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Preface

This solutions manual is designed to accompany the ninth edition of Linear Algebra with Applications
by Steven J. Leon. The answers in this manual supplement those given in the answer key of the
textbook. In addition, this manual contains the complete solutions to all of the nonroutine exercises
in the book.

At the end of each chapter of the textbook there are two chapter tests (A and B) and a section
of computer exercises to be solved using MATLAB. The questions in each Chapter Test A are to be
answered as either true or false. Although the true-false answers are given in the Answer Section of the
textbook, students are required to explain or prove their answers. This manual includes explanations,
proofs, and counterexamples for all Chapter Test A questions. The chapter tests labeled B contain
problems similar to the exercises in the chapter. The answers to these problems are not given in the
Answers to Selected Exercises Section of the textbook; however, they are provided in this manual.
Complete solutions are given for all of the nonroutine Chapter Test B exercises.

In the MATLAB exercises. most of the computations are straightforward. Consequently, they
have not been included in this solutions manual. On the other hand, the text also includes questions
related to the computations. The purpose of the questions is to emphasize the significance of the
computations. The solutions manual does provide the answers to most of these questions. There are
some questions for which it is not possible to provide a single answer. For example, some exercises
involve randomly generated matrices. In these cases, the answers may depend on the particular
random matrices that were generated.

Steven J. Leon
sleon@umassd.edu

v
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Chapter1

Matrices and
Systems

of Equations

1 SYSTEMS OF LINEAR EQUATIONS

2. (d)


1 1 1 1 1
0 2 1 −2 1
0 0 4 1 −2
0 0 0 1 −3
0 0 0 0 2


5. (a) 3x1 + 2x2 = 8

x1 + 5x2 = 7
(b) 5x1 − 2x2 + x3 = 3

2x1 + 3x2 − 4x3 = 0
(c) 2x1 + x2 + 4x3 = −1

4x1 − 2x2 + 3x3 = 4
5x1 + 2x2 + 6x2 = −1

1
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2 Chapter 1 • Matrices and Systems of Equations

(d) 4x1 − 3x2 + x3 + 2x4 = 4
3x1 + x2 − 5x3 + 6x4 = 5
x1 + x2 + 2x3 + 4x4 = 8

5x1 + x2 + 3x3 − 2x4 = 7
9. Given the system

−m1x1 + x2 = b1

−m2x1 + x2 = b2

one can eliminate the variable x2 by subtracting the first row from the second. One then
obtains the equivalent system

−m1x1 + x2 = b1

(m1 −m2)x1 = b2 − b1

(a) If m1 6= m2, then one can solve the second equation for x1

x1 =
b2 − b1

m1 −m2

One can then plug this value of x1 into the first equation and solve for x2. Thus, if
m1 6= m2, there will be a unique ordered pair (x1, x2) that satisfies the two equations.

(b) If m1 = m2, then the x1 term drops out in the second equation

0 = b2 − b1

This is possible if and only if b1 = b2.
(c) If m1 6= m2, then the two equations represent lines in the plane with different slopes.

Two nonparallel lines intersect in a point. That point will be the unique solution to
the system. If m1 = m2 and b1 = b2, then both equations represent the same line and
consequently every point on that line will satisfy both equations. If m1 = m2 and b1 6= b2,
then the equations represent parallel lines. Since parallel lines do not intersect, there is
no point on both lines and hence no solution to the system.

10. The system must be consistent since (0, 0) is a solution.
11. A linear equation in 3 unknowns represents a plane in three space. The solution set to a 3×3

linear system would be the set of all points that lie on all three planes. If the planes are
parallel or one plane is parallel to the line of intersection of the other two, then the solution
set will be empty. The three equations could represent the same plane or the three planes
could all intersect in a line. In either case the solution set will contain infinitely many points.
If the three planes intersect in a point, then the solution set will contain only that point.

2 ROW ECHELON FORM

2. (b) The system is consistent with a unique solution (4,−1).
4. (b) x1 and x3 are lead variables and x2 is a free variable.

(d) x1 and x3 are lead variables and x2 and x4 are free variables.
(f) x2 and x3 are lead variables and x1 is a free variable.

5. (l) The solution is (0,−1.5,−3.5).
6. (c) The solution set consists of all ordered triples of the form (0,−α, α).
7. A homogeneous linear equation in 3 unknowns corresponds to a plane that passes through

the origin in 3-space. Two such equations would correspond to two planes through the origin.
If one equation is a multiple of the other, then both represent the same plane through the
origin and every point on that plane will be a solution to the system. If one equation is not
a multiple of the other, then we have two distinct planes that intersect in a line through the

Copyright © 2015 Pearson Education, Inc.



Section 3 • Matrix Arithmetic 3

origin. Every point on the line of intersection will be a solution to the linear system. So in
either case the system must have infinitely many solutions.

In the case of a nonhomogeneous 2× 3 linear system, the equations correspond to planes
that do not both pass through the origin. If one equation is a multiple of the other, then both
represent the same plane and there are infinitely many solutions. If the equations represent
planes that are parallel, then they do not intersect and hence the system will not have any
solutions. If the equations represent distinct planes that are not parallel, then they must
intersect in a line and hence there will be infinitely many solutions. So the only possibilities
for a nonhomogeneous 2× 3 linear system are 0 or infinitely many solutions.

9. (a) Since the system is homogeneous it must be consistent.
13. A homogeneous system is always consistent since it has the trivial solution (0, . . . , 0). If the

reduced row echelon form of the coefficient matrix involves free variables, then there will be
infinitely many solutions. If there are no free variables, then the trivial solution will be the
only solution.

14. A nonhomogeneous system could be inconsistent in which case there would be no solutions.
If the system is consistent and underdetermined, then there will be free variables and this
would imply that we will have infinitely many solutions.

