STK4080/9080 Nelson-Aalen estimator

Survival and event history an alysis We have right censored and/or left truncated survival
data for a sample of n individuals from a population

with hazard rate a(t)

Lecture 4:

. Nelson-Aalen estimator Let N;(t) count the observed number of occurrences (0 or 1)

of the event of interest for individual i

* Multiplicative intensity model

Provided censoring/truncation is independent, the

» Survival functions, cumulative hazards and SN :
corresponding intensity process takes the form:

product integrals

e Kaplan-Meier estimator —
P e | A =Y, (t)a()
» Estimating restricted means and fractiles —
at risk indicator hazard rate

The aggregated counting process We have the decomposition:

N =2, N () dN(t) = A(t)dt +dM (t)
has intensity prnocess =Y(t) LdA(t) + dM (t)
Alt) = Z/]i (t) = Y(t)a(t) signal noise

where

. Estimating equation (when Y(t) > 0)
Y(£) =D Y (1) .

= dN(t) = Y (t) [A(t)
is the number at risk "just before" time t
Thus (when Y(t) >0):
We will estimate the cumulative hazard

¢ ~ v AN(1)
A = [ a(u)du 3 AO=T0 )




The Nelson-Aalen estimator

~ - tdN(s) _ 1
A0=[59 “Zvay

is a sum over the jump times T, <T,<--- of N(t)

We will show (later) that the Nelson-Aalen estimator is
(almost) unbiased with a variance that may be estimated by

g (AN(S) 1
() (t)_'([Y(S)Z _;Y(TJ)Z

Approximate 95% pointwise confidence limits:

Standard: A(t) +1.96[0 )
Log-transformed: A(t) [exp{t1.96F ¢ )/A ()}

Example 3.1: Second births

Cumulative hazard
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Fig. 3.1 Nelson-Aalen estimates for the time between first and second births. Lower curve: first
child survived one year; upper curve: first child died within one year:
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(cf. Exercise 3.3)
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Fig. 3.3 Nelson-Aalen estimates for the time between first and second births. Left panel: first two
years after the first birth; right panel: two to four years after the first birth. Smooth curve: first
child survived one year, irregular curve: first child died within one year. 7 Fig. 3.4 Nelson-Aalen estimates for the time between the second and third births depending on the

gender of the two older children.




Using R: exercise 3.1

Placebo 1 1 2 2 3 4 4 5 5 8 8
8 8 11 11 12 12 15 17 22 23
6-MP 6 6 6 6 7 9% 10 10* 11* 13 16
17#% 19% 20* 22 23 25% 32% 32% 34* 35%
# Read data:
leukemia=

read.table("http://folk.uio.no/borgan/abg-2008/data/leukemia.txt",header=T)

# Compute Nelson-Aalen estimates and plot them in one figure

# (using the default "efron" method for handling tied failure times):

fit=coxph(Surv(time,status)~strata(treat), data=leukemia)

surv=survfit(fit)

plot(sury, fun="cumhaz", mark.time=F, xlim=c(0,25), ylim=c(0,4),
xlab="Weeks", ylab="Cumulative hazard", lty=1:2)

legend("topleft", c("Placebo","6-MP"), Ity=1:2)

The multiplicative intensity model

Consider a counting process N(t) with intensity process of
the multiplicative form

A =Y()alt)

Here Y(t) is predictable process that does not depend on
unknown parameters and a(t) is a non-negative
parameter function

The Nelson-Aalen estimator applies to all counting
processes fulfilling the multiplicative intensity model

The main example of the multiplicative intensity model is
right censored and/or left truncated survival data as

considered above
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Example 3.3: Competing risks !

