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Zusammenfassung

Die jüngsten Entwicklungen im Datenbankbereich haben diverse NoSQL Systeme hervor-
gebracht, welche dank der hohen Skalierbarkeit in verteilter Art und Weise in der Lage
sind, große Datenmengen zu verarbeiten. Die Nachteile solcher Systeme sind der Verzicht
auf typische relationale Eigenschaften der Datenbankverwaltungssysteme (DBMS), wie
z.B konkurrierende Zugri↵e. Ein Beispiel solcher NoSQL Datenbanken ist die Distributed
Hash Table (DHT), welche auf dem key/value Paradigma basiert. Relationale Daten-
bankverwaltungssysteme sind jedoch immer noch die bevorzugten Systeme von vielen
Finanz-, Geschäfts- und Industrieanwendungen. Die vorliegende Arbeit entwirft, imple-
mentiert und evaluiert eine DBMS, welche das relationale Modell und die SQL Queries
in key/value Paare und DHT Operationen übersetzt. Um das Konzept zu testen, sind
verschiedene Experimente durchgeführt worden: insert, select, join und delete. Die
Ergebnisse für die insert Operationen zeigen, dass die Indexstruktur mehr DHT Aufrufe
in einer Grössenordnung von rund zehnmal mehr als ohne Index benötigt. Dieser Mehr-
aufwand wird durch die Distributed Segment Tree (DST) Operationen verursacht. Die
select Operation funktioniert hingegen gut. Die Verwendung der Index Struktur führt
zu schnelleren Resultaten, wenn im entsprechenden Experiment auf weniger als 75% der
gesamten Tabelle zurückgegri↵en wird. Der join zweier Tabellen benötigt die doppelte
Ausführungszeit einer select Operation. Die Ergebnisse der Experimente sind vielver-
sprechend. Jedoch fehlen gewisse Eigenschaften, welche entwickelt werden müssten, um
daraus ein relationales DBMS zu erstellen.
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Abstract

Recent developments in the context of databases have produced many NoSQL systems,
capable of processing big data thanks to the high scalability in a distributed manner. The
cost of this performance is the renunciation of typical relational DBMS properties, such
as concurrency control. One example of NoSQL databases is the Distributed Hash Table
(DHT), based on the key/value paradigm. Relational DBMSs are still preferred systems
for many financial, business and industry applications. This thesis designs, implements,
and evaluates a relational DBMS engine to translate the relational model and the SQL
queries to key/values pairs and DHT operations. For the proof of concept, a series of
experiments are executed: insert, select, join and delete. The results for the in-

sert operations show that the indexing structure causes more DHT calls by an order of
magnitude then without an index due to the Distributed Segment Tree (DST) operations.
The select operation, on the other hand, performs well. Using the index responds faster
when the query selects less than 75% of the table for the executed experiment. Joining
two tables is twice as slow as a select operation. The results of the experiments are
encouraging, however, missing features remain to be implemented in order to create a
relational DBMS with its typical properties.
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1. Introduction

Peer-to-peer (P2P) are distributed networks with the main focus on resources sharing,
such as CPU time, disk or memory. Important properties are scalability, because every
connected member (peer) provides resources to the network and no single point of failure,
given that there is no central server or hierarchical structure.

The most important application of P2P is file sharing, focused on sharing files between
the connected peers such as music or movies. Every peer is acting as a downloader but at
the same time also as uploader of the file. After the file sharing, also data sharing in form
of distributed databases are an important field of P2P. One example is the Distributed
Hash Table (DHT), a structure that permits to store key/values pairs between the peers.

Traditional databases, however, implement the relational paradigm; in other words the
data are represented in tables of columns and rows. These database systems provide an
attractive interface to access and manipulate the data and are very successful in many
financial, business and Internet applications.

1.1. Motivation

On one hand, Distributed Hash Tables (DHT) ensure a number of interesting properties
typical for P2P systems, such as self-organization, durability, fault tolerance and scala-
bility. The data are stored in key/value pairs through a simple interface composed by a
put(key, value) operation to store data, a get(key) operation to retrieve data and a re-
move(key) operation to remove data. The key/value construct permits to save schema-less
data, in other words the key is derived with a hashing function and the value is the actual
data, which can be completely unrelated to everything else in the database. However, for
applications that involve elaborated data manipulation it may be a burden to rely on an
interface that supports only data retrieval based on exact key match. A developer has to
implement many functionalities on top of DHT that are usually supported by DBMSs to
create such applications [1].

On the other hand a relational Database Management System (DBMS) implements the
relational model, a structured way of representing data in form of tables. A new row
inserted must follow the schema of the table. Structured data are then easy to query
utilizing a query language such as the Structured Query Language (SQL) [2]. SQL permits
very elaborated data manipulation like selecting only a small portion of the table using
conditions or joining two tables over a column. The drawback is that the properties of
P2P systems are not necessarily found also in relational DBMSs [3]:
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1. Introduction

• Database systems are di�cult to scale: adding a new server to a relational database
implies a lot of work in configuration, manual partitioning and data migration. Also
the load balancing is not always automatic. In a P2P system connecting a new peer
to the network is su�cient, everything else is self-organized.

• Single point of failure: in Client-Server architectures the server always represent a
single point of failure, shutting it down makes the database unusable. Replication
must be manually configured. In a DHT, on the other hand, removing a peer does
not a↵ect the network and replication is usually a standard functionality.

• Peak provisioning leads to higher costs : providing the infrastructure for peak times
often leads to excessive resources in o↵-peak times. In a P2P system resources can
be added and removed anytime and therefore be utilized for other tasks in o↵-peak
periods.

The motivation of this thesis is to overcome the drawbacks of both approaches layering
a relational DBMS over a DHT. In other words, a relational DBMS engine translates
the relational model and the SQL queries in key/value pairs and DHT operations. The
goals of the thesis are: design and implement a DBMS engine based on DHT and test the
performances of the implementation.

1.2. Description of Work

This thesis is based on TomP2P [4], a DHT developed at the University of Zürich. The
implementation of the DBMS engine, called TomDB, uses the API of TomP2P as the
underlying storage engine. The main task of this thesis is to design and implement
a DBMS for a subset of SQL commands utilizing only the standard DHT API. The
implementation proposes a DB API similar to the Java DataBase Connectivity (JDBC)
for insert, select with or without indexes, join, update and delete SQL commands.
An indexing structure based on the Distributed Segment Tree (DST) [5] is implemented
to permits indexing and range queries over DHT. The experiments are executed through
the DB API in a separate application. The results are analyzed and graphically presented
in the discussion.

1.3. Thesis Outline

Chapter 2 deepens the background technologies utilized in this thesis, in particular TomP2P,
DBMSs in general and DST, and gives an overview of Related Works. In Chapter 3 the
design of the application is explained in detail. Chapter 4 presents interesting aspects
of the implementation. Chapter 5 shows the results of the experiments. In Chapter 6
the thesis is summarized and concluded. Finally, in Chapter 7 the Future Works are
mentioned.
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2. Background

In this Chapter the three fundamental building blocks of the thesis are presented. First of
all, an introduction in DHT is done, as it is the underling network for the system. Then,
an overview of relational DBMSs is given, as it compose the overlying structure of the
system. The DST is used as overlying data structure for indexing.

2.1. Distributed Hash Table

Peer-to-peer (P2P) systems are decentralized, non-hierarchical networks to provide re-
source sharing [1]. Some characteristics are [4]:

• Self-organizing : peers organize themselves based on local observations.

• Equality : peers have similar rights; they are both client and server. Any peer can
request, but also provide resources.

• Decentralization: they are self-organizing; there is no need of a central coordination.

• Direct interaction: peers communicate directly with other peers.

• Resources sharing : peers share resources with other peers such as storage or CPU.

After the unstructured and ad-hoc architectures of the first P2P-generation, systems arise
with ordered structures, provable proprieties and good performances; one example is the
Distributed Hash Table (DHT). It is also the fundamental concept of this thesis, on
which the implemented application is based. Although various researches produced many
di↵erent implementations of DHT, like Chord, Pastry or Kademlia the basic concepts
remain the same: it is a decentralized system with similar lookup functions to Hash
Tables with the di↵erence of utilizing a consistent hashing function [6].

A Hash Table is based on associative arrays, a structure that maps keys to values. The
keys are generated using various hashing algorithms. The hash is then reduced to the array
size with the modulo operator (key = hash % array

size

). The key points directly to the
data without the need to traverse the entire array. When the algorithm and the dimension
of the array are such that every key receive a di↵erent memory slot (ideal conditions),
Hash Tables perform the insert (put(key, value)) and retrieve (get(key)) operations with a
constant cost independent of the number of stored elements. To keep the ideal condition,
the array must be load under a certain threshold, for example 75%. When the threshold
is reached, many implementations expand the table to fit within the parameter. The

3



2. Background

resizing causes a rehashing of all the items to be distributed on the entire new table size,
changing the modulo operator according to the new array size [7].

In DHT, on the other hand, the hashing function is consistent; this means that the keys
newer change. Every connected node can get or put data based on keys. The responsibility
for the key/value mapping is distributed among all the participants, in a way that joining
or leaving the network will not a↵ect the performance or the stored data. This design
permits to handle an extremely large number of nodes. A DHT manages a keyspace, a
set of all the possible keys in the network, usually derived by the maximal range of the
hashing function. This keyspace is distributed across the participant nodes with various
techniques. Each node is a key itself and it is responsible for the keys of the keyspace
near to that key for a given distance. When a node leaves or enters the DHT, only a small
amount of keys must be moved. To enable the lookups, every node maintains a list of
links to other nodes. Given the sparse connection between nodes, a key lookup is passed
from node to node until the node responsible for that key is found. The routing is driven
utilizing the links that are closer to the key. In other words, every node passes the request
to the node that is closer to the key, utilizing various distance metrics depending on the
implementation [8].

In this thesis the selected DHT implementation is TomP2P [4], an extended DHT devel-
oped at the Zürich University. The main characteristics of this DHT are:

• Java 6 implementation with non-blocking IO based on Netty framework.

• XOR-based iterative routing with keyspace of 160-bit.

• Storage of multiple values for one key.

• Storage is memory-based or disk-based.

• Indirect and direct replication.

• Mesh-based distributed tracker.

• UDP communication.

• NAT traversal via UPNP and NAT-PMP.