16. At each intersection, the number of vehicles entering must equal the number of vehicles leaving
in order for the traffic to flow. This condition leads to the following system of equations

x1 + a1 = x2 + b1

x2 + a2 = x3 + b2

x3 + a3 = x4 + b3

x4 + a4 = x1 + b4

If we add all four equations, we get

x1 + x2 + x3 + x4 + a1 + a2 + a3 + a4 = x1 + x2 + x3 + x4 + b1 + b2 + b3 + b4

and hence
a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

17. If (c1, c2) is a solution, then

a11c1 + a12c2 = 0
a21c1 + a22c2 = 0

Multiplying both equations through by α, one obtains

a11(αc1) + a12(αc2) = α · 0 = 0
a21(αc1) + a22(αc2) = α · 0 = 0

Thus (αc1, αc2) is also a solution.
18. (a) If x4 = 0, then x1, x2, and x3 will all be 0. Thus if no glucose is produced, then there

is no reaction. (0, 0, 0, 0) is the trivial solution in the sense that if there are no molecules of
carbon dioxide and water, then there will be no reaction.
(b) If we choose another value of x4, say x4 = 2, then we end up with solution x1 = 12,
x2 = 12, x3 = 12, x4 = 2. Note the ratios are still 6:6:6:1.

3 MATRIX ARITHMETIC

1. (e)

 8 −15 11
0 −4 −3

−1 −6 6
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4 Chapter 1 • Matrices and Systems of Equations

(g)

 5 −10 15
5 −1 4
8 −9 6


2. (d)

 36 10 56
10 3 16


5. (a) 5A =

 15 20
5 5

10 35


2A + 3A =

 6 8
2 2
4 14

 +

 9 12
3 3
6 21

 =

 15 20
5 5

10 35


(b) 6A =

 18 24
6 6

12 42


3(2A) = 3

 6 8
2 2
4 14

 =

 18 24
6 6

12 42


(c) AT =

 3 1 2
4 1 7


(AT )T =

 3 1 2
4 1 7

T

=

 3 4
1 1
2 7

 = A

6. (a) A + B =
 5 4 6

0 5 1

 = B + A

(b) 3(A + B) = 3
 5 4 6

0 5 1

 =
 15 12 18

0 15 3


3A + 3B =

 12 3 18
6 9 15

 +
 3 9 0
−6 6 −12


=

 15 12 18
0 15 3


(c) (A + B)T =

 5 4 6
0 5 1

T

=

 5 0
4 5
6 1


AT + BT =

 4 2
1 3
6 5

 +

 1 −2
3 2
0 −4

 =

 5 0
4 5
6 1


7. (a) 3(AB) = 3

 5 14
15 42
0 16

 =

 15 42
45 126
0 48


(3A)B =

 6 3
18 9
−6 12


 2 4

1 6

 =

 15 42
45 126
0 48


A(3B) =

 2 1
6 3

−2 4


 6 12

3 18

 =

 15 42
45 126
0 48
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Section 3 • Matrix Arithmetic 5

(b) (AB)T =

 5 14
15 42
0 16


T

=
 5 15 0

14 42 16


BT AT =

 2 1
4 6

  2 6 −2
1 3 4

 =
 5 15 0

14 42 16


8. (a) (A + B) + C =

 0 5
1 7

 +
 3 1

2 1

 =
 3 6

3 8


A + (B + C) =

 2 4
1 3

 +
 1 2

2 5

 =
 3 6

3 8


(b) (AB)C =

 −4 18
−2 13

  3 1
2 1

 =
 24 14

20 11


A(BC) =

 2 4
1 3

  −4 −1
8 4

 =
 24 14

20 11


(c) A(B + C) =

 2 4
1 3

  1 2
2 5

 =
 10 24

7 17


AB + AC =

 −4 18
−2 13

 +
 14 6

9 4

 =
 10 24

7 17


(d) (A + B)C =

 0 5
1 7

  3 1
2 1

 =
 10 5

17 8


AC + BC =

 14 6
9 4

 +
 −4 −1

8 4

 =
 10 5

17 8


9. (b) x = (2, 1)T is a solution since b = 2a1 +a2. There are no other solutions since the echelon

form of A is strictly triangular.
(c) The solution to Ax = c is x = (− 5

2 ,− 1
4 )T . Therefore c = − 5

2a1 − 1
4a2.

11. The given information implies that

x1 =

 1
1
0

 and x2 =

 0
1
1


are both solutions to the system. So the system is consistent and since there is more than one
solution, the row echelon form of A must involve a free variable. A consistent system with a
free variable has infinitely many solutions.

12. The system is consistent since x = (1, 1, 1, 1)T is a solution. The system can have at most 3
lead variables since A only has 3 rows. Therefore, there must be at least one free variable. A
consistent system with a free variable has infinitely many solutions.

13. (a) It follows from the reduced row echelon form that the free variables are x2, x4, x5. If we
set x2 = a, x4 = b, x5 = c, then

x1 = −2− 2a− 3b− c

x3 = 5− 2b− 4c

and hence the solution consists of all vectors of the form

x = (−2− 2a− 3b− c, a, 5− 2b− 4c, b, c)T

(b) If we set the free variables equal to 0, then x0 = (−2, 0, 5, 0, 0)T is a solution to Ax = b
and hence

b = Ax0 = −2a1 + 5a3 = (8,−7,−1, 7)T

Copyright © 2015 Pearson Education, Inc.



6 Chapter 1 • Matrices and Systems of Equations

14. If w3 is the weight given to professional activities, then the weights for research and teaching
should be w1 = 3w3 and w2 = 2w3. Note that

1.5w2 = 3w3 = w1,

so the weight given to research is 1.5 times the weight given to teaching. Since the weights
must all add up to 1, we have

1 = w1 + w2 + w3 = 3w3 + 2w3 + w3 = 6w3

and hence it follows that w3 = 1
6 , w2 = 1

3 , w1 = 1
2 . If C is the matrix in the example problem

from the Analytic Hierarchy Process Application, then the rating vector r is computed by
multiplying C times the weight vector w.

r = Cw =


1
2

1
5

1
4

1
4

1
2

1
2

1
4

3
10

1
4




1
2

1
3

1
6

 =


43
120

45
120

32
120


15. AT is an n×m matrix. Since AT has m columns and A has m rows, the multiplication AT A

is possible. The multiplication AAT is possible since A has n columns and AT has n rows.
16. If A is skew-symmetric, then AT = −A. Since the (j, j) entry of AT is ajj and the (j, j) entry

of −A is −ajj , it follows that ajj = −ajj for each j and hence the diagonal entries of A must
all be 0.

