Stiffness Coefficients for a Flexural Element

Ahmed Elgamal

Stiffness coefficients for a flexural element (neglecting axial deformations), Appendix 1, Ch. 1 Dynamics of Structures by Chopra.

To obtain k coefficients in $1^{\text {st }}$ column of stiffness matrix, move $u_{1}=1, u_{2}=u_{3}=u_{4}=0$, and find forces and moments needed to maintain this shape.

These are (see structures textbook)

Note that Σ Forces $=0$ Σ Moments $=0$

$$
\Sigma \mathrm{M}=\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}}-\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}}=0
$$

i.e. remember $\frac{12 E I}{\mathbf{L}^{3}}$, and you
can find other forces \& moments

$$
\underline{\mathrm{k}}=\left[\begin{array}{llll}
\mathrm{k}_{11} & \mathrm{k}_{12} & \mathrm{k}_{13} & \mathrm{k}_{14} \\
\mathrm{k}_{21} & \mathrm{k}_{22} & \mathrm{k}_{23} & \mathrm{k}_{24} \\
\mathrm{k}_{31} & \mathrm{k}_{32} & \mathrm{k}_{33} & \mathrm{k}_{34} \\
\mathrm{k}_{41} & \mathrm{k}_{42} & \mathrm{k}_{43} & \mathrm{k}_{44}
\end{array}\right] \quad \mathrm{k}_{\mathrm{ij}}=\underline{\mathrm{k}}, \text { where } \mathrm{i} \text { is row number }
$$

$$
\underline{\mathrm{k}}=\frac{\mathrm{EI}}{\mathrm{~L}^{3}}\left[\begin{array}{c}
12 \\
-12 \\
-6 \mathrm{~L} \\
-6 \mathrm{~L}
\end{array}\right.
$$

$$
\mathrm{u}_{2}=1, \mathrm{u}_{1}=\mathrm{u}_{3}=\mathrm{u}_{4}=0
$$

$$
\mathrm{u}_{3}=1, \mathrm{u}_{1}=\mathrm{u}_{2}=\mathrm{u}_{4}=0
$$

$\underline{k}=\left[\begin{array}{c}\frac{-6 \mathrm{EI}}{\mathrm{L}^{2}} \\ \frac{6 \mathrm{EI}}{\mathrm{L}^{2}} \\ \frac{4 \mathrm{EI}}{\mathrm{L}} \\ \frac{2 \mathrm{EI}}{\mathrm{L}}\end{array}\right]$

$$
u_{4}=1, u_{1}=u_{2}=u_{3}=0
$$

Example: Water Tank

m is lumped at a point \& does not contribute in rotation
u_{2} above was u_{3} in the earlier section of these notes

Example: Water Tank (continued)

Example: Water Tank (continued)

Static Condensation:

Way to solve a smaller system of equations by eliminating degrees of freedom with zero mass.
e.g., in the above, the $2^{\text {nd }}$ equation gives

$$
\frac{-6 \mathrm{EI}}{\mathrm{~L}^{2}} \mathrm{u}_{1}+\frac{4 \mathrm{EI}}{\mathrm{~L}} \mathrm{u}_{2}=0
$$

or

$$
\mathrm{u}_{2}=\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \frac{\mathrm{~L}}{4 \mathrm{EI}} \mathrm{u}_{1}=\frac{6}{4 \mathrm{~L}} \mathrm{u}_{1}=\frac{3}{2 \mathrm{~L}} \mathrm{u}_{1}
$$

Example: Water Tank (continued)

Substitute * into Equation 1

$$
m \ddot{u}_{1}+\left(\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}}-\frac{6 \mathrm{EI}}{\mathrm{~L}^{2}} \frac{3}{2 \mathrm{~L}}\right) \mathrm{u}_{1}=-\mathrm{m} \ddot{u}_{\mathrm{g}}
$$

or,

$$
m \ddot{u}_{1}+\left(\frac{24 \mathrm{EI}-18 \mathrm{EI}}{2 \mathrm{~L}^{3}}\right) \mathrm{u}_{1}=-\mathrm{m} \ddot{u}_{\mathrm{g}}
$$

or,

$$
m \ddot{u}_{1}+\left(\frac{3 E I}{L^{3}}\right) u_{1}=-m \ddot{u}_{g}
$$

Now, solve for u_{1} and u_{2} can be evaluated from Equation * above.
Static condensation can be applied to large MDOF systems of equations, the same way as shown above.

Example: Water Tank (continued)

$$
\text { mü }_{1}+\left(\frac{3 E I}{L^{3}}\right) \mathrm{u}_{1}=-\mathrm{m} \ddot{\mathrm{u}}_{\mathrm{g}}
$$

Mandatory Reading

Example 9.4 page 362-364

Example 9.8 page 368-369
Sample Exercises: 9.5, 9.8, \& 9.9

Example

(a)

(b)

$$
u_{1}=1, u_{2}=u_{3}=u_{4}=0
$$

$$
k_{11}
$$

(c)

(e)

(f)

(h)

$$
u_{4}=1, u_{1}=u_{2}=u_{3}=0
$$

(i)

(j)

therefore,

Sample Exercise: For the above cantilever system, write equation of motion and perform static condensation to obtain a 2 DOF system.

