
STEREO VISION APPLYING OPENCV AND RASPBERRY PI

G. Pomaska
University of Applied Sciences Bielefeld, Germany, gp@imagefact.de

Commission II

KEY WORDS: Stereo Vision, OpenCV, Python, Raspberry Pi, Camera Module, Infrared Photography, Image Processing

ABSTRACT:

This article points out the single board computer Raspberry Pi and the related camera modules for image acquisition. Particular
attention is directed to stereoscopic image recording and post processing software applying OpenCV. A design of a camera network
is created and applied to a field application. The OpenCV computer vision library and its Python binding provides some script
samples to encourage users developing their own custom tailored scripts. Stereoscopic recording is intended for extended base lines
without a mechanical bar. Image series will be taken in order to wipe out moving objects from the frames. And finally the NoIR
camera made infrared photography possible with low effort. Computer, accupack and lens board are assembled in a 3D printed
housing operated by a mobile device.

1. INTRODUCTION

1.1 Stereo Vision

Visualizing and extracting spatial information from digital
images, taken from two vantage points, referred to as stereo
vision. Comparing the relative positions of objects in the frames
enables extracting of 3D information as well as in the biological
process. The normal case of stereo vision arranges two cameras
horizontally within in a base distance, pointing in the same
direction. This arrangement results in two different
perspectives. A human may compare the half-pictures of the
stereogram in a stereoscopic device. A computer applies
algorithms to automatically match corresponding points and
store the depth information in a disparity map. Initially the
working chain starts from the camera calibration, followed by
image refinement and stereoscopic image rectification. The
stereoscopic window should be adjusted for convenient
viewing. A disparity map may be converted into a point cloud,
represented by 3D coordinates with a known scale or used for
presentation of spatial scenes in one image by mouse movement
or screen rotation on mobile devices.

1.2 OpenCV and Python

The application programmer has access to the necessary
algorithms by OpenCV an API for solving computer vision
problems. OpenCV incorporates methods for acquiring,
processing and analyzing image data from real scenes.
Interfaces to languages as C++, Java and Python are
implemented on different operating systems. Primary the
OpenCV library was developed since 1999 by Intel Russia. The
cross-platform Software is now available under the BSD
license, free for academic and commercial use. Since 2012
OpenCV is under continuous development of the non-profit
organization OpenCV.org. For beginning programmers
OpenCV Python binding on a Raspberry Pi is placed as a
suitable tool introducing image processing and machine vision.

2. RASPBERRY PI HARDWARE

2.1 Raspberry Pi Boards

Without going to much into detail some remarks about the
computer hardware are listed here. The single board computer
Raspberry Pi was original invented to promote computer
science in schools and education. Today one can find this little
computer in industrial applications as well. By now the number
of sold items is about 20 millions. Current devices are the
Version 3 followed by Version 4 (since June, 2019), the Zero
and the compute modules. A compute module comes as a plug-
in-board with connection pins only on the board itself. A
Raspberry Pi 3B with 1,6 GHz frequency, 1 GB RAM, WLAN
and common interfaces has a street price of around 35 Euro.
The officially supported OS is a free Raspian Linux. A micro
SD-card is used as mass storage. Due to the compactness and
the integrated WLAN adapter the camera stuff presented in this
paper is driven by the RPi Zero W.

2.2 RPi Camera Modules

The Raspberry Pi foundation provides related camera modules
for image acquisition. Successor of the OmniVision Sensor V
1.3 with 5 MP (2592 x 1944 pix) image resolution is version 2,
a Sony IMX219 sensor with an extended image resolution of 8
MP (3280 x 2464 pix). Night vision versions without infrared
filters are even available. The board sizes only 25 x 20 mm,
shortest focus distance is named at approx. 80 cm. M12 mounts

Figure 1. Raspberry Pi Zero W and camera module V1.3

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-265-2019 | © Authors 2019. CC BY 4.0 License.