17. The search vector is x = (1, 0, 1, 0, 1, 0)T . The search result is given by the vector

y = AT x = (1, 2, 2, 1, 1, 2, 1)T

The ith entry of y is equal to the number of search words in the title of the ith book.
18. If α = a21/a11, then 1 0

α 1

  a11 a12

0 b

 =
 a11 a12

αa11 αa12 + b

 =
 a11 a12

a21 αa12 + b


The product will equal A provided

αa12 + b = a22

Thus we must choose
b = a22 − αa12 = a22 −

a21a12

a11

4 MATRIX ALGEBRA

1. (a) (A + B)2 = (A + B)(A + B) = (A + B)A + (A + B)B = A2 + BA + AB + B2

For real numbers, ab+ ba = 2ab; however, with matrices AB +BA is generally not equal
to 2AB.

(b)

(A + B)(A−B) = (A + B)(A−B)
= (A + B)A− (A + B)B
= A2 + BA−AB −B2

For real numbers, ab − ba = 0; however, with matrices AB − BA is generally not equal
to O.

Copyright © 2015 Pearson Education, Inc.



Section 4 • Matrix Algebra 7

2. If we replace a by A and b by the identity matrix, I, then both rules will work, since

(A + I)2 = A2 + IA + AI + B2 = A2 + AI + AI + B2 = A2 + 2AI + B2

and
(A + I)(A− I) = A2 + IA−AI − I2 = A2 + A−A− I2 = A2 − I2

3. There are many possible choices for A and B. For example, one could choose

A =
 0 1

0 0

 and B =
 1 1

0 0


More generally if

A =
 a b

ca cb

 B =
 db eb

−da −ea


then AB = O for any choice of the scalars a, b, c, d, e.

4. To construct nonzero matrices A, B, C with the desired properties, first find nonzero matrices
C and D such that DC = O (see Exercise 3). Next, for any nonzero matrix A, set B = A+D.
It follows that

BC = (A + D)C = AC + DC = AC + O = AC

5. A 2× 2 symmetric matrix is one of the form

A =
 a b

b c


Thus

A2 =
 a2 + b2 ab + bc

ab + bc b2 + c2


If A2 = O, then its diagonal entries must be 0.

a2 + b2 = 0 and b2 + c2 = 0

Thus a = b = c = 0 and hence A = O.
6. Let

D = (AB)C =
 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

  c11 c12

c21 c22


It follows that

d11 = (a11b11 + a12b21)c11 + (a11b12 + a12b22)c21

= a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21

d12 = (a11b11 + a12b21)c12 + (a11b12 + a12b22)c22

= a11b11c12 + a12b21c12 + a11b12c22 + a12b22c22

d21 = (a21b11 + a22b21)c11 + (a21b12 + a22b22)c21

= a21b11c11 + a22b21c11 + a21b12c21 + a22b22c21

d22 = (a21b11 + a22b21)c12 + (a21b12 + a22b22)c22

= a21b11c12 + a22b21c12 + a21b12c22 + a22b22c22

If we set

E = A(BC) =
 a11 a12

a21 a22

  b11c11 + b12c21 b11c12 + b12c22

b21c11 + b22c21 b21c12 + b22c22


then it follows that

e11 = a11(b11c11 + b12c21) + a12(b21c11 + b22c21)
= a11b11c11 + a11b12c21 + a12b21c11 + a12b22c21

Copyright © 2015 Pearson Education, Inc.



8 Chapter 1 • Matrices and Systems of Equations

e12 = a11(b11c12 + b12c22) + a12(b21c12 + b22c22)
= a11b11c12 + a11b12c22 + a12b21c12 + a12b22c22

e21 = a21(b11c11 + b12c21) + a22(b21c11 + b22c21)
= a21b11c11 + a21b12c21 + a22b21c11 + a22b22c21

e22 = a21(b11c12 + b12c22) + a22(b21c12 + b22c22)
= a21b11c12 + a21b12c22 + a22b21c12 + a22b22c22

Thus
d11 = e11 d12 = e12 d21 = e21 d22 = e22

and hence
(AB)C = D = E = A(BC)

9.

A2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 A3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


and A4 = O. If n > 4, then

An = An−4A4 = An−4O = O

10. (a) The matrix C is symmetric since

CT = (A + B)T = AT + BT = A + B = C

(b) The matrix D is symmetric since

DT = (AA)T = AT AT = A2 = D

(c) The matrix E = AB is not symmetric since

ET = (AB)T = BT AT = BA

and in general, AB 6= BA.
(d) The matrix F is symmetric since

FT = (ABA)T = AT BT AT = ABA = F

(e) The matrix G is symmetric since

GT = (AB + BA)T = (AB)T + (BA)T = BT AT + AT BT = BA + AB = G

(f) The matrix H is not symmetric since

HT = (AB −BA)T = (AB)T − (BA)T = BT AT −AT BT = BA−AB = −H

11. (a) The matrix A is symmetric since

AT = (C + CT )T = CT + (CT )T = CT + C = A

(b) The matrix B is not symmetric since

BT = (C − CT )T = CT − (CT )T = CT − C = −B

(c) The matrix D is symmetric since

AT = (CT C)T = CT (CT )T = CT C = D

(d) The matrix E is symmetric since

ET = (CT C − CCT )T = (CT C)T − (CCT )T

= CT (CT )T − (CT )T CT = CT C − CCT = E

Copyright © 2015 Pearson Education, Inc.



Section 4 • Matrix Algebra 9

(e) The matrix F is symmetric since

FT = ((I + C)(I + CT ))T = (I + CT )T (I + C)T = (I + C)(I + CT ) = F

(e) The matrix G is not symmetric.