Nelson-Aalen estimates for the cause-specific mortality
according to cause of death and sex (data from health
screenings in three Norwegian counties):

Males Females

Dead by
Consider a competing / cavse !
risks model with k ° 2
causes of death Alive oad ™y
For each cause h we \ -
define the cause-specific cause 3

hazard a,,(t) given by

a,, (t)dt = P(die from causé

Based on a sample from a population, we let N, (t) count
the number of observed 0 —> h transitions in [0,t] and let

int[t+dt ) |alive &t

Y,(t) be the number at risk (i.e. in state 0) just prior to time t

The intensity process of N, (t) takes the multiplicative form
Ao (1) = a,, (t)Y,(t) so Nelson-Aalen applies

11

Cumulative cause specific hazard
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3) Other medical

. . 12
4) Alcohol abuse, violence, accidents




Example 3.4: Relative mortality

Consider censored/truncated survival data, let N;(t) count
the observed number of deaths (0 or 1) for individual i,
and assume that its intensity process takes the form:

A®) =Y O a) 4 (1)
——

at risk relative population mortality
indicator  mortality  (known)

The aggregated counting process N(t) = ZLNi (t)
has intensity process of the multiplicative form

A=A =YO a0

with Y (t) =D Y(t) 4(t) , so Nelson-Aalen applies

Cumulative relative mortality

e T T T T T
2 4 6 8 10

Years since hip replacement

5% standard
eriod 1987—

the relative cumulative relative mortali
ave had a hip replacement in Norw.
97. A dotred line with unit slope is included for easy reference.

14
i=1
Example 3.6: Mating of Drosophila flies
2 30 female virgin flies and 40 male virgin flies are put in a
- plastic bowl ("pornoscope") and times on initiatings of
3 S matings are recorded.
5
§ o Two experiments: one experiment with "ebony" flies and
E one with "oregon" flies
g 143 180 184 303 380 431 455 475 500 514
2 Ebony 521 552 558 606 650 667 683 782 799 849
3 °7 901 995 1131 1216 1591 1702 2212
555 742 746 795 934 967 982 1043 1055 1067
g 4 . . . . . . Oregon | 1081 1296 1353 1361 1462 1731 1985 2051 2292 2335
0 1 2 3 4 5 5 2514 2570 2970
Months since hip replacement
th 95% standard . .
e had a hip N(t) counts the number of matings in [0, t ]
replacement in Norway n the period 1987-97.
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Assuming random mating, the intensity process takes the
multiplicative form

A1) = o(0) f(t)m(1)

J()=30—-N(1—)
m(t) =40—N(1—)

where

are the number of virgin female and male flies just before time t
Nelson-Aalen estimator of cumulative mating intensity

~ 1
A= 2 ey

Tj=t-

A similar approach may be used to model the spread of
an epidemic (if the times of infections are observed) 17
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Statistical properties of Nelson-Aalen estimator

To handle the possibility that Y(t) = 0, we introduce the
indicator J(t) = I{Y(t) >0} and interpret 0/0 as 0

Then we may write

~ o tdN(S) _ tJ(s)
A0=[Tg =IegmMe

_ 309
= ! @{Y(s) a(s)ds+dM (s)}

= _t[J (s)a(s)ds+ j%dM (s)

U~ _

— A::(t) = rzt) 19

Thus we have the decomposition:
At) = A (1) +1(t)
systematic part random part

The random part is the stochastic integral:

I(t) = j[ H (s)dM (s)

where H(t) =J(t)/Y(t) is a predictable process
(i.e. its value at time t is known "just before" t)

We may use properties of stochastic integrals to

study the Nelson-Aalen estimator
20




The stochastic integral | (t) is a mean zero martingale

In particular

E{1(0} =0
Thus: A
E{AD} =E{ A() +I(}}
=E{A (1)} +0

= j P(Y(s) >0)a(s)ds

= A(t)

The Nelson-Aalen estimator is approximately unbiased
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For the martingale I(t) we have that
2
2@ -[1]®
is @ mean zero martingale

It follows that
Var{I(t)} =E{ 11} £ [I]}

Thus an unbiased estimator for the variance of I(t) and
an approximately unbiased estimator for the variance of
the Nelson-Aalen estimator is

a2 =[1] () :j;(J(s,)/Y(s))2 dN(s)
B 1
_Z Y(Ti)2 22

T<t

Suppose that N(t) is an aggregated process
obtained from observation of n subjects
(as in all examples except the Drosophila flies)

Assume that
Y(s)/n - y(s)>0 as n - o forall sO [07 '

By the martingale central limit theorem we then
have that (cf. lecture 3, slides 26-27)

