS 671 Electronic Properties of Oxides


David Cann

Prof. Materials Science and ME cann@engr.orst.edu


Research

 Synthesis and electronic properties of ceramic materials

Focus on the role of crystal structure and point defects on the dielectric and electromechanical properties

Thesis Topic Ideas/Opportunities

- Ceramic materials with electric-field induced phase transitions:
 - Electric cooling/actuator devices
- Development of new oxygen conductors for use as electrolytes
- Development of new ceramic capacitor materials for high power/high temperature applications

Oregon State

Fall Workshops on:

Who What Where Why: Summer Research Experiences for Undergraduates (REU) (How to find and apply for REU Programs) Alicia Lyman-Holt Director of Undergraduate Research

Winter Workshop on REU essays and personal

statements

Office: 133 Covell Hall 541-737-7008

Alicia.Lyman-Holt@oregonstate.edu

Stop by between 9 am -3 pm or make an appointment