F = (I + C)(I − CT ) = I + C − CT − CCT

FT = ((I + C)(I − CT ))T = (I − CT )T (I + C)T

= (I − C)(I + CT ) = I − C + CT − CCT

F and FT are not the same. The two middle terms C −CT and −C + CT do not agree.
12. If d = a11a22 − a21a12 6= 0, then

1
d

 a22 −a12

−a21 a11

  a11 a12

a21 a22

 =


a11a22 − a12a21

d
0

0 a11a22 − a12a21
d

 = I

 a11 a12

a21 a22

 [
1
d

 a22 −a12

−a21 a11

]
=


a11a22 − a12a21

d
0

0 a11a22 − a12a21
d

 = I

Therefore
1
d

 a22 −a12

−a21 a11

 = A−1

13. (b)
−3 5

2 −3


14. If A were nonsingular and AB = A, then it would follow that A−1AB = A−1A and hence

that B = I. So if B 6= I, then A must be singular.
15. Since

A−1A = AA−1 = I

it follows from the definition that A−1 is nonsingular and its inverse is A.
16. Since

AT (A−1)T = (A−1A)T = I

(A−1)T AT = (AA−1)T = I

it follows that
(A−1)T = (AT )−1

17. If Ax = Ay and x 6= y, then A must be singular, for if A were nonsingular, then we could
multiply by A−1 and get

A−1Ax = A−1Ay

x = y

18. For m = 1,
(A1)−1 = A−1 = (A−1)1

Assume the result holds in the case m = k, that is,

(Ak)−1 = (A−1)k

It follows that
(A−1)k+1Ak+1 = A−1(A−1)kAkA = A−1A = I

and
Ak+1(A−1)k+1 = AAk(A−1)kA−1 = AA−1 = I
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10 Chapter 1 • Matrices and Systems of Equations

Therefore
(A−1)k+1 = (Ak+1)−1

and the result follows by mathematical induction.
19. If A2 = O, then

(I + A)(I −A) = I + A−A + A2 = I

and
(I −A)(I + A) = I −A + A + A2 = I

Therefore I −A is nonsingular and (I −A)−1 = I + A.
20. If Ak+1 = O, then

(I + A + · · ·+ Ak)(I −A) = (I + A + · · ·+ Ak)− (A + A2 + · · ·+ Ak+1)
= I −Ak+1 = I

and

(I −A)(I + A + · · ·+ Ak) = (I + A + · · ·+ Ak)− (A + A2 + · · ·+ Ak+1)
= I −Ak+1 = I

Therefore I −A is nonsingular and (I −A)−1 = I + A + A2 + · · ·+ Ak.
21. Since

RT R =
 cos θ sin θ
− sin θ cos θ

  cos θ − sin θ
sin θ cos θ

 =
 1 0

0 1


and

RRT =
 cos θ − sin θ

sin θ cos θ

  cos θ sin θ
− sin θ cos θ

 =
 1 0

0 1


it follows that R is nonsingular and R−1 = RT

22.

G2 =
 cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

 = I

23.

H2 = (I − 2uuT )2 = I − 4uuT + 4uuT uuT

= I − 4uuT + 4u(uT u)uT

= I − 4uuT + 4uuT = I (since uT u = 1)

24. In each case, if you square the given matrix, you will end up with the same matrix.
25. (a) If A2 = A, then

(I −A)2 = I − 2A + A2 = I − 2A + A = I −A

(b) If A2 = A, then

(I − 1
2
A)(I + A) = I − 1

2
A + A− 1

2
A2 = I − 1

2
A + A− 1

2
A = I

and
(I + A)(I − 1

2
A) = I + A− 1

2
A− 1

2
A2 = I + A− 1

2
A− 1

2
A = I

Therefore I + A is nonsingular and (I + A)−1 = I − 1
2A.

26. (a)

D2 =


d2
11 0 · · · 0
0 d2

22 · · · 0
...
0 0 · · · d2

nn
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Since each diagonal entry of D is equal to either 0 or 1, it follows that d2
jj = djj , for

j = 1, . . . , n and hence D2 = D.
(b) If A = XDX−1, then

A2 = (XDX−1)(XDX−1) = XD(X−1X)DX−1 = XDX−1 = A

27. If A is an involution, then A2 = I and it follows that

B2 =
1
4
(I + A)2 =

1
4
(I + 2A + A2) =

1
4
(2I + 2A) =

1
2
(I + A) = B

C2 =
1
4
(I −A)2 =

1
4
(I − 2A + A2) =

1
4
(2I − 2A) =

1
2
(I −A) = C

So B and C are both idempotent.

BC =
1
4
(I + A)(I −A) =

1
4
(I + A−A−A2) =

1
4
(I + A−A− I) = O

28. (AT A)T = AT (AT )T = AT A
(AAT )T = (AT )T AT = AAT

29. Let A and B be symmetric n× n matrices. If (AB)T = AB, then

BA = BT AT = (AB)T = AB

Conversely, if BA = AB, then

(AB)T = BT AT = BA = AB

30. (a)

BT = (A + AT )T = AT + (AT )T = AT + A = B

CT = (A−AT )T = AT − (AT )T = AT −A = −C

(b) A = 1
2 (A + AT ) + 1

2 (A−AT )
34. False. For example, if

A =
 2 3

2 3

 , B =
 1 4

1 4

 , x =
 1

1


then

Ax = Bx =
 5

5


however, A 6= B.

35. False. For example, if

A =
 1 0

0 0

 and B =
 0 0

0 1


then it is easy to see that both A and B must be singular, however, A + B = I, which is
nonsingular.

36. True. If A and B are nonsingular, then their product AB must also be nonsingular. Using the
result from Exercise 23, we have that (AB)T is nonsingular and ((AB)T )−1 = ((AB)−1)T . It
follows then that

((AB)T )−1 = ((AB)−1)T = (B−1A−1)T = (A−1)T (B−1)T
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12 Chapter 1 • Matrices and Systems of Equations

5 ELEMENTARY MATRICES

2. (a)
 0 1

1 0

, type I

(b) The given matrix is not an elementary matrix. Its inverse is given by 1
2 0

0 1
3


(c)

 1 0 0
0 1 0

−5 0 1

, type III

(d)

 1 0 0
0 1/5 0
0 0 1

, type II

5. (c) Since
C = FB = FEA

where F and E are elementary matrices, it follows that C is row equivalent to A.

6. (b) E−1
1 =

 1 0 0
3 1 0
0 0 1

, E−1
2 =

 1 0 0
0 1 0
2 0 1

, E−1
3 =

 1 0 0
0 1 0
0 −1 1


The product L = E−1

1 E−1
2 E−1

3 is lower triangular.

L =

 1 0 0
3 1 0
2 −1 1


7. A can be reduced to the identity matrix using three row operations 2 1

6 4

 →
 2 1

0 1

 →
 2 0

0 1

 →
 1 0

0 1


The elementary matrices corresponding to the three row operations are

E1 =
 1 0
−3 1

 , E2 =
 1 −1

0 1

 , E3 =
 1

2 0
0 1


So

E3E2E1A = I

and hence

A = E−1
1 E−1

3 E−1
3 =

 1 0
3 1

  1 1
0 1

  2 0
0 1


and A−1 = E3E2E1.