To store multiple values for one key, which is called location key because it defines on
which peer the key is saved, every peer creates a Hash Table for every location key. In
other words, it is possible to save multiple content keys for every location key inside this
Hash Table. Another important characteristic of the TomP2P API is the non-blocking
communication: when a DHT operation is executed, a future object is immediately re-
turned to keep track of future results. The operation can then be blocked to wait for
the results, or a Listener can be added to get notified when the operation is completed.
This key concept is used all over TomP2P API and permits to execute many operations
in parallel and completely asynchronously [9].

The XOR-based iterative routing of TomP2P is similar to Kademlia [10]. Iterative routing
means, in contrast to recursive routing, that a queried peer always sends a reply message
back to the querying peer. In this way the querying peer can take control over the whole

4



2.2. Relational Databases

Employees
Name Surname Department

Terrance Golden Marketing
Jeri Fowkes Sails

Felton Stu✏ebeam IT
Allen Cail IT

Departments
Department Collaborators Chief

Marketing 50 Archibald
Sails 100 Jeri
IT 150 Henri

Table 2.1.: Relational Model example based on a fictive employees database.

flow of the routing process. In Kademlia each node has a 160-bit node ID, usually a
random construction. Every message sent by a node includes its ID, so that the receiver
can save it if necessary. The keys in Kademlia are also 160-bit. In this way, the distance
between two 160-bit identifiers can be calculated as the bitwise exclusive OR (XOR).
Every node stores contact information about others nodes (IP address, UDP port, Node
ID) in 159 bags with a capacity of 20. When a node receives a message, it updates the
appropriate bag with the sender ID. If the bag is not full, the ID is added to the list,
otherwise the system pings the least recent node ID from the list. If that node does not
respond, it is removed from the bag and the new one is added, otherwise the new contact
is discharged.

A key/value pair lookup proceeds as follows: the node queries ↵ nodes in parallel from
its bags that have the closest ID to the searched key. When the nodes get the request,
they will return from their bags the k closest nodes to the key. The requester will then
keep only the k closest nodes from the responses and repeat the request on them. This
process continues until the nearest node returns the key/value pair [10].

The strengths of Kademlia are the continuous learning about neighbors and the facility
to calculate the XOR distances, given keys of the same length. All this leads to high
e�ciency, the algorithm contacts only O(log(n)) nodes during a search out of n nodes
in the system. The cost is a direct characteristic of the routing algorithm when the IDs
are normally distributed on the entire keyspace. The hashing function is therefore a
fundamental component for a performing DHT. These characteristics are reflected also in
TomP2P.

2.2. Relational Databases

Edgar F. Codd proposed the Relational Model in 1970 revolutionizing the database world;
several vendors were o↵ering Relational Database Management Systems (rDBMS) a few
years later supplanting the other database models. In the relational model, a database is
a collection of relations and each relation is a table containing columns and rows. The
tabular representation is simple to understand and visualize and permits to use high-level
languages to query the data [11]. An example relational database is shown in Table 2.1,
where the Department name is the relation between the tables.

A relational Database Management System (rDBMS), more generally a DBMS, is a set

5



2. Background

of instruments to access and maintain one or more databases. All interactions with a
database take place through the DBMS. The interactions fall into four groups [12]:

• Data definition: define, remove or modify the data structure of a database, i.e. table
names and columns.

• Data maintenance: inserting, updating and deleting data (rows) from a database.

• Data retrieval : querying existing data.

• Data control : creating and monitoring users of the database, restricting access and
monitor the performances.

The Structured Query Language (SQL) is the most widely used relational database lan-
guage and was developed by IBM in the early 70s. SQL is a set of English-like commands
used to communicate with a DBMS. The similarity to English of an SQL statement makes
it easy to learn and understand, which determined its success [2]. For example, select-
ing all the employees that work in department “IT” in Table 2.1 is similar to an English
sentence:

SELECT name , surname FROM Employees WHERE Department = ’IT ’

SQL is a nonprocedural language, meaning that it is enough to tell SQL what data to be
retrieved, rather than how to retrieve it. The DBMS takes care of locating and returning
the information. SQL commands are classified in three types to cover all the functionalities
of a DBMS: Data Definition Language, Data Manipulation Language and Data Control
language.

SQL has a wide range of datatype (Strings, Integers, . . . ), used to define the type of a
column, i.e. which type of data a column can take [2].

In summary, the advantages of a DBMS are:

• Centralized data management : it reduces redundancy and facilitates the manage-
ment.

• Data independency : the information is isolated in terms of structure and storage.
The DBMS always mediate as an abstraction layer between database and applica-
tion.

• Data consistency : DBMS is designed to have data consistency, in other words, every
copy of the same data has the same value and every transaction respects the rules
and constraints of the DB.

• Concurrency control : the same data can be modified only by one instance at time.

• The properties above summarize to the ACID properties of databases. Atomicity :
every transaction is “all or nothing”; Consistency : every copy of the data is the
same; Isolation: transactions are submitted to concurrency control; Durability : a
committed transaction remains constantly saved in the database.

6



2.3. Distributed Segment Tree

1 - 20

1 - 10 11 - 20

16 - 2011 - 156 - 101 - 5

Figure 2.1.: Distributed Segment Tree example for a range from 1 to 20.

• Performances : DBMS stores directly on the disk and is optimized to give good
performances.

• SQL as a standard query language.

A DBMS can usually be queried directly, using its own command line interface or it can be
integrated inside an application using an API such as JDBC. Many DBSM are completely
written in Java, like Apache Derby, H2 or HyperSQL. The most important commercial
DBMS are Oracle, IBM DB2 and Microsoft SQL, the most widely used Open Source
projects are MySQL and PostgreeSQL.

2.3. Distributed Segment Tree

Distributed Segment Tree (DST), proposed by Zheng et al. in [5], is the structure for
indexing used in this thesis. DST represents a binary tree in which every node corresponds
to a range of keys (segment). In other words, it is a data structure to support range
queries over DHT. The root node corresponds to the entire range while every child nodes
correspond to a sub range. The union of the child nodes on the same level returns the
entire range. An example of a DST for a range from 1 to 20 is given in Figure 2.1.

The data structure behind the DST is the segment tree [13] with the properties listed
below:

• The segment tree for a range of length L has a height H = ln(L) + 1.

• Each non leaf node has two children. The left child represents the range [parent
min

,
parent

2 ], the right child represents [parent2 + 1, parent
max

]. The union of the two child
nodes returns the range of the parent node.

The particularity of the DST approach is that every node of the tree stores the keys it
is responsible for. In other words, knowing the node or a union of nodes responsible for
a given range is su�cient to locate the keys. This knowledge is reached with the Range
Splitting Algorithm in Algorithm 1. It returns the minimal union of nodes necessary to
retrieve the given range [s, t] for the DST range [lower, upper] (i.e. the range of the root
node).

7



2. Background

Algorithmus 1 : Range Splitting Algorithm [5]

Input : bounds of input segment s, t
bounds of current node interval lower, upper

Result : resulting union of node intervals ret

1 SplitSegment(s, t, lower, upper, ret)
2 if s  lower AND upper  t then
3 ret.add(interval(lower, upper));
4 return;

5 mid (lower + upper)/2;
6 if s  mid then

7 SplitSegment(s, t, lower,mid, ret);

8 if t > mid then

9 SplitSegment(s, t,mid+ 1, upper, ret);

The nodes of a DST are distributed on the DHT using the key hash([s,t]) for the DHT
operations put(key, value) and get(key). In other words, any node of the DST can be
e�ciently located using only the standard DHT interface. Every peer on the network can
calculate locally the key of a DST node utilizing the Range Splitting Algorithm, as long as
it knows the DST range. In addition, the DHT operations can be executed simultaneously
and in parallel.

In a concrete case, a DST node cannot hold all the keys it is responsible for because of
resources constraints. For these cases, a saturation point can be defined, which indicates
the maximal number of keys a node hold. When this limit is not exceeded, a key is stored
once on every level (high H) of the tree. However, when the limit is reached, a key is
stored only on the children of the node. Accordingly, when a get(key) operation returns
a saturated node, two more get(key) operations are necessary to ensure the retrieving of
all the keys for the given range.

In summary, the advantages of this approach are:

• The keys are saved on every node of the tree.

• The static and regular tree structure can be calculated locally by every peer using
the algorithm.

• DST is implemented using only the standard DHT interface.

• DHT operations can be executed simultaneously and in parallel, except in the case
that a returned node is saturated.

• DHT operations minimized, if saturation is not reached, when querying the tree.

The disadvantages are:

• The static structure does not allow to dynamically changing the DST range once a
tree is created.

8



2.4. Related Works

NoSQL
BigTable Multi-dimensional map
Dynamo Key/Value
Cassandra Partitioned rows
TomP2P Key/Value

SQL
MySQL Cluster Clustering

VoltDB Horizontal partitioning, replication
Relation Cloud DB as a Service

Hybrid
Google F1 Replication, distributed SQL

[1] MySQL engine for DHT
TomDB DBMS over DHT

Table 2.2.: Summary of the Related Works.

• When inserting a new key, a DHT operation for every level (high H) of the tree
must be executed.

• When the saturation point is reached, additional DHT operations are necessary to
retrieve a key.

Although there are many approaches to support range queries over DHT, only a few are
completely based on the standard DHT interface. A similar approach to DST is the Prefix
Hash Tree (PHT) [14]. The PHT is a binary trie build over the data set, in which every
node corresponds to a prefix that is calculated recursively: the left child is labeled parent-
prefix0 and the right parent-prefix1. The keys are stored on the leaf node whose label
is a prefix of the key. When the leaf node reaches the saturation point, it splits in two
child nodes, redistributing the keys on them. The DHT key for the put(key, value) and
get(key) operations is hashed from the prefix. To query the trie, an algorithm retrieves
the nodes with the prefix of the key, until a leaf node is reached.

Compared to DST, PHT stores keys only on leaf nodes and a client has no knowledge of
the structure of the whole PHT. This means that more DHT operations are necessary
to traverse the trie until a leaf node is reached. Moreover, the search is sequential.
The advantage over DST is that PHT has a dynamic structure that adapts itself to
the incoming keys, while in DST the structure is static.

