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Survival and event history analysis

Lecture 4:

• Nelson-Aalen estimator

• Multiplicative intensity model

• Survival functions, cumulative hazards and 
product integrals

• Kaplan-Meier estimator

• Estimating restricted means and fractiles
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We have right censored and/or left truncated survival
data for a sample of n individuals from a population
with hazard rate 

( ) ( )( )αλ = ii Y tt t

Nelson-Aalen estimator

hazard rateat risk indicator

Let Ni(t) count the observed number of occurrences (0 or 1) 
of the event of interest for individual i

( )tα

Provided censoring/truncation is independent, the 
corresponding intensity process takes the form:
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where

is the number at risk "just before" time t

The aggregated counting process  

has intensity process 
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We will estimate the cumulative hazard
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We have the decomposition: 

( ) ( ) ( )dN t t dt dM tλ= +

( )( )) (dA tY tt dM= ⋅ +

Estimating equation (when Y(t) > 0)   
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The Nelson-Aalen estimator

is a sum over the jump times                      of N(t)
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We will show (later) that the Nelson-Aalen estimator is 
(almost) unbiased with a variance that may be estimated by 
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Approximate 95% pointwise confidence limits:

ˆ ˆ( ) 1.96 ( )A t tσ± ⋅Standard:

ˆ ˆˆ( ) exp{ 1.96 ( ) / ( )}σ⋅ ± ⋅A t t A tLog-transformed:

(cf. Exercise 3.3)
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Example 3.1: Second births
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Example 3.2: Third births
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# Read data:

leukemia= 
read.table("http://folk.uio.no/borgan/abg-2008/data/leukemia.txt",header=T) 

# Compute Nelson-Aalen estimates and plot them in one figure
# (using the default "efron" method for handling tied failure times): 

fit=coxph(Surv(time,status)~strata(treat), data=leukemia) 

surv=survfit(fit) 

plot(surv, fun="cumhaz", mark.time=F, xlim=c(0,25), ylim=c(0,4),  
xlab="Weeks", ylab="Cumulative hazard", lty=1:2)

legend("topleft", c("Placebo","6-MP"), lty=1:2)

Using R: exercise 3.1 
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The multiplicative intensity model

Consider a counting process  N(t) with intensity process of 
the multiplicative form

(( )) ) (αλ = Y t tt

Here Y(t) is predictable process that does not depend on 
unknown parameters and           is a non-negative 
parameter function

( )α t

The Nelson-Aalen estimator applies to all counting 
processes fulfilling the multiplicative intensity model

The main example of the multiplicative intensity model is 
right censored and/or left truncated survival data as 
considered above

Based on a sample from a population, we let             count 
the number of observed 0 –> h transitions in  [0, t ]  and  let            

be  the number at risk (i.e. in state 0) just prior to time t

The intensity process of             takes the multiplicative  form  
so Nelson-Aalen applies 

For each cause h  we 
define the cause-specific 
hazard              given by
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Example 3.3: Competing risks

Consider a competing 
risks model with k 
causes of death

0 ( )α h t

0 ( ) (die from cause  in [ , ) | alive at )α = + −h t dt P h t t dt t

0 ( )hN t

0 0 0( ) ( ) ( )λ α=h ht t Y t

0( )Y t

0 ( )hN t
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Nelson-Aalen estimates for the cause-specific mortality 
according to cause of death and sex (data from health 
screenings in three Norwegian counties):

1) Cancer
2) Cardiovascular disease

3) Other medical
4) Alcohol abuse, violence, accidents
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Consider censored/truncated survival data, let Ni(t) count 
the observed number of deaths (0 or 1) for individual i,
and assume that its intensity process takes the form:

( )( )) (( )α µλ =i i iY t t tt

at risk 
indicator

relative 
mortality

population mortality
(known)

Example 3.4: Relative mortality

with                                   , so Nelson-Aalen applies

The aggregated counting process  

has intensity process of the multiplicative form
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Example 3.6: Mating of Drosophila flies 

30 female virgin flies and 40 male virgin flies are put in a 
plastic bowl ("pornoscope") and times on initiatings of 
matings are recorded. 