265

mailto:gp@imagefact.de

can be fixed for use of different lenses. Figure 2 displays the
direct view on the sensor without a lens and the M12 mount for
carrying changeable lenses. Beside the original dismounted
lens, a tele lens and a 120 degree wide angle lens are depicted.
Camera and computer are connected by a ribbon cable plugged

into the CSI interface. The CSI port on the Zero is smaller
therefore the cable differs from the standard shape. ZeroCam
NoIR is a special camera modification for the Zero.

Shell commands raspistill, raspiyuv and raspivid, raspividyuv
can drive the camera for still photography and video recording.
The yuv extension don't use an encoder and writes directly to
the disk. Camera format is 4:3 or 16:9 according to the selected
mode. The camera produces previews only on directly
connected HDMI displays. Small displays beginning from 3.5
inch with low resolutions are offered for monitoring the camera
image. A command for testing the camera may use the
following options:

raspstill -k -t 0 -vf -hf
K switches to keyboard mode, t defines the preview time in ms,
0 is infinitely, vf and hf flip the image vertically and
horizontally. One can quit the mode by pressing the x key.

3. IMAGE ACQUISITION

3.1 Camera Settings

The PiCamera class is a Python API for driving the camera via
software commands. Focusing on stereo vision two cameras
should fire exactly at the same time. The characteristics of a
rolling shutter system do not meet a high demand on
synchronization. Since we consider here a very long base line
and series for image stacking the latency is a minor problem.

If a sync time within 1/1000 s is required, the crowd funding
project StereoPi will comply. StereoPi is an interface board
with two CSI sockets connected to a RPi compute module. The
end user benefits from the application software SLP (StereoPi
Live stream Playground), distributed as a Raspian Linux image
file. For more details about StereoPi visit the projects web site
http://stereopi.com.

As applied in time laps photography images should display
equivalent lightning conditions in brightness, saturation and
color because of intending the later stacking process. A recipe
for capturing consistent images runs as follows: Fix the shutter
speed, define the ISO value, set analog and digital gain to fixed
values, switch exposure mode and white balance off and set
fixed values for automatic white balance gains. First let the
camera warm up 2 seconds and wait for automatic control. A
python script that takes n images within a time delay reads as
follows:
from picamera import PiCamera
import time
import cv2
#
BASEDIR = 'photo/'
n = 7 # number of pictures
delay = 10 # time between pictures
def take_picture(cam,file):
 cam.capture(file)

def viewPicture(file):
 view = cv2.resize(cv2.imread(file),\
 (320,240))
 cv2.imshow(file,view)
 cv2.waitKey(0)

def main():
 cam = PiCamera(resolution=(2592,1944),\
 framerate = 15)
 cam.iso = 200
 time.sleep(2)#wait automatic control
 cam.shutter_speed = cam.exposure_speed
 cam.exposure_mode = 'off'
 g = cam.awb_gains
 cam.awb_mode = 'off'
 cam.awb_gains = g
 for i in range (n): # take n picture
 imName = BASEDIR + '%02d.jpg' %i
 take_picture (cam,imName)
 viewPicture(imName)
 time.sleep(delay)
 cv2.destroyAllWindows()
main()

3.2 A Camera Network

A basic network configuration for stereoscopic imaging is given
as illustrated in figure 3. A mobile router handles the fix IP
addresses of two RPis and connects to a mobile computer
named host here. Additional hardware in this configuration is a
HDMI display and a small thermal printer. The host computer
takes use of a Web interface for further image processing. Image
files are named by a random code. Catching the according QR
codes with a smartphone enables direct download. Random
codes are stored and printed for later downloading from the
internet.

Virtually sync of the cameras can be implemented by GPIO
request or wireless by SSH secure shell protocol or TCP socket
programming. Talking about socket programming is outside the
scope of this paper. Sending a command to a remote computer
via SSH is in python a simple call of a sub process:

Figure 2: Lens modification accessories

Figure 3: Camera network for taking stereograms

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-265-2019 | © Authors 2019. CC BY 4.0 License.