8. (b)
 1 0
−1 1

  2 4
0 5


(d)

 1 0 0
−2 1 0

3 −2 1


−2 1 2

0 3 2
0 0 2


9. (a)

 1 0 1
3 3 4
2 2 3


 1 2 −3

−1 1 −1
0 −2 3

 =

 1 0 0
0 1 0
0 0 1
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Section 5 • Elementary Matrices 13

 1 2 −3
−1 1 −1

0 −2 −3


 1 0 1

3 3 4
2 2 3

 =

 1 0 0
0 1 0
0 0 1


10. (e)

 1 −1 0
0 1 −1
0 0 1


12. (b) XA + B = C

X = (C −B)A−1

=
 8 −14

−13 19


(d) XA + C = X

XA−XI = −C
X(A− I) = −C
X = −C(A− I)−1

=
 2 −4

−3 6


13. (a) If E is an elementary matrix of type I or type II, then E is symmetric. Thus ET = E is

an elementary matrix of the same type. If E is the elementary matrix of type III formed
by adding α times the ith row of the identity matrix to the jth row, then ET is the
elementary matrix of type III formed from the identity matrix by adding α times the jth
row to the ith row.

(b) In general, the product of two elementary matrices will not be an elementary matrix.
Generally, the product of two elementary matrices will be a matrix formed from the
identity matrix by the performance of two row operations. For example, if

E1 =

 1 0 0
2 1 0
0 0 0

 and E2 =

 1 0 0
0 1 0
2 0 1


then E1 and E2 are elementary matrices, but

E1E2 =

 1 0 0
2 1 0
2 0 1


is not an elementary matrix.

14. If T = UR, then

tij =
n∑

k=1

uikrkj

Since U and R are upper triangular

ui1 = ui2 = · · · = ui,i−1 = 0
rj+1,j = rj+2,j = · · · − rnj = 0

If i > j, then

tij =
j∑

k=1

uikrkj +
n∑

k=j+1

uikrkj

=
j∑

k=1

0 rkj +
n∑

k=j+1

uik0

= 0
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14 Chapter 1 • Matrices and Systems of Equations

Therefore T is upper triangular.
If i = j, then

tjj = tij =
i−1∑
k=1

uikrkj + ujjrjj +
n∑

k=j+1

uikrkj

=
i−1∑
k=1

0 rkj + ujjrjj +
n∑

k=j+1

uik0

= ujjrjj

Therefore
tjj = ujjrjj j = 1, . . . , n

15. If we set x = (2, 1− 4)T , then

Ax = 2a1 + 1a2 − 4a3 = 0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous system has a
nonzero solution, then it must have infinitely many solutions. In particular, if c is any scalar,
then cx is also a solution to the system since

A(cx) = cAx = c0 = 0

Since Ax = 0 and x 6= 0, it follows that the matrix A must be singular. (See Theorem 1.5.2)
16. If a1 = 3a2 − 2a3, then

a1 − 3a2 + 2a3 = 0

Therefore x = (1,−3, 2)T is a nontrivial solution to Ax = 0. It follows from Theorem 1.5.2
that A must be singular.

17. If x0 6= 0 and Ax0 = Bx0, then Cx0 = 0 and it follows from Theorem 1.5.2 that C must be
singular.

18. If B is singular, then it follows from Theorem 1.5.2 that there exists a nonzero vector x such
that Bx = 0. If C = AB, then

Cx = ABx = A0 = 0

Thus, by Theorem 1.5.2, C must also be singular.
19. (a) If U is upper triangular with nonzero diagonal entries, then using row operation II, U can

be transformed into an upper triangular matrix with 1’s on the diagonal. Row operation
III can then be used to eliminate all of the entries above the diagonal. Thus, U is row
equivalent to I and hence is nonsingular.

(b) The same row operations that were used to reduce U to the identity matrix will transform
I into U−1. Row operation II applied to I will just change the values of the diagonal
entries. When the row operation III steps referred to in part (a) are applied to a diagonal
matrix, the entries above the diagonal are filled in. The resulting matrix, U−1, will be
upper triangular.

20. Since A is nonsingular it is row equivalent to I. Hence, there exist elementary matrices
E1, E2, . . . , Ek such that

Ek · · ·E1A = I

It follows that
A−1 = Ek · · ·E1

and
Ek · · ·E1B = A−1B = C

The same row operations that reduce A to I, will transform B to C. Therefore, the reduced
row echelon form of (A | B) will be (I | C).
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21. (a) If the diagonal entries of D1 are α1, α2, . . . , αn and the diagonal entries of D2 are
β1, β2, . . . , βn, then D1D2 will be a diagonal matrix with diagonal entries α1β1, . . . , αnβn

and D2D1 will be a diagonal matrix with diagonal entries β1α1, β2α2, . . . , βnαn. Since
the two have the same diagonal entries, it follows that D1D2 = D2D1.

(b)

AB = A(a0I + a1A + · · ·+ akAk)
= a0A + a1A

2 + · · ·+ akAk+1

= (a0I + a1A + · · ·+ akAk)A
= BA

22. If A is symmetric and nonsingular, then

(A−1)T = (A−1)T (AA−1) = ((A−1)TAT )A−1 = A−1

23. If A is row equivalent to B, then there exist elementary matrices E1, E2, . . . , Ek such that

A = EkEk−1 · · ·E1B

Each of the Ei’s is invertible and E−1
i is also an elementary matrix (Theorem 1.4.1). Thus

B = E−1
1 E−1

2 · · ·E−1
k A

and hence B is row equivalent to A.
24. (a) If A is row equivalent to B, then there exist elementary matrices E1, E2, . . . , Ek such

that
A = EkEk−1 · · ·E1B

Since B is row equivalent to C, there exist elementary matrices H1,H2, . . . ,Hj such that

B = HjHj−1 · · ·H1C

Thus
A = EkEk−1 · · ·E1HjHj−1 · · ·H1C

and hence A is row equivalent to C.
(b) If A and B are nonsingular n× n matrices, then A and B are row equivalent to I. Since

A is row equivalent to I and I is row equivalent to B, it follows from part (a) that A is
row equivalent to B.