2.4. Related Works

In the last decade the database world is divided in two major sections, the ”SQL” move-
ment, embracing the relational model and the “NoSQL” flow, where the relational model
is sacrificed to cope with big data and scalability.
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2. Background

NoSQL systems are designed to scale horizontally, i.e. resources are added attaching more
nodes to the system. Some features are the ability to replicate and distribute data over
many servers, a simple API interface, a weaker concurrency model compared to relational
DBMSs and the ability to dynamically add new attributes to data records. The idea
is to give up the ACID constraints (Atomicity, Consistency, Isolation and Durability),
typical of relational DBMSs, and therefore achieve higher performance and scalability
[15]. One important example is BigTable [16] by Google, a partitioned table that can
scale to thousands of nodes and is the base of many Google applications, one over all the
search engine. Amazon Dynamo [17] pioneered the idea of eventual consistency : the data
fetched are not guaranteed to be up-to-date, but updates are guaranteed to be propagated
to all nodes. Cassandra [18] is another arising example; open sourced by Facebook in 2008,
it claims to be the marriage between Dynamo and BigTable. All the key/value pairs based
storage systems, like TomP2P, are also important evidences of the NoSQL movement.

On the other hand there is the attempt to make relational DBMSs scalable. The ap-
proach usually consists of a clustering techniques, in other words the data are framed
and replicated over multiple database servers. An overlay layer is developed to manage
metadata, replication and query processing. Examples are MySQL Cluster [19] or VoltDB
[20]. Recent improvements in this sector promise to give good per-node performances as
well as scalability nearly comparable to NoSQL data stores keeping in account that op-
erations like joins over many tables and in general transactions that involve many nodes
do not scale and perform well [15]. Another idea is the relational cloud, proposed in
[3], which introduces the term “Database as a Services”. A user should have access on-
demand to database functionalities without worrying about hardware and configuration,
while providers should be able to easily administrate the cloud. One example is Google
Cloud SQL [21], a relational database services backed by the Google infrastructures.

Another possibility is a hybrid approach, like Google F1 [22]. This system combines
high availability and scalability of NoSQL databases with the consistency and usability
of traditional SQL databases. F1 provides synchronous cross-datacenter replication to
ensure consistency and a fully functional distributed SQL engine. The hybrid approach
is still a new research topic and not many studies could be found. The study that comes
closest to this thesis is “Layering a DBMS on a DHT-Based Storage Engine”by E.A. Ribas
et al [1]. The paper propose an architecture for integrating DHTs and relational DBMSs,
developing a prototype based on that architecture, along with an indexing structure for
range queries based on DST. Experiments are conducted to show the impact of an index on
query performances and to compare the horizontal and vertical fragmentation. The work
consists of a new MySQL storage engine based on the Bamboo Distributed Hash Table.
Bamboo utilizes a Pastry like routing protocol and communicates using TCP on HTTP.
The experiment about table fragmentation shows that a horizontal fragmentation, when
the number of selected columns grows, performs with a linear execution time, because
always all the rows are retrieved. The execution time of the same experiment for a
vertical fragmentation grows linearly. The entire relation of 2000 rows and 51 columns is
retrieved in 45.24 seconds for the horizontal fragmentation and 1 minute and 29.50 seconds
for the vertical, given a higher number of DHT operations. The vertical fragmentation
performs better if less than half of the columns are selected. The experiment about indexes
shows that to retrieve 25% of the table the index speedup 75% and to retrieve 13.3% of
the table the speedup was of 81% compared to a full tablescan. The main di↵erence
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2.4. Related Works

with the approach implemented in this thesis is the fragmentation. In [1] the horizontal
fragmentation creates a key/value pair for every row and utilizes exclusively the standard
DHT interface put(key, value), get(key) and remove(key). In this thesis, however, the
extended interface of TomP2P is exploited to utilize content keys to save a list of n rows
for every key/values pairs. Moreover, in this thesis the join operation is implemented
and evaluated.
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2. Background
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3. Design

This chapter covers the design of TomDB, starting with a detailed analysis of the mapping
between the relational model and key/value pairs. Then, the design of the application is
explained.

3.1. Relational Model on Top of DHT

To provide the functionalities of a DBMS certain strategies are necessary to store relational
data in a DHT. In other words the problem consists of mapping a table of information to
key/values pairs so that a high e�ciency is reached. The basic operations of a DBMS,
insertion, deletion, retrieval and update need to be mapped to the basic API of a DHT,
put(key, values), get(key) and remove(key). As a design principle for the implementation
the extended API of TomP2P is used, which permits to store multiple values for one key
(x content keys for one location key).

There are many ways of partitioning a relation into key/values pairs. This process is
usually denoted as fragmentation. In a horizontal fragmentation each fragment is a subset
of rows of the original table, in a vertical fragmentation each fragment is a column or a
subset of columns of the original table [11]. Since the fragments are stored as key/value
pairs in the DHT it is necessary to define how a fragment is mapped to a value and
identified by a key. For that, an example relation is given in Table 3.1. The table is
composed by 10 columns and 1000 rows and an internal row ID is given following the
insertion order.

3.1.1. Vertical Fragmentation

The vertical fragmentation, or column-oriented approach, has its advantages when an
application aggregates large numbers of similar data, i.e. a query selects many rows of a
small subset of columns.

rowID A B C D E F G H I J

1 a-val b-val c-val d-val e-val f-val g-val h-val i-val j-val
2 ...
...

Table 3.1.: Relation of 10 columns and 1000 rows with an internal row ID.
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3. Design

The key representing the column name and the value as an array containing the entire
column could compose the mapping to a key/value pairs. This could be further decom-
posed in blocks of n rows of a column when the table grows, to avoid big fragments. For
the example given in Table 3.1 using the extended DHT API the mapping is as follows:
the location key is composed by hash(column-name + block number) and the content keys
by hash(row ID) for n rows. The value corresponds to the field of the rows ID for that
column. Since that every fragment corresponds to a DHT operation, it is interesting to
calculate how many operations are necessary to retrieve the entire table of the example.
Setting n = 100, 100 rows/100 results in 10 blocks per column, for 10 columns it is 100
fragments distributed in the DHT. In other words, to retrieve the entire table mapped
with the vertical approach, 100 DHT operations are necessary.

3.1.2. Horizontal Fragmentation

The horizontal fragmentation, or row-oriented approach, is the most di↵used architecture
for relational databases and is implemented by the major DBMSs. The advantages are
given by the fact that many applications only need to retrieve information about a single
or a few objects, like for example the contact information of a client. Moreover, it is more
e�cient for inserting new rows in the database.

The key representing the row ID and the value as the serialized row could compose the
mapping to a key/value pairs. In the example given in Table 3.1 the mapping is as
follows: the location key is composed by hash(row ID) and the content keys correspond
to the hash(column-name). The value of every content key is then the field of the column
for that row. The example table is composed by 1000 rows, i.e. 1000 fragments spread in
the DHT. To retrieve the entire table mapped with the horizontal approach, 1000 DHT
operations are necessary.

In this case an aggregation of n rows per fragment would reduce the number of operations
necessary, which is also the approach of choice for this thesis, explained next.

3.1.3. Horizontal Fragmentation in Blocks

In the examples above the vertical fragmentation is the clear winner with only 100 DHT
operations against the 1000 necessary for a horizontal fragmentation. In fact also in [1]
it is proved that if a query selects less than 50 % of the columns, the column-oriented
approach performs better. On the other hand, in a disk-based database, the sequential
reading of many adjacent rows is very fast because the organization on the disk preserve
the locality; this is another reason why the horizontal fragmentation is normally preferred
by DBMSs. In DHT, however, the hashing algorithm do not preserve locality so that the
cost of a DHT operation is always the same. To maintain a certain degree of locality also
in DHT, every fragment could be formed by an aggregation of adjacent rows. In other
words, the horizontal fragmentation could be organized in blocks of n rows.

This is also the design implemented in TomDB. The blocks of n rows are consecutively
constructed following the insertion order of the incoming rows. In other words, when a
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Location key Content key Value

hash(Block:tablename:[1..10]) hash(row ID 1) Serialized row

hash(row ID 2) Serialized row

... ...

hash(row ID 10) Serialized row

Table 3.2.: Example of the block [1..10].

new row is inserted, it is added to the last block utilizing a content key hashed from the
row ID, until the block is full. When the blocks is full, a new block with a range of n is
created. This assumes that the locality is given by the insertion order. The location key of
the block is hashed from the string “Block:tablename:[from..to]”, where “from..to” stands
for the range that the block is responsible for. For instance, starting from 1 with n = 10,
the first block would be “Block:tablename:[1..10]”, the second “Block:tablename:[11..20]”.
An example of the block [1..10] is given in Table 3.2.

The structure of the blocks permits to identify the block responsible for a row ID or the
blocks responsible for a range of consecutive row IDs with only n as an input in a simple
algorithm. In other words, every instance of TomDB retrieves the metadata about n and
is therefore able to calculate the hash of a block and get the block from the DHT for
the searched row. This simple storage structure permits to organize the data without
an overlay structure (e.g. DST); the information stored in the DHT are always retrieved
with the minimal necessary number of DHT operations.

3.2. Approach

This section covers the approach followed for the implementation of TomDB. To imple-
ment an application based on a P2P system certain design principles should be applied to
get the best performances; therefore, during the implementation the following rules have
been kept in mind:

• Minimize the DHT operations.

• Execute the DHT operations simultaneously and in parallel.

• Avoid blocking operations, utilizing listeners and callback functions.

As a result of these principles, asynchronous operations are implemented everywhere the
application uses the DHT API. In other words, the DHT operations are executed simulta-
neously and in parallel on di↵erent threads and the results are returned through a callback
function to the same object to save them. This multithreads architecture is not trivial to
design and leads often to faults or omissions, one over all concurrency problems di�cult
to debug. For example, when a thread is writing the results in a Collection and at the
same time another thread is reading the Collection, it is possible that the reading process
do not see the new results in time, leading to an inconsistent execution of the program.

The application is designed to support following SQL statements:
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3. Design

• Create Table (e.g. create table table 1 (column a, column b, ...)

• Insert (e.g. insert into table 1 values (column a val, column b val, ...).

• Select with conditions (e.g. select from table 1where column a > 10). Multiple
conditions with and and or are also supported.

• Select with joins (e.g. select from table 1, table 2 where table 1.column a =
table 2.column a). The join can be further filtered with and and or conditions.

• Update (e.g. update table 1 set column a = ’new val’ where column a > 100).

• Delete (e.g. delete from table 1 where column a < 10).