266

import subprocess
cmdLine ='ssh pi@IPremoteComputer \
raspistill -o image.jpg'
subprocess.run(cmdLine)

To avoid password authentification the sshpass tool should be
added to the command like
cmdLine = 'sshpass -p
passwordRemoteComputer ssh ... as
above …

4. IMAGE PROCESSING APPLYING OPENCV

Due to the less stronger computing power of the RPi Zero, the
following procedures are processed on the so called host
computer. The host is a mobile device like a tablet or notebook
or may be an RPi 4. Whereas the camera calibration is a pre-
process, all the other functions follow as post-production.

4.1 Camera Calibration

The OpenCV camera calibration runs as a standard procedure
carried out by taking pictures of a regular point pattern or a
checker board. Points or intersections at the checker board are
detected in the images and stored in the array of image
coordinates, while the according object coordinates are given by
the pattern and a constant z-Value. Comparing the
measurements with the object points provides the camera matrix
and lens distortion for the camera or in case of stereo-rig
calibration for both cameras. Additional the relative position
between the vantage points are given through the rotation
matrix and the translation vector. Following the calibration
image refinement can be executed by transferring image
coordinates about the principle point deviation and lens
distortion removal. After this step the images are presented as
they were taken by a pinhole camera.

4.2 Image Pre-processing

4.2.1 Erase moving objects

Both cameras are calibrated and provide upon request refined
images due to the known camera matrix and distortion
coefficients from a former calibration. Grabbing the images
from the cameras in a predefined data structure is the first step
in the workflow before the stacking process follows.

It is necessary to wipe out moving objects from multiple images
taken from a fixed camera position. We do it by calculating the
median of the images as noted in the script. The code gives
some more information about the power of Python. The
directory server/ is transferred to the function. Applying the
globe module lists all PNG-files. Looping through the list by
reading the images into a numpy array and calling the methods

stack and median enables saving the background extracted
frame.
def stackServer(target='server/'):
 photos = glob.glob(target + '*.png')
 img=[]
 for filename in photos:
 img.append(np.array(Image.open\
 (filename)))
 sequence = np.stack(img,axis=3)
 result = np.median(sequence,axis=3).\
 astype(np.uint8)
 Image.fromarray(result).save\
 ('serverStack.png')
 return

From now on we continue processing only with two images, the
left and right image of the stereogram.

4.3 Histogram Equalization

Pre-processing for balancing images is known as histogram
equalization. It will make dark images less dark and bright
images less bright. OpenCV provides the contrast limited
adaptive histogram equalization method applied to a CLAHE
object. A color image must be first transformed into the YUV
or LAB format. The channels must be split and the L-channel is
processed by the apply method. Subsequent the channels have
to be merged back and the conversion from LAB to BGR
finishes the procedure. Even in landscape shootings is a
significant refinement obtainable. The following code snippet
applied to an infrared image (figure 6) demonstrates the
improvement.

def histogramAdjust(imgFile):
 img1 = cv2.imread(imgFile)
 img1_lab = cv2.cvtColor(img1,\
 cv2.COLOR_BGR2LAB)
 clahe = cv2.createCLAHE(clipLimit=2.0,
 tileGridSize=(8,8))
 img1_lab[:,:,0] = clahe.apply \
 (img1_lab[:,:,0])
 imgRes =
 cv2.cvtColor(img1_yuv,\2
 cv2.COLOR_LAB2BGR)
 cv2.imwrite('clahe' +imgFile, imgRes)
 return

4.4 Stereo Image Rectification

With regard to the geometric conditions an image pair should
have the same image content with minimum hidden parts and a
perfect alignment is requested as well. It is necessary to perform
camera calibration respectively stereo-rig calibration in
advance. The process used to project images onto a common

Figure 5: Histogram equalization applying the CLAHE
method

Figure 4: Calibrating a camera rig with OpenCV

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-265-2019 | © Authors 2019. CC BY 4.0 License.