25. If U is any row echelon form of A, then A can be reduced to U using row operations, so
A is row equivalent to U . If B is row equivalent to A, then it follows from the result in
Exercise 24(a) that B is row equivalent to U .

26. If B is row equivalent to A, then there exist elementary matrices E1, E2, . . . , Ek such that

B = EkEk−1 · · ·E1A

Let M = EkEk−1 · · ·E1. The matrix M is nonsingular since each of the Ei’s is nonsingular.
Conversely, suppose there exists a nonsingular matrix M such that B = MA. Since M

is nonsingular, it is row equivalent to I. Thus, there exist elementary matrices E1, E2, . . . , Ek

such that
M = EkEk−1 · · ·E1I

It follows that
B = MA = EkEk−1 · · ·E1A

Therefore, B is row equivalent to A.
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16 Chapter 1 • Matrices and Systems of Equations

27. If A is nonsingular, then A is row equivalent to I. If B is row equivalent to A, then using
the result from Exercise 24(a), we can conclude that B is row equivalent to I. Therefore, B
must be nonsingular. So it is not possible for B to be singular and also be row equivalent to
a nonsingular matrix.

28. (a) The system V c = y is given by
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...
1 xn+1 x2

n+1 · · · xn
n+1




c1

c2

...
cn+1

 =


y1

y2

...
yn+1


Comparing the ith row of each side, we have

c1 + c2xi + · · ·+ cn+1x
n
i = yi

Thus
p(xi) = yi i = 1, 2, . . . , n + 1

(b) If x1, x2, . . . , xn+1 are distinct and V c = 0, then we can apply part (a) with y = 0. Thus
if p(x) = c1 + c2x + · · ·+ cn+1x

n, then

p(xi) = 0 i = 1, 2, . . . , n + 1

The polynomial p(x) has n + 1 roots. Since the degree of p(x) is less than n + 1, p(x)
must be the zero polynomial. Hence

c1 = c2 = · · · = cn+1 = 0

Since the system V c = 0 has only the trivial solution, the matrix V must be nonsingular.
29. True. If A is row equivalent to I, then A is nonsingular, so if AB = AC, then we can multiply

both sides of this equation by A−1.

A−1AB = A−1AC

B = C

30. True. If E and F are elementary matrices, then they are both nonsingular and the product
of two nonsingular matrices is a nonsingular matrix. Indeed, G−1 = F−1E−1.

31. True. If a + a2 = a3 + 2a4, then

a + a2 − a3 − 2a4 = 0

If we let x = (1, 1,−1,−2)T , then x is a solution to Ax = 0. Since x 6= 0 the matrix A must
be singular.

32. False. Let I be the 2× 2 identity matrix and let A = I, B = −I, and

C =
 2 0

0 1


Since B and C are nonsingular, they are both row equivalent to A; however,

B + C =
 1 0

0 0


is singular, so it cannot be row equivalent to A.
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6 PARTITIONED MATRICES

2. B = AT A =


aT

1

aT
2
...

aT
n

 (a1,a2, . . . ,an) =


aT

1 a1 aT
1 a2 · · · aT

1 an

aT
2 a1 aT

2 a2 · · · aT
2 an

...
aT

na1 aT
na2 · · · aT

nan


5. (a)

 1 1 1
2 1 2


 4 −2 1

2 3 1
1 1 2

 +
−1
−1

 (1 2 3) =
 6 0 1

11 −1 4


(c) Let

A11 =

 3
5 − 4

5

4
5

3
5

 A12 =
 0 0

0 0


A21 = (0 0) A22 = (1 0)

The block multiplication is performed as follows:

 A11 A12

A21 A22

  AT
11 AT

21

AT
12 AT

22

 =

 A11A
T
11 + A12A

T
12 A11A

T
21 + A12A

T
22

A21A
T
11 + A22A

T
12 A21A

T
21 + A22A

T
22


=

 1 0 0
0 1 0
0 0 0


6. (a)

XY T = x1yT
1 + x2yT

2 + x3yT
3

=
 2

4

  1 2
 +

 1
2

  2 3
 +

 5
3

  4 1


=
 2 4

4 8

 +
 2 3

4 6

 +
 20 5

12 3


(b) Since yix

T
i = (xiyT

i )T for j = 1, 2, 3, the outer product expansion of Y XT is just the
transpose of the outer product expansion of XY T . Thus

Y XT = y1x
T
1 + y2x

T
2 + y3x

T
3

=
 2 4

4 8

 +
 2 4

3 6

 +
 20 12

5 3


7. It is possible to perform both block multiplications. To see this, suppose A11 is a k×r matrix,

A12 is a k × (n− r) matrix, A21 is an (m− k)× r matrix and A22 is (m− k)× (n− r). It is
possible to perform the block multiplication of AAT since the matrix multiplications A11A

T
11,

A11A
T
21, A12A

T
12, A12A

T
22, A21A

T
11, A21A

T
21, A22A

T
12, A22A

T
22 are all possible. It is possible to

perform the block multiplication of AT A since the matrix multiplications AT
11A11, AT

11A12,
AT

21A21, AT
21A11, AT

12A12, AT
22A21, AT

22A22 are all possible.

8. AX = A(x1,x2, . . . ,xr) = (Ax1, Ax2, . . . , Axr)
B = (b1,b2, . . . ,br)
AX = B if and only if the column vectors of AX and B are equal

Axj = bj j = 1, . . . , r

9. (a) Since D is a diagonal matrix, its jth column will have djj in the jth row and the other
entries will all be 0. Thus dj = djjej for j = 1, . . . , n.
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18 Chapter 1 • Matrices and Systems of Equations

(b)

AD = A(d11e1, d22e2, . . . , dnnen)
= (d11Ae1, d22Ae2, . . . , dnnAen)
= (d11a1, d22a2, . . . , dnnan)

10. (a)

UΣ =
 U1 U2

  Σ1

O

 = U1Σ1 + U2O = U1Σ1

(b) If we let X = UΣ, then

X = U1Σ1 = (σ1u1, σ2u2, . . . , σnun)

and it follows that

A = UΣV T = XV T = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σnunvT
n

11.  A−1
11 C

O A−1
22


 A11 A12

O A22

 =

 I A−1
11 A12 + CA22

O I


If

A−1
11 A12 + CA22 = O

then
C = −A−1

11 A12A
−1
22

Let

B =

 A−1
11 −A−1

11 A12A
−1
22

O A−1
22


Since AB = BA = I, it follows that B = A−1.