Column Stiffness (lateral vibration)

(See example 1.1 in Dynamics of Structures by Chopra)

$$
\begin{aligned}
& \mathrm{k}=\frac{96 \mathrm{EI}_{\mathrm{c}}}{7 \mathrm{~h}^{3}} \text { if } \mathrm{EI}_{\mathrm{b}}=\mathrm{EI}_{\mathrm{c}} \\
& \mathrm{k}=\frac{24 \mathrm{EI}_{\mathrm{c}}}{\mathrm{~h}^{3}} \frac{12 \rho+1}{12 \rho+4}, \quad \rho=\frac{\mathrm{I}_{\mathrm{b}}}{4 \mathrm{I}_{\mathrm{c}}} \& \quad \mathrm{E}_{\mathrm{c}}=\mathrm{E}_{\mathrm{b}}=\mathrm{E}
\end{aligned}
$$

Obtained by "static condensation" of 3x3 system

$\left[\left[\begin{array}{l}\mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \mathbf{u}_{3}\end{array}\right]=\left[\begin{array}{l}\mathrm{f}_{\mathrm{s}} \\ 0 \\ 0\end{array}\right] \longleftarrow\right.$ Use to represent u_{2} and u_{3} in terms of
$\mathrm{u}_{1} \&$ plug back into
Technique can also be used
and get $\mathrm{f}_{\mathrm{s}}=\mathrm{ku}_{1} \quad \begin{aligned} & \text { for large systems of equations }\end{aligned}$
(See example 1.1 in Dynamics of Structures by Chopra)

Draft Example

Neglect axial deformation

$$
\begin{aligned}
& \mathrm{u}_{1}=1 \\
& \mathrm{u}_{2}=\mathrm{u}_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{2}=1 \\
& \mathrm{u}_{1}=\mathrm{u}_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{3}=1 \\
& \mathrm{u}_{1}=\mathrm{u}_{2}=0
\end{aligned}
$$

$$
\underline{k}=\frac{E}{L^{3}}\left[\begin{array}{ccc}
24 \mathrm{I}_{\mathrm{c}} & 6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} & 6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} \\
6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} & 4\left(\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}\right) \mathrm{L}^{2} & 2 \mathrm{I}_{\mathrm{b}} \mathrm{~L}^{2} \\
6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} & 2 \mathrm{I}_{\mathrm{b}} \mathrm{~L}^{2} & 4\left(\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}\right) \mathrm{L}^{2}
\end{array}\right]
$$

If frame is subjected to lateral force f_{s}
Then (for simplicity, let $I_{c}=I_{b}=I$)

$$
\frac{E I}{L^{3}}\left[\begin{array}{ccc}
24 & 6 \mathrm{~L} & 6 \mathrm{~L} \\
6 \mathrm{~L} & 8 \mathrm{~L}^{2} & 2 \mathrm{~L}^{2} \\
6 \mathrm{~L} & 2 \mathrm{~L}^{2} & 8 \mathrm{~L}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{u}_{1} \\
\mathrm{u}_{2} \\
\mathrm{u}_{3}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{f}_{\mathrm{s}} \\
0 \\
0
\end{array}\right]
$$

Static condensation:

From $2^{\text {nd }}$ and $3^{\text {rd }}$ equations,

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathrm{u}_{2} \\
\mathrm{u}_{3}
\end{array}\right] } & =-\left[\begin{array}{ll}
8 \mathrm{~L}^{2} & 2 \mathrm{~L}^{2} \\
2 \mathrm{~L}^{2} & 8 \mathrm{~L}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
6 \mathrm{~L} \\
6 \mathrm{~L}
\end{array}\right] \mathrm{u}_{1} \\
& =\frac{-1}{64 \mathrm{~L}^{4}-4 \mathrm{~L}^{4}}\left[\begin{array}{cc}
8 \mathrm{~L}^{2} & -2 \mathrm{~L}^{2} \\
-2 \mathrm{~L}^{2} & 8 \mathrm{~L}^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
6 \mathrm{~L} \\
6 \mathrm{~L}
\end{array}\right] \mathrm{u}_{1} \\
& =\frac{-6}{10 \mathrm{~L}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{u}_{1}
\end{aligned}
$$

Note matrix inverse:

$$
\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]^{-1}=\frac{1}{\mathrm{ad}-\mathrm{cb}}\left[\begin{array}{cc}
\mathrm{d} & -\mathrm{b} \\
-\mathrm{c} & \mathrm{a}
\end{array}\right]
$$