267

image plane is named image rectification. It differs between the
calibrated and uncalibrated case. The first case takes as input
values the calibration data, the latter needs corresponding points
in the images. The characteristic of rectified images are that all
corresponding lines are parallel to the horizontal axis and that
they have the same vertical values. Finally vertical parallaxes
are eliminated. Figure 6 illustrates the situation of a free hand
taken image pair. Key points are detected by the ORB operator
and matched with the Brute-Fore Matcher. Both algorithms are
made available again by OpenCV. The corresponding points
depict different values in the y-coordinates. The paralle view
image pair underneath in figure 6 is a rectified version and
doesn't show vertical parallaxes anymore. Colours come frome
saturation extension. The uncalibrated rectification algorithm
used here is taken from (Spizhevoy, Rybnikov, 2018) and
assumes calibrated images recorded from good positioned
cameras.

4.5 Stereo Formatting

A stereoscopic image pair has to be converted into a
stereoscopic format for viewing: side-by-side, cross, or
anaglyph are the alternatives. ImageMagick is a professional
tool for editing or composing bitmap images. If it is installed on
the machine a system command can be called like
cmdLine='magick montage -mode concatenate \
leftImage rightImage targetFile'
subprocess.run (cmdLine)
The combination of left and right image is stored in targetFile,
figure 10 and 11 are samples of ImageMagicks montage
command.

Setting the stereoscopic window, the plane that comes with zero
parallax, and cropping the image should be outside the scope of
this paper. Finally we calculate the depth map by instantiate a
stereoSGBM_create object and calculate it with the compute
method taking again benefit oft the OpenCV library.

5. FROM CONCEPT TO APPLICATION

Corresponding with the above delineated network configuration
a hyper base stereoscopic application for taking photographs on
side should be developed. Characteristics of the procedure are
the extreme long base line without a physical base and
subtracting moving objects from the images. That requires
picture taking of sequences followed by a stacking procedure.

To ensure equal lightning conditions exposure is used as
described in chapter 3.1.

5.1 Camera for Field Usage

Figure 7 displays the CAD construction and the 3D printed
parts of a camera housing. The lens board carries two cameras.
One is equipped with a RGB sensor and M12 mount for
changing lenses from tele angle to wide angle. The other is the
NoIR camera equipped with a step up ring to change the
infrared filters with different wavelength protection. The left
camera (called Backbord) will act as the server, the right camera
(called Steuerbord) as a client. The server is used for pointing
and delivering pictures as requested in intervals by the client.
The computer is powered via USB by the battery from inside
the carrier. The camera platform has to be adjusted in the first
step by a bubble level. Pointing 90 degree to the baseline is
supported by software. First the both cameras point to the
opposite camera each other. Afterwards rotation about 90
degrees targets the object. This principle follows the well
known procedure from former photo theodolites. Accuracy of
the adjustment depends on the available hardware and should
comply to the uncalibrated rectification case. By the way, our
camera calibration yield to a focal length of 2.596 pixel at
3280x2464 resolution that gives a horizontal field of view of
about 65 degree.

5.2 User Interface

Since there are any mechanical operating switching missing, the
complete photography runs under software control. We are
talking about headless systems. Booting includes running the
VNC server and starting the application software. We are
connected with fixed IP addresses to a network. There is no
keyboard input intended. Starting the VNC viewer on a mobile
device gives access to a GUI interface. If necessary, the camera
settings may be predefined by a separate panel, that is used for
both cams.

Figure 6: Stereo image rectification, the uncalibrated case

Figure 7: Camera housing design fabricated by a 3D printer

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-265-2019 | © Authors 2019. CC BY 4.0 License.