12. Let 0 denote the zero vector in Rn. If A is singular, then there exists a vector x1 6= 0 such
that Ax1 = 0. If we set

x =
 x1

0


then

Mx =
 A O

O B

  x1

0

 =
 Ax1 + O0

Ox1 + B0

 =
 0

0


By Theorem 1.5.2, M must be singular. Similarly, if B is singular, then there exists a vector
x2 6= 0 such that Bx2 = 0. So if we set

x =
 0

x2


then x is a nonzero vector and Mx is equal to the zero vector.

15.

A−1 =
 O I

I −B

 , A2 =
 I B

B I

 , A3 =
 B I

I 2B


and hence

A−1 + A2 + A3 =
 I + B 2I + B

2I + B I + B
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16. The block form of S−1 is given by

S−1 =
 I −A

O I


It follows that

S−1MS =
 I −A

O I

  AB O
B O

  I A
O I


=

 I −A
O I

  AB ABA
B BA


=

 O O
B BA


17. The block multiplication of the two factors yields I O

B I

  A11 A12

O C

 =
 A11 A12

BA11 BA12 + C


If we equate this matrix with the block form of A and solve for B and C, we get

B = A21A
−1
11 and C = A22 −A21A

−1
11 A12

To check that this works note that

BA11 = A21A
−1
11 A11 = A21

BA12 + C = A21A
−1
11 A12 + A22 −A21A

−1
11 A12 = A22

and hence  I O
B I

  A11 A12

O C

 =
 A11 A12

A21 A22

 = A

18. In order for the block multiplication to work, we must have

XB = S and Y M = T

Since both B and M are nonsingular, we can satisfy these conditions by choosing X = SB−1

and Y = TM−1.
19. (a)

BC =


b1

b2

...
bn

 (c) =


b1c
b2c
...

bnc

 = cb

(b)

Ax = (a1,a2, . . . ,an)


x1

x2

...
xn


= a1(x1) + a2(x2) + · · ·+ an(xn)

(c) It follows from parts (a) and (b) that

Ax = a1(x1) + a2(x2) + · · ·+ an(xn)
= x1a1 + x2a2 + · · ·+ xnan
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20. If Ax = 0 for all x ∈ Rn, then

aj = Aej = 0 for j = 1, . . . , n

and hence A must be the zero matrix.
21. If

Bx = Cx for all x ∈ Rn

then
(B − C)x = 0 for all x ∈ Rn

It follows from Exercise 20 that

B − C = O

B = C

22. (a)  A−1 0
−cT A−1 1

  A a
cT β

  x
xn+1

 =
 A−1 0
−cT A−1 1

  b
bn+1


 I A−1a

0T −cT A−1a + β

  x
xn+1

 =
 A−1b

−cT A−1b + bn+1


(b) If

y = A−1a and z = A−1b

then
(−cT y + β)xn+1 = −cT z + bn+1

xn+1 =
−cT z + bn+1

−cT y + β
(β − cT y 6= 0)

and
x + xn+1A

−1a = A−1b

x = A−1b− xn+1A
−1a = z− xn+1y

MATLAB EXERCISES
1. In parts (a), (b), (c) it should turn out that A1 = A4 and A2 = A3. In part (d) A1 = A3

and A2 = A4. Exact equality will not occur in parts (c) and (d) because of roundoff error.
2. The solution x obtained using the \ operation will be more accurate and yield the smaller

residual vector. The computation of x is also more efficient since the solution is computed
using Gaussian elimination with partial pivoting and this involves less arithmetic than com-
puting the inverse matrix and multiplying it times b.

3. (a) Since Ax = 0 and x 6= 0, it follows from Theorem 1.5.2 that A is singular.
(b) The columns of B are all multiples of x. Indeed,

B = (x, 2x, 3x, 4x, 5x, 6x)

and hence
AB = (Ax, 2Ax, 3Ax, 4Ax, 5Ax, 6Ax) = O

(c) If D = B + C, then
AD = AB + AC = O + AC = AC

4. By construction, B is upper triangular whose diagonal entries are all equal to 1. Thus B is
row equivalent to I and hence B is nonsingular. If one changes B by setting b10,1 = −1/256
and computes Bx, the result is the zero vector. Since x 6= 0, the matrix B must be singular.
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5. (a) Since A is nonsingular, its reduced row echelon form is I. If E1, . . . , Ek are elementary
matrices such that Ek · · ·E1A = I, then these same matrices can be used to transform
(A b) to its reduced row echelon form U . It follows then that

U = Ek · · ·E1(A b) = A−1(A b) = (I A−1b)

Thus, the last column of U should be equal to the solution x of the system Ax = b.
(b) After the third column of A is changed, the new matrix A is now singular. Examining

the last row of the reduced row echelon form of the augmented matrix (A b), we see that
the system is inconsistent.

(c) The system Ax = c is consistent since y is a solution. There is a free variable x3, so the
system will have infinitely many solutions.

(f) The vector v is a solution since

Av = A(w + 3z) = Aw + 3Az = c

For this solution, the free variable x3 = v3 = 3. To determine the general solution just
set x = w + tz. This will give the solution corresponding to x3 = t for any real number
t.

6. (c) There will be no walks of even length from Vi to Vj whenever i + j is odd.
(d) There will be no walks of length k from Vi to Vj whenever i + j + k is odd.
(e) The conjecture is still valid for the graph containing the additional edges.
(f) If the edge {V6, V8} is included, then the conjecture is no longer valid. There is now a

walk of length 1 from V6 to V8 and i + j + k = 6 + 8 + 1 is odd.
8. The change in part (b) should not have a significant effect on the survival potential for the

turtles. The change in part (c) will effect the (2, 2) and (3, 2) of the Leslie matrix. The new
values for these entries will be l22 = 0.9540 and l32 = 0.0101. With these values, the Leslie
population model should predict that the survival period will double but the turtles will still
eventually die out.