3.2.1. Main Classes and Metadata

The starting point of the application is the TomDB class, responsible for creating the
DHT peer and the connection to the DB. The application can be started standalone as
one or many DHT peers to add resources to the network or a connection to the DBMS can
be established through the API to utilize the library inside a project. When a connection
is established, the central class of the application, DBPeer, is initialized. This class is
responsible to have a connection to the DHT, through which every DHT operation is
executed and to manage the database metadata.

The metadata keep information about three aspects of the table, the column names, the
rows and the indexes. The metadata about columns contains only a map of the column
name and column id. The rows information contains the block size (n), the total number
of rows saved in the database and the type of storage. The indexes metadata contains the
name of the indexed columns, separate in normal or univocal indexes, the range of DST
and the minimal and maximal value contained in an index.

In the DBPeer, the metadata are fetched from the DHT with a blocking operation, because
it is crucial for the application that the metadata are actualized before everything else
can be executed. The update, however, is done with a non-blocking operation.

3.2.2. Inverted Index

Conventional DBMSs usually come with indexing facilities to optimize the execution of a
query, one example is the B+tree. Thanks to these structures a query is directly addressed
to the target, avoiding a scan of the entire table. An indexing mechanism becomes even
more important in a DHT based DBMS, because it is not possible to scan through adjacent
blocks like it happens in a disk-based DBMS; the locality of blocks is lost through the
hashing function.

For the implementation, the concept of inverted index is utilized, a structure that maps
the indexed content to the location of the content in the database. In a concrete example
(Table 3.3), the indexed value, which corresponds to the value of a row of the indexed
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Location key Content key Value

hash(DSTBlock:tablename:cloumnname:[1..1000]) hash(indexed val 1) Row ID 1

hash(indexed val 2) Row ID 2

... ...

hash(indexed val 1000) Row ID 1000

Table 3.3.: Example of an inverted index saved in DST blocks for the root DST block
[1..1000].

column, is hashed as the content key and the row ID is saved as the value. The location key
is calculated utilizing the DST overlay structure. DST is based on ranges and therefore,
it supports the indexing of only Integers values. Ideally, the indexed column contains a
range of entries that is smaller than the DST range. In this way a lookup in the DST
performs optimally and in parallel. When the indexed range is bigger than the DST range,
full blocks are encountered during the lookup process, causing the execution of more DHT
operations to retrieve the child of the full blocks. An indexed value is assigned to a DST
block by the DST Algorithm seen in Algorithm 1. The DST block is then hashed as the
location key. This data structure permits then to e�ciently retrieve an indexed value from
the DHT utilizing the DST Algorithm. The input information for the DST Algorithm is
covered by the metadata about indexes, especially the DST range and the minimum and
maximum value in an indexed column, utilized to delimit the ranges.

3.2.3. Storage Type

In Subsection 3.1.3 it is explained that the table blocks are constructed following the
insertion order of the new incoming rows. The blocks remain full if nothing is deleted
from the table. When a delete operation removes rows from the table, however, it
happens that blocks contain empty sectors, i.e. unassigned row IDs. If later new rows
are inserted in the table following the insertion order, they are added to the last block
without using the empty sectors. A select operation of the entire table needs now to get
more blocks from the DHT and certain blocks are not completely full, deteriorating the
performances. This is why, together with the insertion order storage, it was decided to
implement also a full blocks storage.

The full blocks storage adds new rows first to the free sectors spread in the table, reutilizing
the unassigned row IDs, and only when every free sector is occupied again, it adds to the
last block, as seen in Figure 3.1. The information about free sectors is saved in the DHT
as a metadata during the delete operations and accessed every time a new insert with
full blocks storage is executed.

3.2.4. API

The Java Database Connectivity API (JDBC) [23] inspires TomDB API. Utilizing the
static function getConnection() inside the TomDB class, it is possible to connect an ap-
plication to the DBMS and the DHT. TomDB is implemented with the Singleton Pattern,
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3. Design

Block 1 Block 2 New BlockBlock 3

Full blocks storage Insertion order storage

Figure 3.1.: Blocks of table with empty sectors in red: the full blocks storage adds new
rows to the free sectors, the insertion order storage at the end of the table.

Listing 3.1: Execute API operation

1 public void executeStatement ( ) {
2 Connection connect ion = TomDB. getConnect ion ( ) ;
3 Statement stmt = connect ion . createStatement ( ) ;
4
5 stmt . execute ( ”INSERT INTO tab l e 1 VALUES ( row1 a , 1) ”) ;
6 stmt . execute ( ”INSERT INTO tab l e 1 VALUES ( row2 a , 2) ”) ;
7 stmt . s t a r t ( ) ;
8 }

creating only one DHT peer and one DBpeer object per execution of the program. TomDB
o↵ers also a function to create local DHT peers. These peers are set to a master peer
and therefore all utilize the same port to avoid conflicts. Once a Connection object is in-
stantiated, many Statement objects can be created with the createStatement() function.
A statement serves to actually execute a SQL query. The execute() function (Listing
3.1) is utilized to execute queries that do not return a result, such as insert, update
or delete. These queries can be bu↵ered and the execution needs to be started with
the start() method. The executeQuery() function (Listing 3.2) returns a ResultSet object
containing the rows retrieved by the select operation. The ResultSet is then utilized by
the application inside a loop to elaborate the data coming from the database.

The ResultSet is implemented utilizing a Blocking Queue. The next() function returns
true if a new row is arrived in the ResultSet, otherwise the Queue blocks the thread
and waits until a new row asynchronously comes from the DHT. Once a row is set in the
ResultSet, the values of a column can be read utilizing getString(), getInt() or getDouble(),
depending on the type necessary for the application. These functions accept the column
name as a String or the column ID as an Integer as parameter. When all the results
are arrived from the DHT, the next() function returns false and the select query is
completed.

CREATE TABLE Statement

Adding a new table to the database consists of an update of the database metadata. The
SQL parser interprets the information about columns, rows and indexes written in the
SQL query. If the query is correct, the information is saved inside a CreateTable object,
a sort of container of the parsed query. This kind of objects can be bu↵ered inside the
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Listing 3.2: Execute Query API operation

1 public void executeQueryStatement ( ) {
2 Connection connect ion = TomDB. getConnect ion ( ) ;
3 Statement stmt = connect ion . createStatement ( ) ;
4
5 Resu l tSet r e s u l t s = stmt . executeQuery ( ”SELECT ∗ FROM

tab l e 1 ”) ;
6
7 while ( r e u l t s . next ( ) ) {
8 System . out . p r i n t l n ( ”Column a : ”
9 + r e s u l t s . g e tS t r i ng ( ”column a ”)
10 + ” Column b : ” + r e s u l t s . g e t In t (2 ) ) ;
11 }
12 }

Option Value

index column name Can be defined multiple times.
univocalindex column name Can be defined multiple times.

blocksize integer from 1 Can not be changed.
dstrange integer from 1 Can not be changed.
storage insertionorder/fullblocks

Table 3.4.: Options utilizable in a create table statement.

QueryEngine, responsible for the execution of the queries. When the stmt.start() API
function is called, the bu↵er is executed. The information about the new table is first
added to the metadata locally in the DBPeer object and then saved in the DHT, available
for all the other users. The SQL of this statement presents a custom options command
used to set the parameters for the table: indexes and univocal indexes, blocks size, DST
range and storage type (insertion order or full blocks). For every table multiple indexes
can be added. With univocal it is intended the unique operator of SQL. The options are
grouped in Table 3.4. An example for a create table statement is listed here:

CREATE TABLE table_1 (column_a , column_b , ...) OPTIONS (index
:column_a , univocalindex:column_b , blocksize :100, dstrange
:1000 , storage:fullblocks)

INSERT Statement

The insert statement flow chart is shown in Figure 3.2. The parser interprets the query
and creates an Insert object to be bu↵ered inside the QueryEngine. The bu↵ering is
essential because the insert operation needs to update the local metadata from the DHT
before the new row can be inserted and upload the actualized metadata to the DHT at
the end. These operations, however, are done only once for the entire bu↵er.
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INSERT
Statement

Terminate

Buffer queries

Insert to the last 
block

Indexes

Add to index

NoYes

Check free blocks

Storage typeInsertion order Full blocks

Insert to the free 
block or the last one

Figure 3.2.: insert statement flow chart.
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SELECT 
Statement

Scan type

Get entire table

Index lookup

Apply conditions

Return Result 
Set

Table scan Index scan

JOIN 
Statement

Scan type

Get entire tables

Get indexes

Apply conditions

Return Result 
Set

Table scan Index scan

Aggregate results
Join rows

Get blocks Get blocks

Figure 3.3.: select and join statements flow charts.

The insert operation depends on the storage type. For the insertion order storage, the
row receives a new row ID calculated using the metadata about the number of rows saved
in the table so far plus one. Thanks to the row ID and the block size, an algorithm can
calculate the key of the last block of the table. The insertion order concludes with a put
operation of the new row inside the DHT, adding the row ID to the last block. The full
blocks storage, on the other hand, checks first on the DHT if free row IDs of precedent
delete operations are available. If an unassigned row ID is found it is used for the
new row; otherwise it performs an insertion order operation. Also here, using the row ID
and the block size, the block responsible for the ID is calculated and a put operation is
executed.

The last step is to update the indexes. For normal indexes the new row ID and indexed
value is directly inserted in the index, because this kind of indexes can contain multiple
entries of the same indexed value. For univocal indexes however, the index must be first
queried to verify that the indexed value has not been inserted yet, otherwise the insert

operation must be stopped and an error is thrown.

SELECT Statement

The flow charts for the select and join select operations are visualized in Figure 3.3.
The query is parsed and a Select object is instantiated. In this case, however, the operation
is executed immediately and an empty ResultSet object is returned to the application.
The design renounces to update the table metadata for every query; the DBPeer updates
them only every minute if it is necessary. The DBMS does not provide an automatic
query optimizer, capable of deciding if a tablescan or an indexscan is faster to execute
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the query. For that, an option command is provided to define with which scan a query
must be executed. The query is therefore extended to this:

SELECT * FROM table_1 WHERE id < 10 OPTIONS (tablescan/indexscan)

Tablescan means that the entire table is retrieved, i.e. all the blocks of a table are
downloaded from the DHT. An indexscan, on the other hand, gets first the involved row
IDs from the DST index and then downloads only the table blocks that are responsible
for those row IDs. The indexscan works only if a where condition is defined in the query.
The column of the condition needs to be indexed, so that the indexscan can restrict the
index lookup to the values that are included by the condition. In the query example
above, the index lookup on column ID would search only for values smaller than 10. In
this way, the number of DHT operations can be reduced.