Jn(At)- At)) - U(t)  (in distribution)

where U(t) is a mean zero Gaussian martingale

with variance function
ra(s)
o’(t) = | —=ds
{ y(s) =

In particular for a fixed value of t the Nelson-Aalen
estimator A(t) is approximately normally distributed
around the true value of A(t) with a variance that
may be estimated by &?(t)
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Survival functions, cumulative hazards,
and product integrals: the general case

Uncensored survival time T

Survival function: S(t) = P(T >t)

For the absolute continuous case, the hazard is given by:

i 1
a(t) = lim L P(T <t+4t|T 21)

t
Cumulative hazard: A(t) = Ia(u)du
0

We have the relations:

at) = A(t) = —% S(t) = exp{-At }

25

For a general distribution the hazard rate is not defined, but
we may define the cumulative hazard rate as (generalizing
the first relation at the bottom of the previous slide):

_ _[tds)
Alt) = .[0 S(u-)

For the discrete case A(t) is a step function with increments

AS(u)
S(u-)

=P(T =u|T 2u)

AA(U) = -

How can we generalize the second relation at the bottom
of the previous slide?

26

Need product-integrals to achieve this generalization

Partition [0,t] into small time intervals:

t

t

——

stty= lim [TA-{At) - At)})

maxt~t_; |» 0

= JT (1-dAW))

O<ust

The limit is a product-integral
27

For the continuous case we have:

7T (1-dA(u)) =exp{-At }

O<ust

For the discrete case we have:

JT (1-dAW)) = [ (1-2AW))

u<t
where AA(u) = P(T =u|T = u) is the increment
of the cumulative hazard at time U

For the general case we have a mixture of the two

28




The Kaplan-Meier estimator

For right censored survival data we observe:

T. =min{survival timeT. , censoring tim&
D, = I{-I:. =T}

Model: the uncensored survival times T; are iid
with hazard rate a(t)

Counting and intensity processes:
N ) =1{T <t,D, =1
A =HT 2tfa@) =Y (Da)

Aggregated counting process:
N(t) = Zl: N. (t)
Intensity process:
A(t) = ZA ©) = Y(a()
with

Y(t):zn:l{'ﬁ >t}

the number at risk just before time t

29 30
Nelson-Aalen estimator: .
Example 3.8: Second births
t
~ dN (u) AN (u) 1
At =] =2 =2 -
0 Y(u) ust Y(U) T, st Y(Tj) =]
Plug this into the product-integral expression for the 7
survival function (Nelson-Aalen is a step-function): o
S(t) = 7T (1-dAw)) =[] (1-2AW) .
O<ust U<t
AN (u) 1 D
= I_l (1— _— = |_| 1— - = T T T T 1
P Y (u) b4 Y(T) 0 2 s 5 . m
Years since first birth
F‘ig; _3.11 Ka;.;z"m:-}fzfer‘ estimates for the !I;n?‘elblgim‘eg:;‘ﬁrsf and second birth. Upper curve: first
This is the Kaplan_Meier estlmator child survived one year, ‘O\!'ei'CH!'l‘E."ﬁ?'.S'.’ child qled within one year.
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Example 3.9: Third births

0.4

— boy, boy
e -~ girl, girl
-~ boy, girl
-+ girl, boy

0.0

Years since second birth

Fig. 3.12 Kaplan-Meier estimates for the time between the second and thivd births depending on
the gender of the two older children.
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An alternative estimator of the survival function is

(t) = exp{—A(t)}
1
- eXp{_TZ;—Y(T.)}

_ 1
= !}‘Jt exp{ —Y(Tj)}

For practical purposes there is little difference between the
two estimators

But from a theoretical point of view, the Kaplan-Meier
estimator is the natural one (and it may be generalized to
Markov models) 34

Kaplan-Meier estimator: Properties
A1) =] I(9a(s)ds = AY)

S'(t)= JT(1-dA (s)) =exp{-A ¢} =s(t)

O<ss<t

May show that (this is Duhamel's equation)

SO 1S Al Ay < Ay A
s ! 2 g JA-K0) (At -A )
=1

A~

Asymptotically: % -1=- ( A(t) - A(t)) %

Thus:
S(t) - S(t) = -S()  At) - A(Y))