9. (b) x1 = c− V x2.
10. (b)

A2k =
 I kB

kB I


This can be proved using mathematical induction. In the case k = 1

A2 =
 O I

I B

  O I
I B

 =
 I B

B I


If the result holds for k = m

A2m =
 I mB

mB I


then

A2m+2 = A2A2m

=
 I B

B I

  I mB
mB I


=

 I (m + 1)B
(m + 1)B I


It follows by mathematical induction that the result holds for all positive integers k.
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(b)

A2k+1 = AA2k =
 O I

I B

  I kB
kB I

 =
 kB I

I (k + 1)B


11. (a) By construction, the entries of A were rounded to the nearest integer. The matrix B =

ATA must also have integer entries and it is symmetric since

BT = (ATA)T = AT (AT )T = ATA = B

(b)

LDLT =
 I O

E I

  B11 O
O F

  I ET

O I


=

 B11 B11E
T

EB11 EB11E
T + F


where

E = B21B
−1
11 and F = B22 −B21B

−1
11 B12

It follows that

B11E
T = B11(B−1

11 )T BT
21 = B11B

−1
11 B12 = B12

EB11 = B21B
−1
11 B11 = B21

EB11E
T + F = B21E

T + B22 −B21B
−1
11 B12

= B21B
−1
11 B12 + B22 −B21B

−1
11 B12

= B22

Therefore
LDLT = B

CHAPTER TEST A
1. The statement is false. If the row echelon form has free variables and the linear system

is consistent, then there will be infinitely many solutions. However, it is possible to have an
inconsistent system whose coefficient matrix will reduce to an echelon form with free variables.
For example, if

A =
 1 1

0 0

 b =
 1

1


then A involves one free variable, but the system Ax = b is inconsistent.

2. The statement is true since the zero vector will always be a solution.
3. The statement is true. A matrix A is nonsingular if and only if it is row equivalent to the

I (the identity matrix). A will be row equivalent to I if and only if its reduced row echelon
form is I.

4. The statement is true. If A is nonsingular, then A is row equivalent to I. So there exist
elementary matrices E1, E2, . . . , Ek, such that

A = EkEk−1 · · ·E1I = EkEk−1 · · ·E1

5. The statement is false. For example, if A = I and B = −I, the matrices A and B are both
nonsingular, but A + B = O is singular.
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6. The statement is false. For example, if A is any matrix of the form

A =
 cos θ sin θ

sin θ − cos θ


Then A = A−1.

7. The statement is false.

(A−B)2 = A2 −BA−AB + B2 6= A2 − 2AB + B2

since in general BA 6= AB. For example, if

A =
 1 1

1 1

 and B =
 0 1

0 0


then

(A−B)2 =
 1 0

1 1

2

=
 1 0

2 1


however,

A2 − 2AB + B2 =
 2 2

2 2

−
 0 2

0 2

 +
 0 0

0 0

 =
 2 0

2 0


8. The statement is false. If A is nonsingular and AB = AC, then we can multiply both sides of

the equation by A−1 and conclude that B = C. However, if A is singular, then it is possible
to have AB = AC and B 6= C. For example, if

A =
 1 1

1 1

 , B =
 1 1

4 4

 , C =
 2 2

3 3


then

AB =
 1 1

1 1

  1 1
4 4

 =
 5 5

5 5


AC =

 1 1
1 1

  2 2
3 3

 =
 5 5

5 5


9. The statement is false. In general, AB and BA are usually not equal, so it is possible for

AB = O and BA to be a nonzero matrix. For example, if

A =
 1 1

1 1

 and B =
−1 −1

1 1


then

AB =
 0 0

0 0

 and BA =
−2 −2

2 2


10. The statement is true. If x = (1, 2,−1)T , then x 6= 0 and Ax = 0, so A must be singular.
11. The statement is true. If b = a1 + a3 and x = (1, 0, 1)T , then

Ax = x1a1 + x2a2 + x3a3 = 1a1 + 0a2 + 1a3 = b

So x is a solution to Ax = b.
12. The statement is true. If b = a1 + a2 + a3, then x = (1, 1, 1)T is a solution to Ax = b, since

Ax = x1a1 + x2a2 + x3a3 = a1 + a2 + a3 = b

If a2 = a3, then we can also express b as a linear combination

b = a1 + 0a2 + 2a3
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Thus y = (1, 0, 2)T is also a solution to the system. However, if there is more than one
solution, then the reduced row echelon form of A must involve a free variable. A consistent
system with a free variable must have infinitely many solutions.

13. The statement is true. An elementary matrix E of type I or type II is symmetric. So in either
case we have ET = E is elementary. If E is an elementary matrix of type III formed from
the identity matrix by adding a nonzero multiple c of row k to row j, then ET will be the
elementary matrix of type III formed from the identity matrix by adding c times row j to
row k.

14. The statement is false. An elementary matrix is a matrix that is constructed by performing
exactly one elementary row operation on the identity matrix. The product of two elementary
matrices will be a matrix formed by performing two elementary row operations on the identity
matrix. For example,

E1 =

 1 0 0
2 1 0
0 0 1

 and E2 =

 1 0 0
0 1 0
3 0 1


are elementary matrices, however;

E1E2 =

 1 0 0
2 1 0
3 0 1


is not an elementary matrix.

15. The statement is true. The row vectors of A are x1yT , x2yT , . . . , xnyT . Note, all of the row
vectors are multiples of yT . Since x and y are nonzero vectors, at least one of these row
vectors must be nonzero. However, if any nonzero row is picked as a pivot row, then since all
of the other rows are multiples of the pivot row, they will all be eliminated in the first step
of the reduction process. The resulting row echelon form will have exactly one nonzero row.

CHAPTER TEST B
1.  1 −1 3 2 1

−1 1 −2 1 −2
2 −2 7 7 1

 →

 1 −1 3 2 1
0 0 1 3 −1
0 0 1 3 −1


→

 1 −1 0 −7 4
0 0 1 3 −1
0 0 0 0 0


The free variables are x2 and x4. If we set x2 = a and x4 = b, then

x1 = 4 + a + 7b and x3 = −1− 3b

and hence the solution set consists of all vectors of the form

x =


4 + a + 7b

a
−1− 3b

b


2. (a) A linear equation in 3 unknowns corresponds to a plane in 3-space.

(b) Given 2 equations in 3 unknowns, each equation corresponds to a plane. If one equation
is a multiple of the other, then the equations represent the same plane and any point on
the that plane will be a solution to the system. If the two planes are distinct, then they
are either parallel or they intersect in a line. If they are parallel they do not intersect, so
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