In the last step, the ConditionsHandler applies the where conditions, returning to the
ResultSet only rows that match them. In a query it is possible to define which columns
to select instead of select all (*). In these cases, the ConditionHandler is going to filter
out the unneeded columns and returns a new row with only the selected columns.

In a select statement, every DHT operations happen asynchronously. For instance,
the index lookup starts a number of parallel operations to get the row IDs from the
index. Once the result of an operation comes back, a get operation for the table block
responsible for the row ID received from the index starts immediately. Similarly, once
a table block arrives, the conditions are immediately applied and the rows are sent to
the ResultSet. The same succeeds for a tablescan. This approach gives advantages in
terms of performances and provides immediately results to the ResultSet, avoiding that
the application has to wait until the operation is complete.

Even if the join select reutilizes many aspects of the normal select, it is to some extent
quite di↵erent. A supported query is for example:

SELECT * FROM table_1 , table_2 WHERE table_1.column_a =
table_2.column_b OPTIONS (tablescan/indexscan)

Only two tables can be joined at once. The first equality condition is used by the system to
know on which columns to join the tables and it is mandatory. Also here the distinctions
in tablescan and indexscan is possible. In a tablescan, both tables are entirely downloaded
from the DHT. In the indexscan, only the entire indexes of the joining columns are
downloaded. The indexed values are then matched; if a match is found, the blocks of
both tables responsible for the matching value are retrieved from the DHT. At this point,
the system needs to wait until every DHT operation terminates. The rows of table A are
then compared to the rows of table B, if a match is found, a new row containing both
rows is created and sent to the ConditionHandler. The further and and or conditions
defined in a query are applied here and the rows are returned to the ResultSet.

DELETE and UPDATE Statements

The flow charts for the update and delete operations are shown in Figure 3.4. Examples
of supported queries are:
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Figure 3.4.: delete and update statements flow charts.
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UPDATE table_1 SET column_a = ’new value ’ WHERE column_a > 10
OPTIONS (t.s./i.s.)

DELETE FROM table_1 WHERE column_a < 10 OPTIONS (t.s./i.s.)

Also for these operations the parser is going to create either an Update or a Delete object
and the bu↵ering of the queries is possible. The table metadata are actualized for every
bu↵er because these operations are going to write in the table. The first operation for
these statements is always a select. In other words, a Select object is created and
executed. In this case, however, the results are not returned to a ResultSet, but they
come back to the Update or Delete objects. This design permits to reutilize the select

infrastructure, like the ConditionsHandler, tablescan and indexscan, to exactly identify
the rows that need to be updated or deleted.

The last operation of an update consists of actualizing the rows coming from the select
and to put them back to the DHT. The delete, on the other hand, puts an empty row
back to the DHT. When an index was defined, the delete needs also to delete the indexed
value from the DST. For the full blocks storage, the delete operation produces unused
row IDs that can be recycled by an insert operation. For that, the metadata about free
blocks must be updated on the DHT.
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This Chapter describes in details important aspects of the implementation. First, details
about the SQL parsers are given. Then, the DHT API is exposed, together with the
callbacks architecture and the concurrency problems. Also the indexing system and the
DST functions are explained in details. TomDB is composed by 44 classes divided in 10
packages and about 4000 lines of code.

4.1. SQL Parser

The SQL parser is implemented from scratch utilizing the tokenization technique. To-
kenization means splitting a string of text into words, symbols or other elements called
tokens. This is also the first process of the parser: the SQL query is divided into SQL spe-
cific words, like create, select etc. and punctuation marks in form of strings (comma,
equal, ...). An example of tokenization is given here:

CREATE TABLE table_1 (column_a , column_b)

becomes:

[CREATE , TABLE , table_1 , POPEN , column_a , COMMA , column_b ,
PCLOSE]

To do that, the Tokenizer class utilizes the String.split() function with a sequence of regu-
lar expressions. The resulting tokens are saved in a list maintaining the order. Moreover,
the Tokenizer object acts as an extended iterator through the list of tokens, implementing
the ListIterator interface and providing the functionality to get the actual or the previous
element, apart all the standard functionalities.

The SQL parser utilizes the iterator to first identify the type of query (create, insert,
select, delete or update) and then to verify that the sequence and the syntax of
the query is correct. When a problem is detected, a MalformedSQLQuery exception is
thrown, where the problematic token is signalized. The parsing process consists of simple
if, switch andwhile constructs to check the tokens and move forwards the iterator. The
values inserted in a query, like the table name, are saved in variables or lists. Once that
the query is completely parsed and results to be correct, the specific operation object, for
instance an Insert object, is created giving all the query variables and lists as parameter.
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Listing 4.1: DHT get operation with callback.

1 public void getFromDHT() {
2 FutureDHT futu r e = peer . get (Number160 . createHash ( ”blockName ”) .

s e tA l l ( ) . s t a r t ( ) ;
3 f u tu r e . addLis tener (new BaseFutureAdapter<FutureDHT>() {
4 @Override
5 public void operat ionComplete (FutureDHT futu r e ) throws

Exception {
6 i f ( f u tu r e . i s Su c c e s s ( ) ) {
7 ca l l b a ck ( fu tu r e . getDataMap ( ) ) ;
8 } else {
9 System . e r r . p r i n t l n ( ”GET f a i l e d ! ”) ;
10 }
11 }) ;
12 }

4.2. DHT Operations and Asynchronous Callbacks

The DHT operations are consistent with the TomP2P API and utilize the Java Future
and Listener interfaces. An example is given in the Listing 4.1 for a get operation.

In the second line the future object is created and the entire set of content keys is re-
trieved. The future is then asynchronously started. To elaborate the answer from the
asynchronous call, a listener is added in line 3. When the operation is completed, the
operationComplete() function is called, returning the future object containing the results,
in form of a Map.

The classical approach to elaborate the result is to define somewhere a callback function
and to call it from the listener. In the example, the callback is inside the same object
that executed the DHT operation. In most cases the application executes many DHT
calls at once in parallel. The callback function is called once for every future object,
asynchronously and often in a fraction of second. This can cause concurrency problems,
because there is no control or locking on the callback. When the results are further elab-
orated and sent forwards without saving them, like it happens for example in a tablescan,
where the results are directly sent to the ConditionsHandler and then to the ResultSet,
the concurrency problem is not manifested, because Java can handle simultaneous execu-
tion of the same methods without problems. The concurrency problems arise when the
callback function tries to write the results in a Collection and at the same time another
function reads from the Collection. To overcome these problems, a Concurrent Collection
is necessary, where the Collection Interface is implemented to be thread-safe. In other
words, a Concurrent Collection permits the execution of read and write operations from
many di↵erent threads. For TomDB, the ConcurrentHashMap is utilized. This Map im-
plements a fine-grained locking, supporting multiple reader simultaneously while a portion
of the Map is locked for the writing process.
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4.3. Indexes and DST

The Distributed Segment Tree is designed to fit in the standard DHT API; nevertheless
the implementation requires certain peculiarities. The Insert operation of a new value in
the DST is simply reached executing a number of parallel DHT put operations equal to
the height of the tree. This implementation does not check if the DST range is exceeded.
For that, a custom StorageMemory is defined on every peer, overriding the put() method
of TomP2P. The put() function is extended to check the Map size, if the size exceed the
DST range, the incoming content key is not inserted in the given location key.

Querying a value from the DST, on the other hand, needs to be implemented with a
recursive function. The recursion comes into play whenever a full DST block is returned.
In that case, also both child blocks must be retrieved to guarantee that all the indexed
values are found. To reach the recursion in Listing 4.1, when a full block is detected, i.e.
the returned Map size is equal to the DST range, the callback function is substituted to
call getFromDHT(), itself, for the two child blocks, until only non-full blocks are reached.

The IndexHandler class is used to insert and remove indexed values from the DST. Both
operations need to first query the index to detect if the value is already there. When
the response is positive for a univocal index, the entire Insert operation must be stopped.
For a normal index the value is added to the same object. The checking operation is
implemented to block the thread until the answer arrives, utilizing the Thread.wait() and
Thread.notify() construct of Java. This breaks some of the rules prefixed for the design.
The approach, however, simplified the implementation of IndexHandler.
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This chapter focuses on the evaluation of TomDB. The goal is to run a series of tests
and evaluate the main functionalities of the program, i.e. the insert, select, join and
delete SQL statements. The performance results indicate if the implemented approach
is a viable way for future developments and a real world use.

The evaluation is based on four experiments, one for each statement. Every scenario runs
10 times utilizing the same dataset.

5.1. Environment

The experiments are conducted on a test bed of 7 servers. The hardware specification is
shown in Table 5.1. The servers are connected on a Gigabit Ethernet and isolated from
the Internet. In this way the experiments are performed in a close environment to avoid
external e↵ects. All the Java applications are executed with the last Java JDK 7u45.

For every experiment, a TomP2P network is built up on 6 servers and on each server 167
local DHT peers are started, for a total of 1002 peers distributed on 6 machines. One of
the server takes over the rule of bootstrapping peer and the other peers are bootstrapped
to its address. The remaining server is utilized to execute the tests. The experiment
application initializes only one DHT peer for the experiments and bootstraps it; in this
way the communication over the DHT always needs to go through the Ethernet (worst
case).

The dataset utilized by the experiments comes from the Ohloh.net webpage, an online
community platform that collects statistics about Open Source softwares. Through the
Ohloh.net API, information about 6000 Contributors and 1000 Projects are fetched and
saved in text files formatted as Comma Separated Values (CSV). The Contributors table
contains statistics about a person that committed code to a project. The Projects table
contains information about Open Source projects, like names and web pages. The tables
are further elaborated to add an unique ID starting from 1 and a random unique ID (rID)

Servers Hardware
CPU 24 AMD Opteron 6180 SE Cores, 2.5 GHz
RAM 64 GB
OS Ubuntu Server

Table 5.1.: Testbed hardware specification.
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Figure 5.1.: Extract of the Contributors and Projects dataset.

of the same range of the unique ID, randomly distributed on the entire table. An extract
of the dataset is shown on Figure 5.1.