268

The server script enables pointing along the baseline and
controlling the images. After pointing the camera to the target
object the server hands over the control to the client. Note that
we can easy control the horizontal setting. For distance objects
the parallel direction control is more difficult. Other functions
are provided for taking separate series of photos or back the
current photos up to a random directory. Starting photo taking
is activated by the client script and performed quasi
simultaneously. Consider that we take several photos for
stacking and there is no need for a very short latency. Don't
forget backing the photos up before starting a new job. Talking
here about the File management is outside the aim of this paper.
While the RPi Zero has limited power, post processing and
stereoscopic calculations run on a host computer and don't
effect the field work.

5.3 Infrared Photography

A digital camera sensor collects light from wavelengths approx.
between 400 nm and 1000 nm. To convert the energy into
colour information the light is separated by colour filtering.
Well known is the Bayer-Pattern with two times green and a red
and blue filter to match a pixels colour. In case of the Foveon
sensor the pixel are layered instead of chessboard design.
Protecting the sensor for light outside the visible range,
beginning approx. at 600 nm, a IR blocking filter is assembled
in front of the lens. This filter is missing on the Raspberry Pi
NoIR camera module. If we take photos in daylight with the
NoIR sensor it presents a purple coloured image. For now
keeping out colour near infrared filters block the incoming light
until a certain wavelength. For example 530 nm, 650 nm or 720
nm are customary for outdoor scenes. In landscape

photography it is common to extend the sky by mixing the
colour channels, for example changing blue with red. Figure 10
displays an image taken with a 720 nm filter and channel mixed
between blue and red.

The side-by-side stereo format in figure 10 looks like a
greyscale image but it isn't. Colour information is still available.
Finally the saturation has to be extended for getting the wanted
false colour effect. The final images are deeply influenced by
the existing light conditions and image manipulations as well.
Observe figure 11 and enjoy the artificially output of the scene.

REFERENCES

Image editing software.
https://imagemagick.org

Infrared and ultraviolet photography.
http://www.astrosurf.com/luxorion/photo-ir-uv.htm

OpenCV-Python Tutorials.
https://docs.opencv.org/3.4.7/d6/d00/tutorial_py_root.html

Open source stereoscopic camera based on Raspberry Pi.
http://stereopi.com/

Picamera documentation.
https://picamera.readthedocs.io/en/release-1.13/

Raspberry Pi Foundation. https://www.raspberrypi.org/

Spizhevoy, Alexey, Rybnikov, Aleksandr: OpenCV 3 Computer
Vision with Python Cookbook. Packt Publishing, Birmingham,
2018

Figure 8: VNC viewer window showing the camera settings
panel

Figure 10: Infrared stereo image after channel mixing

Figure 9: GUI interface for taking photographs

Figure 11: Saturation extended, cross view stereo format

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019
6th International Workshop LowCost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W17-265-2019 | © Authors 2019. CC BY 4.0 License.

269

https://picamera.readthedocs.io/en/release-1.13/
http://www.astrosurf.com/luxorion/photo-ir-uv.htm
http://www.astrosurf.com/luxorion/photo-ir-uv.htm

	1. INTRODUCTION
	1.1 Stereo Vision
	1.2 OpenCV and Python

	2. RASPBERRY PI HARDWARE
	2.1 Raspberry Pi Boards
	2.2 RPi Camera Modules

	3. IMAGE ACQUIsiTIoN
	3.1 Camera Settings
	3.2 A Camera Network

	4. IMAGE PROCESSING APPLYING OPENCV
	4.1 Camera Calibration
	4.2 Image Pre-processing
	4.2.1 Erase moving objects

	4.3 Histogram Equalization
	4.4 Stereo Image Rectification
	4.5 Stereo Formatting

	5. From Concept to Application
	5.1 Camera for Field Usage
	5.2 User Interface
	5.3 Infrared Photography

	References