The statistical properties for Kaplan-Meier may be
derived from those of Nelson-Aalen:

. VarS(t)} ={ $ 9} *War{ AR

. Variance estimatof?(t) ={ 1)} 2[F1 )
with 62(t)= j; Y(9) 2dN( 9

. é(t) Is as.normally distributed arouisit

36




Usually the variance is estimated by Greenwood's formula:
72(t) =[S(O]° )
with  62¢)= [ [Y(S){¥(9 ~AN(9}] N $

Only minor difference between the two variance estimators

Pointwise 95% confidence limits for Jt)

Standard: S(t) + 1.9605 ¢ )& ()

Log-log-transformed: é(t)exp[i 1965 (/1o ()

(cf. Exercise 3.6)
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Using R exercises 3.4 and 3.7

Placebo 1 1 2 2 3 4 4 5 5 8 8
8 g 11 11 12 12 15 17 22 23

6-MP 6 6 6 6% 7 9% 10 10* 11* 13 16
17% 19*% 20% 22 23 25% 32% 32% 34% 35%

# Read data:

leukemia=

read.table("http://folk.uio.no/borgan/abg-2008/data/leukemia.txt",header=T)

# Compute Kaplan-Meier estimates and plot them in one figure

fit=survfit(Surv(time,status)~treat, data=leukemia, conf.type="none")
plot(fit, mark.time=F, xlim=c(0,25), xlab="Weeks", ylab="Survival", lty=1:2)
legend("topright", c("Placebo”,"6-MP"), Ity=1:2)

# Kaplan-Meier estimate for placebo group with standard confidence limits

fit.p=survfit(Surv(time,status)~1, data=leukemia, conf.type="plain",subset=(treat==1))
plot(fit.p, mark.time=F, xlim=c(0,25), xlab="Weeks", ylab="Survival",main="Placebo")

# Kaplan-Meier estimate for placebo group with log-log transformed

# confidence limits

fit.p=survfit(Surv(time,status)~1, data=leukemia, conf.type="log-log",subset=(treat==1))
plot(fit.p, mark.time=F, xlim=c(0,25), xlab="Weeks", ylab="Survival",main="Placebo")

The default in R is to used a log-transformed confidence
interval, but that is not a good idea

To obtain confidence intervals for the survival function,
you should use conf.type="plain" or conf.type="log-log"

When the survfit-command is used to obtain confidence
intervals for the cumulative hazard (cf slide 9), conf.type="log"
will give a standard confidence interval, for the cumulative

hazard while conf.type="log-log" will give a log-transformed
confidence interval
39

Estimation of the restricted mean

The mean survival time is given by (exercise 1.3)
E(T)= j S(u)du
0

Due to censoring, this may usually not be estimated

But we may consider the restricted mean, i.e. the
expected survival in [0,t]:

U= jS(u)du

This may be estimated by

40

t
L= j S(u)du
0




Estimation of median survival time and other

fractiles of the survival distribution

The p-th fractile &_ of the survival distribution is given

by (exercise 1.2)

F(&,)=p orequivalenty S§ )k tp

It is estimated by

A~

¢, =inf{t: 1) <1-p}

Confidence intervals may be found by "inverting” the

confidence intervals for the survival function (exercise 3.8)
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Example 3.10: Median time between first and second births

o

0.8

0.6
1

0.4

0.2

0.0

berwaen first 1h for women who lost the first chil

second h 3
indicated at the figure how one may obtain the estimated median time with confidence limits.
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Using R: exercise 3.7 and more

Placebo 1 1 2 2 3 4 4 5 5
8 g 11 11 12 12 15 17 22
6-MP 6 6 6 6% 7 9% 10 10* 11*
17% 19% 20% 22 23 25% 32% 32% 34%

# Estimate of restricted mean lifetime and median lifetime
# with standard confidence limits

fit=survfit(Surv(time,status)~treat, data=leukemia, conf.type="plain")

print(fit, rmean=30)

# One may find the median (and other percentiles) with confidence limits from

# the output of the summary command
summary(fit.p)

# Or they may be found directly by the command
quantile(fit,probs=c(0.25,0.50,0.75))
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