5.2. Experiment Design

The experiments are implemented in a separate application; in this way, TomDB is utilized
as an external library exclusively through the API, directly from the compiled Jar with
dependencies. The application is designed to execute from the command-line. To start the
execution, the address of the bootstrapping peer must be given as parameter. After that,
a Scanner reads the inputs from the keyboard, for example the name of the experiment
to start or “exit” to shutdown the DHT peers and the experiment.

For every experiment the dataset is needed, i.e. it must be read from the CSV file and
load in Java. The implementation utilizes a standard Bu↵eredReader to load the file in
memory, then, the String.split(“,”) function is used over every row to separate the columns
delimited by a comma and returning an array for every row. This array of columns is
saved in an ArrayList and an iterator is extracted. The iterator is then used in a loop to
load the values in the insert queries.

5.2.1. Insert Experiment

The Insert experiment is subdivided in two scenarios, the first scenario inserts rows in
a table without indexes, for the second scenario one index is defined. The experiments
start with a create table statement to prepare the database for the inserts. The entire
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Exp. Inserted Rows

Ex1 1
Ex2 100
Ex3 200
Ex4 300
Ex5 400
Ex6 500
Ex7 600
Ex8 700
Ex9 800
Ex10 900
Ex11 1000

Table 5.2.: Insert experiment setup.

Contributors dataset of 6000 rows is utilized. For the first scenario, no options parameter
are given, utilizing the default settings (block size 100):

CREATE TABLE contributors (id , rid , account_id , account_name ,
main_language_id , main_language_name , man_months , commits

, median_commits)

For the second scenario, the options parameter defines the index on the ID column with
a DST range of 10’000, block size remains by default:

CREATE TABLE contributors (id , rid , account_id , account_name ,
main_language_id , main_language_name , man_months , commits

, median_commits) OPTIONS (univocalindex:id , dstrange
:10000)

The experiments are organized in 11 sub experiments for each scenario, summarized in
Table 5.2. Each sub experiment is separated by a 2 seconds break to send the DHT
in an idle state. It starts inserting one row, then 100, 200, . . . , to 1000; the “one row”
experiment tries to simulate a real world situation. Very often a database is queried about
just one or a few entries. The rest of the sub experiments simulate a growing load to the
DBMS.

The query for the Insert operation is shown here:

INSERT INTO contributors VALUES (val[0], val[1], val[2], ’val
[3]’, val[4], ’val[5]’, val[6], val[7], val [8])

The values are extracted from the columns arrays previously prepared in the setup phase.
For the Ex2 to Ex11 a loop is used to create the desired number of queries. The queries are
entirely bu↵ered and the execution is started only when the bu↵ering process is finished.
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Exp. % of table selected

Ex1 0.001% (1 row)
Ex2 10% (100 rows)
Ex3 20% (200 rows)
Ex4 30% (300 rows)
Ex5 40% (400 rows)
Ex6 50% (500 rows)
Ex7 60% (600 rows)
Ex8 70% (700 rows)
Ex9 80% (800 rows)
Ex10 90% (900 rows)
Ex11 100% (1000 rows)

Table 5.3.: Select experiment setup.

5.2.2. Select Experiment

The Select experiment is subdivided in three scenarios: the first scenario selects rows
utilizing a tablescan, the second selects utilizing an indexscan on the univocal index on
column ID and the third utilizes an indexscan on the random univocal index on column
rID. The ID follows the insertion order of the rows from 1 to 1000; the rID has the same
range but is randomly distributed over the entire table. The dataset is composed by the
first 1000 rows of the Contributors table and the ID and rID columns are utilized for
indexing. The first phase is the setup of the table, inserting the 1000 rows. This is very
similar to Ex11 in the Insert experiment with the following query:

CREATE TABLE contributors (id , rid , account_id , account_name ,
main_language_id , main_language_name , man_months , commits

, median_commits) OPTIONS (univocalindex:id , univocalindex
:rid , dstrange :1000 , blocksize :10)

The DST range is set to the dimension of the table, to minimize the number of DHT
operations for DST; the block size is purposely small to augment the tra�c of blocks. In
this way, when more blocks are created, more DHT operations are needed.

The scenarios are organized in 11 sub experiments, summarized in Table 5.3. Each sub
experiment is separated by a 2 seconds break. It starts by selecting one row from the
table, like in the Insert experiment to simulate a real world situation. Then, 10%, 20%,
. . . , to 100% of the table is selected, utilizing a condition on the ID column. The select
query is as follow:

SELECT * FROM contributors WHERE id <= numOfRows OPTIONS (
tablescan/indexscan)

The where condition is changed depending on the sub experiment, giving the number of
rows to select. The tablescan option is used for the first scenario, the indexscan for the
second and the indexscan on rID for the third.
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Figure 5.2.: Projects dataset for Ex2 with a selectivity of 100. The first two columns
represent ID and rID. Only IDs lower or equal 100 will have a match to the
joining table, all the other are set bigger than 1000.

The results coming inside the ResultSet of the executeQuery() statement are saved in a
temporary Set. The size of the Set is then controlled at the end of each sub experiment.
If the size corresponds to the number of selected rows of the given experiment, the query
was successful executed.

5.2.3. Join Experiment

The Join experiment is similar to the Select experiment, except that in this case two
tables are joined on a column. The experiment is also subdivided in three scenarios:
tablescan, indexscan on ID and indexscan on rID. The Contributors dataset utilized in
the Select experiment is the first table for the Join. Also in this case, the experiments
are subdivided in 11 sub experiments, with the same selectivity as shown on Table 5.3.
For a Join, however, the selectivity represent how many matching rows can be found in
the second table, in other words it is given by the dataset. For example, Ex2 is going to
return 100 joined rows and no more. Therefore, 11 Projects datasets had to be created
with an appropriate ID and rID column that reflects the selectivity. For example, the
Projects file of Ex2 presents the first 100 rows with an ID and rID below 1000, which can
be found also in the Contributors table, resulting in 100 matches. The remaining IDs are
bigger than 1000 and therefore not matchable. An extract of the Projects file for Ex2 is
given on Figure 5.2.

The first phase of the Join experiment is therefore a long setup phase where the Con-
tributors table and 11 Projects tables have to be loaded in the database, for a total of
12 di↵erent tables and 12’000 rows inserted. This is at the same time a good stress test
for the implementation. The sub experiments are then executed, with a 2 seconds break
between each, with the following query:

SELECT * FROM contributors , projectsX WHERE contributors.id =
projectsX.id OPTIONS (tablescan/indexscan)

The projects table is changed depending on the experiment executed. For instance, pro-
jectsX would be projects100 for Ex2. The tablescan option is used for the first scenario,
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the indexscan for the second and third. In the third scenario, the join is set on the rID
column instead of the ID.

Similar to the Select experiment, the results coming inside the ResultSet are saved in a
temporary Set. The size is then controlled at the end of each experiment to check if it
corresponds to the expected joined rows number.

5.2.4. Delete Experiment

The Delete experiment is quite di↵erent from the others and is focused on testing the
insertion order and full blocks storage types of TomDB. The insertion order storage type
adds new incoming rows always at the end of the table, keeping the insertion order of the
rows. The full blocks storage, however, reutilizes first empty sectors of previously deleted
rows in the existing blocks. The performances of both storages are therefore di↵erent in
di↵erent scenarios. The table used is the same Contributors table of the Select experiment,
loaded in the database during the setup phase. The idea is to first delete half of the table,
with the query:

DELETE FROM contributors WHERE rid < 500

The rID is used so that blocks with empty rows are spread all over the table. Then, 500
rows are reinserted in the table with the process seen in the Insert experiment. At the
end, the entire table is retrieved with SELECT * FROM contributors.

This process is executed 10 times with the insertion order storage and 10 times with the
full blocks storage, changing the options setting for the storage in the create table

statement; the block size is set to 10.

5.3. Results

The information are collected with many log messages inserted in the implementation, so
that the execution time and the DHT operations utilized by a statement can be measured.
The data are then aggregated in MySQL and saved in Excel sheets. For the execution
time, a regression is calculated with the sheet, to be utilized as a trend line inside the
charts. The elaborated information are saved in text files and the charts are created
utilizing Gnuplot.

The experiments are executed 10 times separately for every scenario inside the test bed.
The scenarios, comprehending the sub experiments, run automatically to the end. After
every execution, the log file is saved and the DHT network is shut down and restarted to
have a clean DHT, ready for the next execution.
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Figure 5.3.: DHT operations needed by the Insert experiment.

5.3.1. Insert Experiment

The Insert operation is an unavoidable function of a DBMS, for example to create the
table for the other tests. In this thesis, however, the design focus was not on optimizing
the Inserts, but rather the Selects. Even if the insert queries are bu↵ered and executed
all together, the DHT operations are not aggregated. In other words, every row inserted
needs its set of DHT operations.

For the experiment without indexes, the Insert operation merely consists of one put oper-
ation per row, i.e. for example to insert 1000 rows, 1000 DHT operations are performed.
This is evident also on Figure 5.3. The DST index in the second experiment, however, is
causing a high overflow of operations, because every new indexed value needs to be put
on each level of the tree. For example for a DST range of 10’000 this means a tree height
of 11 (ln(10’000) + 1). The consequence of indexing for the Insert operation is therefore
that, to insert for example 1000 rows, 1000 puts are executed for the DHT table and
11’000 puts for the DST tree, for a total of 12’000.

The DHT operations are the highest cost in this application because the routing algorithm
goes through a number of DHT peers equals to log(peers) to get or put a data. Given that
many peers are not on the same machine, the DHT utilizes the network to communicate,
which is much slower that the main memory. Therefore, the DHT operations are a good
parameter to calculate the cost of an entire operation and they have high influence also
on the execution time. It is no surprise that the execution time for the experiment with
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Figure 5.4.: Execution time of the Insert experiment.

index is much higher, as seen on Figure 5.4. For the experiment without index the median
execution time goes from 37ms for inserting one row to 1s for inserting 1000 rows; by the
experiment with index, the median execution time for inserting one row is 167ms and for
inserting 1000 rows 15.7s.

5.3.2. Select Experiment

The Select operation is an important statement for many applications. Therefore, the
focus on optimization was put on Select operations. This motivated also the choice of
DST as an indexing structure, because it performs very e�cient for Select operations,
with the cost of a poor performance by Insert statements.