Substitute into $1^{\text {st }}$ equation

$$
\frac{\mathrm{EI}}{\mathrm{~L}^{3}}\left[24-\frac{36}{10}-\frac{36}{10}\right] \mathrm{u}_{1}=\mathrm{f}_{\mathrm{s}}=\frac{168 E \mathrm{E}}{10 \mathrm{~L}^{3}} \mathrm{u}_{1}
$$

or

$$
\mathrm{k}=\frac{168 \mathrm{EI}}{10 \mathrm{~L}^{3}} \quad \text { (check this result) }
$$

Draft Example 2

$$
\begin{aligned}
& \mathrm{u}_{1}=1 \\
& \mathrm{u}_{2}=\mathrm{u}_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{2}=1 \\
& \mathrm{u}_{1}=\mathrm{u}_{3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{3}=1 \\
& \mathrm{u}_{1}=\mathrm{u}_{2}=0
\end{aligned}
$$

$$
\underline{\mathrm{k}}=\frac{\mathrm{E}}{\mathrm{~L}^{3}}\left[\begin{array}{ccc}
24 \mathrm{I}_{\mathrm{c}} & 6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} & 6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} \\
6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} & 4\left(\frac{\mathrm{I}_{\mathrm{b}}}{2}+\mathrm{I}_{\mathrm{c}}\right) \mathrm{L}^{2} & \mathrm{I}_{\mathrm{b}} \mathrm{~L}^{2} \\
6 \mathrm{I}_{\mathrm{c}} \mathrm{~L} & \mathrm{I}_{\mathrm{b}} \mathrm{~L}^{2} & 4\left(\frac{\mathrm{I}_{b}}{2}+\mathrm{I}_{\mathrm{c}}\right) \mathrm{L}^{2}
\end{array}\right]
$$

For simplicity, let $\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}$

$$
\frac{E I}{L^{3}}\left[\begin{array}{ccc}
24 & 6 L & 6 L \\
6 L & 6 L^{2} & L^{2} \\
6 L & L^{2} & 6 L^{2}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
f_{s} \\
0 \\
0
\end{array}\right]
$$

Static condensation:

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right] } & =-\left[\begin{array}{cc}
6 \mathrm{~L}^{2} & L^{2} \\
L^{2} & 6 L^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
6 \mathrm{~L} \\
6 \mathrm{~L}
\end{array}\right] \mathrm{u}_{1} \\
& =\frac{-1}{36 \mathrm{~L}^{4}-\mathrm{L}^{4}}\left[\begin{array}{cc}
6 \mathrm{~L}^{2} & -\mathrm{L}^{2}-\mathrm{L}^{2} \\
6 \mathrm{~L}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
6 \mathrm{~L} \\
6 \mathrm{~L}
\end{array}\right] \mathrm{u}_{1} \\
& =\frac{-30}{35 \mathrm{~L}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{u}_{1}=\frac{-6}{7 \mathrm{~L}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{u}_{1}
\end{aligned}
$$

Substitute in $1^{\text {st }}$ Equation

$$
\begin{aligned}
& \quad \frac{\mathrm{EI}}{\mathrm{~L}^{3}}\left[24-\frac{36}{7}-\frac{36}{7}\right] \mathrm{u}_{1}=\mathrm{f}_{\mathrm{s}} \\
& \text { or, } \mathrm{f}_{\mathrm{s}}=\frac{96}{7} \frac{\mathrm{EI}}{\mathrm{~L}^{3}} \mathrm{u}_{1} \\
& \text { or, } \mathrm{k}=\frac{96 \mathrm{EI}}{7 \mathrm{~L}^{3}} \longleftarrow \\
& \begin{array}{l}
\text { Same as in Example 1.1, } \\
\text { Dynamics of Structures by Chopra }
\end{array}
\end{aligned}
$$

Sample Exercise

1) 1.1 Derive stiffness matrix k for

1.2 For the special case of $\mathrm{I}_{\mathrm{c} 1}=\mathrm{I}_{\mathrm{c} 2}=\mathrm{I}_{\mathrm{b}}, \mathrm{h}_{1}=\mathrm{h}_{2}=\mathrm{h}$ and $\mathrm{L}=2 \mathrm{~h}$, find lateral stiffness k of the frame.

Sample Exercise

2) Derive equation of motion for:

Flexural rigidity of beams and columns

$$
\mathrm{E}=29,000 \mathrm{ksi},
$$

Columns W8x24 sections

$$
\begin{aligned}
\text { with } \mathrm{I}_{\mathrm{c}} & =82.4 \mathrm{in}^{4} \\
\mathrm{~h} & =12 \mathrm{ft}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{b}}=1 / 2 \mathrm{I}_{\mathrm{c}}
$$

Sample Exercise (Optional)

3) Derive lateral k of system (need to use computer to invert 3x3 matrix)

$$
\begin{aligned}
& \mathrm{E}=29,000 \mathrm{ksi}, \\
& \mathrm{I}_{\mathrm{c}}=82.4 \mathrm{in}^{4} \longleftarrow \mathrm{~W} 8 \times 24 \text { sections } \\
& \mathrm{I}_{\mathrm{b}}=1 / 2 \mathrm{I}_{\mathrm{c}}
\end{aligned}
$$