Figure 5.5 shows the DHT operations. A tablescan consists in retrieving the entire table,
giving a constant result of 100 operations for the 1000 rows in the table of the experi-
ment. This can be calculated dividing the table size by the block size, for instances here
1000/10 = 100 Blocks, one block correspond to one DHT operation. The indexscan, on
the other hand, first performs a lookup on the index of the indexed column to identify
the interesting table blocks and then retrieves the blocks form the DHT. The experiment
that performs the indexscan on the ID column starts with 2 operations to retrieve 1 row
and grows linearly to 108 operations to retrieve the entire table. This is given because
the ID column is set following the insertion order; to retrieve for example 100 rows the
first 10 blocks of the table are retrieved plus some operations for the DST, to retrieve
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Figure 5.5.: DHT operations needed by the Select experiment.

200 rows the first 20 blocks are retrieved and so on. This corresponds to the best case.
Completely di↵erent is the situation for the indexscan on the random distributed rID.
Already for retrieving 300 rows, the operation needs 108 gets, meaning that the entire
table is retrieved. This is also the expected behavior. In this case the rID do not follow
the insertion order, however the IDs are randomly spread over the entire table. In other
words, the first 300 rows that the query is looking for are not saved in consecutive blocks
but distributed on the entire table. This was intended to simulate the worst case scenario
for the indexing structure. Interesting to note is the overflow caused by the index lookup,
namely the number of operations needed by the lookup, over the retrieving of the table
blocks. This is calculated over all the executed experiments with a median value of 10
DHT operations for the index lookup.

The execution of the Select experiments encountered two types of problems; the first
problem is a higher execution time of the first tablescan experiment. This is partially
explained by the fact that this is also the all-first operation of the entire experiment and
therefore, the table metadata are updated from the DHT, which is a blocking operation.
The second problem is a much higher value for the execution time of certain sub exper-
iments that happened occasionally. In other words, one or more DHT operations are
blocked and respond only after a high delay, up to seconds. All this events have been
flagged as outliers and excluded from the calculation of the regression.

In the chart on Figure 5.6 the execution times of all the three scenarios are shown, together
with the trendlines. The first interesting aspect to be noted is the tablescan trendline,
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Figure 5.6.: Execution time of the Select experiment.

resulted by the first scenario experiment. Even if this test executes 11 times exactly
the same operation, i.e. downloading the entire table, the line leans negatively. Given
a median value of 124ms for the tablescan, the last sub experiments perform e↵ectively
faster. No definitive explanation could be given to this behavior, but it may lie in a caching
or optimizing mechanisms of the DHT. The median execution time for the tablescan is
influenced by the block size. For example, if the block size would be set to 100 for this
experiment, only 10 blocks would be needed to retrieve the entire table. The highest cost
in DHT is the routing to the interested peer. In other words, the setup of the connection
to the responsible peer of a block costs; the transport of the block to the peer, on the
other hand, is fast on the Ethernet. This suggests that bigger blocks are better, because
fewer connections have to be created, which is to certain extent true. A problem could
be, however, a congestion on peers that are responsible for highly requested blocks of the
table, because bigger blocks are less distributed on the DHT.

The second scenario, the indexscan on ID, behaves as expected from the operations chart,
growing linearly. It starts with a median value of 16ms to select one row and ends with
a value of 138ms to select the entire table. The 16ms value confirms that indexes are
a great instrument to optimize queries. The intersection point between the indexscan
(green) and tablescan (red) trendlines in the chart denotes the selectivity %, about 75%
of the table, where a tablescan performs better than the indexscan. In other words, when
more than 75% of the table is selected by the query, a tablescan is probably faster. This
can e↵ectively happen, because the indexscan has an overflow, i.e. more DHT operations
are executed to do the index lookup. This value, however, must be relativized seeing that
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the median execution time to retrieve the entire table by an indexscan is 138ms, just 14ms
more than the tablescan. The low overflow of DST is possible until the DST range remains
bigger than the range of the indexed values. In this situation, the DHT operations for
the index lookup are minimized. When the DST range is smaller than the indexed values
range, however, full blocks are present in the index and the DHT operations increase to
get the child blocks. This would mean a shift of the intersection point to the left.

To calculate the regression of the third scenario, the indexscan on rID, the first two sub
experiments, Ex1 and Ex2, are excluded, because they perform with much less DHT
operations compared to the other sub experiments, making the trendline too leaning for
the scope of the experiment, which was intended to demonstrate the worst case scenario.
The resulting trendline is nearly flat and, if the tablescan trendline would not manifest
the descending behavior, they would be parallel. The execution times are similar to the
tablescan. Indeed, to retrieve the entire table, more than 100 DHT operations are needed.
The real intersection point is expected to be at 20%, where the DHT operations exceed
the operations for tablescan. This worst case scenario was designed to show the limits
of the indexing structure. The e↵ectiveness of the indexing depends on the data indexed
and does not show for every data the same behavior.

A comparison of the results to the experiments conducted in [1] is di�cult, given com-
pletely di↵erent datasets. The speedup factor of the indexscan compared to the tablescan,
which is relative, can however be compared. The execution time to select 25% of the table
in [1] corresponds to a speedup of 75%; in the experiments conducted in this thesis, the
same factor is 46%. The general impression is, however, that the tablescan of TomDB
performs better; to select 1000 rows in this thesis, the median value is 124 milliseconds,
to select 2000 rows in [1], the average is 12 seconds, which corresponds to 6 seconds for
1000 rows. This is probably given by the fragmentation of this thesis, where blocks of n
rows are saved in the DHT. In [1], instead, every rows represents a key/value pair.

5.3.3. Join Experiment

The Join operation for the tablescan consists in downloading both tables completely. For
the indexscan, both indexes are downloaded first and then the matching rows, found
comparing the indexes, are downloaded from the DHT. This is reflected also on the chart
in Figure 5.7, where the DHT operations are merely doubled compared to the Select
experiment for the tablescan, resulting in 200. The indexscan on ID follows a growing
linear trend, similar to the Select experiment, starting with 19 operations to join one
row up to 216 to join the entire table. This is the best case scenario. The indexscan on
rID, however, is quite di↵erent that in the Select experiment and shows a growing trend
similar to the indexscan on ID. This is given by the Projects dataset, seen in Figure 5.2,
where also the rIDs follow the insertion order. In other words, when the matching IDs
are found through the comparison of the indexes of both tables, the retrieving of the rows
from the Projects table is executed exactly like it happens for the indexscan on ID. Only
the Contributors table shows a completely random ID and augments the needed DHT
operations for the third scenario. With these datasets was therefore not possible to show
the worst case for indexscan, like it happened in the Select experiment.
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Figure 5.7.: Operations needed by the Join experiment.

Also in Figure 5.8 the data manifest the same two problems found in the Select experi-
ment: higher values in the first sub experiment of tablescan and strange high values in
the execution times occasionally, because of blocking calls. These outliers are excluded
from the calculation of the regression. The trendline of the tablescan also shows a slightly
descending trend as seen in the Select experiment. The median execution time of a tables-
can is 280ms, 32ms higher than the doubled time of the Select operation. This is probably
given by the fact that the Join implementation has to wait until every asynchronous get
returns the results before the joining can begin, unable to fully exploit the advantages of
asynchronous operations.

The trend for the second scenario, the indexscan on ID, grows linearly similar to the Select
experiment. It starts with an execution time of 166ms for the first sub experiment and
ends with a value of 302ms to join the entire table. This last value is 26ms higher than
the doubled time of Select. The explanation is similar as above for the tablescan. It is
also just 22ms higher than the tablescan. In fact, the intersection point in this experiment
is about at 90% of selectivity. In other words, the indexscan approach is nearly always
faster than the tablescan. This is, as explained in the Select, given by the ideal dataset
utilized in the experiment. The trendline of the third scenario (blue) is parallel to the
indexscan on ID (green), as already discussed in the paragraph above. The shift upward
is given by the fact that the Contributors table needs to be retrieved completely, like it
happened in the Select experiment, because the searched rows are spread over the entire
table.
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Figure 5.8.: Execution time of the Join experiment.

5.3.4. Delete Experiment

The Delete test was designed to verify the following scenario: when a delete query
removes rows all over the table, every block on the DHT contains empty rows and unas-
signed row IDs. A select query over this table is less e�cient, because non-full blocks
are transported, i.e. more blocks are needed to cover the same range of rows compared
to full blocks. With the insertion order storage this problem is not solved because the
new inserted rows are attached at the end of the table in new blocks. The full blocks
storage, on the other hand, reutilize first the empty row IDs in the existing blocks. These
scenario is reflected also in the results of the experiment on Table 5.4: after that 500
rows are deleted and then reinserted in the table, to retrieve the entire table the insertion
order storage needs 150 DHT operations and the full blocks storage only 100. This is
confirmed also by the execution times, where the insertion order takes 311ms compared
to the 212ms of full blocks, as seen on Figure 5.9. Deleting with full blocks storage needs
601 operations, because it uses one operation to save the resulting free blocks on the DHT.

There is situations, however, where the insertion order storage performs better, because
the insertion order of the new rows is maintained. For example in the scenario above,
a query to select only the last 500 new rows inserted would need only 50 operations
with insertion order. This is given, because the Insert operation is going to create 50 new
blocks at the end of the table. In full blocks storage, on the other hand, the 500 new rows
are spread all over the existent blocks. To select the last 500 inserted rows, the entire
table, i.e. 100 blocks/operations, is necessary. Also in this case it depends on the data
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Insertion order Delete Insert Select
ms 1252 582 311

operations 600 500 150

Full blocks Delete Insert Select
ms 1158 689 212

operations 601 500 100

Table 5.4.: Delete experiment median results.

and the application to define a real winner between the two storage types.
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6.1. Summary

NoSQL databases are arising as an important section of the database world. With a
simple interface and the reject of typical relational DBMS properties, NoSQL approaches
process big data with a high scalability and performance. One application is the key/value
pair paradigm, used for example by DHTs. On the other hand, many business, financial
and industries continue to prefer relational DBMSs for their applications.

TomDB was implemented as a relational DBMS engine capable of mapping the relational
model and SQL queries to key/values pairs and DHT operations. TomP2P is used as
the underlying DHT and is completely integrated inside the DBMS. The SQL parser
supports the following commands: create table, insert, select with condition and
joins, update and delete. An indexing structure was implemented to meliorate the
query performance, utilizing a Distributed Segment Tree. The application is designed as
a standalone library, utilizable through a JDBC-like API.

The experiments evaluate the main functionalities of the DBMS: insert, select, join
and delete. The data utilized for the execution of the queries are fetched from the
Ohloh.net website and adapted to the experiments.

6.2. Conclusion

The proof of concept for TomDB was a success and returned encouraging results. With
the given dataset it was possible to select 1000 rows in 124ms and 1 row, utilizing the
index, in 16ms, on a DHT network of 6 machines and 1002 peers. Joining two tables
performed with about the doubled time as a Select operation, which was expected. The
drawback was given by the insert operation that is not completely optimized and by the
indexing through the DST, which causes more DHT calls by an order of magnitude than
without index.

The first goal, however, remains open: is TomDB really a relational DBMS on top of a
DHT or is it just a SQL capable DHT? The ACID properties of DBMSs could be taken
as an objective to define an application as a real relational DBMS. The answer could be
therefore given analyzing the properties:

• Durability : This property is an important characteristic of DHT and P2P systems in
general; when even just one peer remains alive on the network, the information are
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kept. DHT networks, as self-organizing entities, handle adding and leaving of peers
transparently, moving the data to the responsible peer and keeping replications,
without the need of configuration. This characteristic was one of the drivers of this
project.

• Consistency : On one hand, a key/value pair on a DHT is for every user consistent
and exactly the same. Only the exact key match can retrieve that information. This
guarantees the consistency of the key/value pairs on the DHT but it is not a promise
that the saved data inside a key/value is correct. In the Future Works on Chapter
7 examples are given, where inconsistent data could be produced with TomDB.

• Isolation: This term is related to concurrency control. In P2P networks without
a central authority, as stated in Chapter 7, a complete concurrency control is dif-
ficult to reach. Nevertheless, the execution of certain query, such as insert or
update, must be guaranteed conflicts free, otherwise inconsistent data are saved
in the database. On the other hand, for a select query, the concept of eventual
consistency could be applied. In other words, it is not absolutely necessary that
always all the retrieved data are up-to-date. A concurrency control mechanism is,
however, not part of TomDB.

• Atomicity : This property is concerned about the correct execution of transactions,
“all or nothing”, to avoid partial transactions to remain in the database. A reverse
mechanism to keep trace of a transaction and cancel it if necessary has not been
implemented.

The analysis gives a clear picture; TomDB is only an SQL capable DHT. Seeing that the
ACID properties seem a distant goal for a DHT based relational DBMS, a new concept,
more appropriate for NoSQL systems, could be analyzed; BASE:

• Basic Availability : The focus is on the availability of data, even in presence of
failures. A DHT is explicitly designed for this, the self-organization and replication
guarantees that the data are available even if peers leave the network.

• Soft State: the consistency requirements of ACID are abandoned. The state can
change over time. In TomDB for example, a soft state is present during insert,
delete and update operations. During these periods, the other users are not
informed that changes are going on in the database.

• Eventual Consistency : The consistency is given at a certain point in the future but
the data retrieved are not guaranteed to be up-to-date. In this thesis, however, a
conflict between operations could lead to inconsistencies. A mechanism to guar-
antee the consistency, even if not in real time, could be a first interesting future
development for TomDB.

The objectives of this thesis to proof the feasibility and performance of a relational DBMS
on top of a DHT have been achieved. The results of the experiments show the poten-
tiality of the proposed approach and is the starting point for future work. The proposed
directions in this thesis are an inspiration to further develop this challenging topic.
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This thesis is a proof of concept and therefore the implementation is simplified to the
minimal necessary functionalities to execute the experiments. To reach the capabilities of
a relational DBMS, however, more functionalities and optimizations are required.

7.1. SQL Parser

The SQL parser supports only a small subset of the SQL standard; therefore, it should be
extended to support all the language. The manual implementation chosen in this thesis
shows its limits and becomes di�cult to extend for more commands; the probability
of making mistakes and oversights increase constantly with the complexity. Another
approach should be choose, using for example a tool like ANTLR to compile a correct
parser. The implementation of the SQL operations needs to be abstracted and extended to
elaborate the entire set of SQL commands. For example the ConditionsHandler supports
only the prioritization of and and or conditions from left to the right, without considering
parenthesis.

7.2. Optimizations

Although it was a clear design principle from the beginning, there are still some blocking
DHT operations inside TomDB, one over all the index lookup in IndexHandler. This last
example revealed to be problematic when thousands of rows are consecutively inserted in
the table, causing inconsistencies in the index. A clear architecture that eliminates all the
blocking operations should be targeted in a future development. Also the design principle
of minimizing the DHT operations has still potential for optimization. One example is
the insert operation: every single new row utilizes a put operation. In TomP2P it would
be possible to aggregate the new rows, i.e. the content keys, in a Map locally and put the
entire Map, i.e. the location key, with only one operation.

7.3. Query Optimizer and Block Size

One of the most interesting and powerful capabilities of a traditional DBMS is the Query
Optimizer, a function that is capable of deciding the path for executing a query in the
most e�cient way, for example choosing the type of scan (index or table). A possible
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approach could be to create a quantity of statistical metadata about an indexed column,
like the distribution of the data, and utilize this information to determine how much of
the table a query is going to select. The selectivity of a query could determine the choice
between indexscan and tablescan, calculating for example the number of DHT operations
that the scan needs or based on empirical data.

Another variable in TomDB that has to be set manually is the size of a table block, n. For
a table with many columns, this size should be small, the opposite for a table with a few
columns. The network in use or the memory of a peer could also determine n. Moving a
block on the Internet is probably slower than moving it on a LAN. An accurate study of
these behaviors could produce an algorithm to automatically choose n, adding a further
feature to the application.

7.4. DST

The DST range is another variable that is set manually in TomDB. In this case, however,
it is di�cult to predict how much a table grows, i.e. how large the DST range should
be, to calculate it automatically. Moreover, the static structure of DST does not allow to
dynamically changing the range at a later time. DST reveals to be e�cient for select
statements, causing just a few DHT operations. By inserting new rows however, the
overflow of DHT operations is very high, calculated in ln(DSTrange) + 1 for every new
indexed value. In other words, DST may not be the best choice. It remains the best
approach found in the literature that is entirely based on the standard DHT API, meaning
that the research of alternatives should focus on a technology that is build inside the DHT
and not on top of it.

7.5. Concurrent Users

One important characteristic of relational DBMS is isolation: the transactions on the
database are submitted to concurrency control. In other words, if two users utilize a
database simultaneously on the same data, an insert transaction, for instance, blocks
the access to the part of table that is going to be written. In TomDB, however, a locking
mechanism is not present. Problems could arise for example when two users try to insert
new rows at the same time. The metadata are updated on both instances, the new row ID
is extracted from the metadata, but it is the same for both users. When the put operations
are started, the last operation to finish is going to overwrite the other row, because the
content key is the same, causing inconsistent data in the table. Other problems arise when
two users try to delete or update the table and at the same time the data are selected.
If the select operation happens before the update or delete, the received data are
inconsistent because not actualized. The same could be said for a select operation before
a new insert is finished. Many other conflict scenarios could be listed.

Concurrency control is a great challenge in P2P systems like the DHT. There is no central
control to drive a locking mechanism and broadcasting is not reliable and causes a huge
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communication overflow. Also a distributed locking registry is probably not practicable
because not e�cient, it would produce an overflow of blocking operations inside the sys-
tem. In a P2P based DBMS it is probably necessary to apply a more permissive approach
like it happens by Amazon Dynamo [17]: eventual consistency. The data are guaranteed
to be inserted, updated and deleted, but there is no guarantee that a select operation
returns the most updated information.

A feature that goes towards an eventual consistency in TomDB could be reached utilizing
the metadata: the insert, update and delete operations always actualize the metadata
before proceeding. The metadata could be flagged as locked for a given operation by a user
and when the operation complete and the actualized metadata is uploaded in the DHT,
the flag could be removed. In this way, when another user tries to execute a conflicting
operation at the same time, it would be informed about the conflict before starting the
process. The problem still remains when the metadata fetching operations happen so
close to each other that the flagged metadata is not saved yet on the DHT.

7.6. Atomicity of data

Assuming an eventual consistency approach, the atomicity of transactions is even more
important. The insert, delete and update operations must guarantee to produce
consistent data. However, in TomDB there is no mechanism to revers an unsuccessful
query. Especially when di↵erent operations are involved, like for example inserting in
the table and the index or an update of the metadata, if one operation fails, the others
operations are likely to be executed anyway. This produces inconsistent entries in the
database.

To implement the atomicity of transactions, a registry of the operations should be kept
until the entire process is finished correctly. When a DHT operation fails, a mechanism
could be triggered to cancel all the other involved operations and bring the database state
back to the beginning.
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A. Installation Guidelines

In order to utilize the TomDB library, Java JDK 7 is required.

The TomDB Jar can be executed as a standalone software from the command-line to act
as a DHT peer with the following parameters:

• Address of the bootstrapping peer.

• Number of local peers to create.

• True/False if a random port should be choose instead of the default port 4000.

Otherwise, the library can be imported as an external library in a Java project and
the JDBC-like API can be utilized inside the application. The self-contained Jar with
dependencies do not require further libraries to be imported.
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B. Contents of the CD

On the root level of the CD there is the thesis as PDF file, a german and english version
of the abstract in plain text files and the presentation slides in PDF.

B.1. TomDB

This folder contains the compiled Jars including dependencies for TomDB (TomP2P 4.4
library): TomDB-1.0-jar-with-dependencies.jar and TomDB5 (TomP2P 5 Alpha library):
TomDB5-1.0-jar-with-dependencies.jar

B.2. Data

This folder contains all the data produced with the experiments subdivided in the folders
Insert, Select, Join and Delete. Every folder contains the raw log files, the Excel sheet
with the analyzed data and the gnuplot files to generate the charts.

B.3. Experiments

This folder contains all files needed to run the experiments and the Eclipse project of the
Experiments.

In order to execute the experiments, a TomDB network must be started. Then, the
Experiments.jar file can be executed from the command-line, with the bootstrapping peer
address as parameter. The Jar should be in the same directory as the dataset files.

B.4. Related Works

Contains all papers used for writing this thesis.
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B.5. Sources

This folder contains the Maven projects for TomDB and TomDB5.

B.6. Thesis

Contains the LATEX sources of this thesis including images.
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