Two experiments: one experiment with "ebony" flies and 
one with "oregon" flies

N(t) counts the number of matings in [0, t ]
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Assuming random mating, the intensity process takes the 
multiplicative form

where

are the number of virgin female and male flies just before time t

Nelson-Aalen estimator of cumulative mating intensity

A similar approach may be used to model the spread of 
an epidemic (if the times of infections are observed) 18
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To handle the possibility that Y(t) = 0, we introduce the 
indicator                               and interpret 0/0 as 0
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Statistical properties of Nelson-Aalen estimator
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Then we may write
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Thus we have the decomposition:

* ( ) )ˆ( ) (= +A t IA tt

random partsystematic part

where is a predictable process                   
(i.e. its value at time t is known "just before" t )

The random part is the stochastic integral:

( ) ( ) / ( )H t J t Y t=

0

( )) (( )= ∫
t

H s dM sI t

We may use properties of stochastic integrals to 
study the Nelson-Aalen estimator
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The stochastic integral         is a mean zero martingale

In particular                          

E{ ( )} 0I t =

( )I t

Thus:

*E{ ( )} 0A t= +

The Nelson-Aalen estimator is approximately unbiased

*ˆE{ ( )} E{ ( ) ( )}A t A t I t= +

( )A t≈
0

( ( ) 0) ( )
t

P Y s s dsα= >∫
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For the martingale I(t) we have that 

is a mean zero martingale

[ ]2Var{ ( )} E{ ( )} E ( )= =I t I t I t

[ ]2( ) ( )−I t I t

It follows that 

Thus an unbiased estimator for the variance of I(t) and 
an approximately unbiased estimator for the variance of 
the Nelson-Aalen estimator is

[ ] ( )22
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Suppose that N(t) is an aggregated process 
obtained from observation of  n subjects  
(as in all examples except the Drosophila flies)

By the martingale central limit theorem we then 
have that (cf. lecture 3, slides 26-27) 

( )ˆ( ) ( ) ( ) (in distribution)− →n A t A t U t

Assume that 

( ) ( ) 0 as for all [0, ]τ→ > → ∞ ∈Y s n y s n s

where U(t)  is a mean zero Gaussian martingale 
with variance function

2

0

( )
( )

( )

ασ = ∫
t s

t ds
y s 24

In particular for a fixed value of  t  the Nelson-Aalen 
estimator         is  approximately normally distributed 
around the true value of A(t) with a variance that 
may be estimated by 

ˆ( )A t

2ˆ ( )σ t
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Survival functions, cumulative hazards, 
and product integrals: the general case

Cumulative hazard:

Uncensored survival time  T

Survival function:  ( ) ( )S t P T t= >

For the absolute continuous case, the hazard is given by:

0

1( ) lim ( | )
t t

t P T t t T tα
∆ → ∆

= < + ∆ ≥

0

( ) ( )α= ∫
t

A t u du

We have the relations:

{ }( ) exp ( )S t A t= −( )

( )
( ) ( ) S t

S t
t A tα ′′= = −
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For a general distribution the hazard rate is not defined, but 
we may define the cumulative hazard rate as (generalizing 
the first relation at the bottom of the previous slide):

0

( )
( )

( )
−

= −∫
t dS u

S u
A t

How can we generalize the second relation at the bottom   
of the previous slide?

For the discrete case A(t)  is a step function with increments

( )
( )

( )

∆∆ = −
−

S u
A u

S u

( | )= = ≥P T u T u

27

0 t
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Partition [0,t] into small time intervals:

The limit is a product-integral 

Need product-integrals to achieve this generalization
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( ) { }
0

1 ( ) exp ( )π
≤ ≤

− = −
u t

dA u A t

For the continuous case we have:

where                                             is the increment 

For the discrete case we have:

( ) ( )
0

1 ( ) 1 ( )π
≤ ≤ ≤

− = − ∆∏
u t

u t

dA u A u

( ) ( | )∆ = = ≥A u P T u T u
of the cumulative hazard at time  u

For the general case we have a mixture of the two
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The Kaplan-Meier estimator
For right censored survival data we observe:

min{survival time  , censoring time }

{ }

=

= =

ɶ

ɶ

i i i

i i i

T T C

D I T T

Model: the uncensored survival times Ti are iid
with hazard rate  

Counting and intensity processes:

{ }( ) , 1= ≤ =ɶ
i i iN t I T t D

( )tα

{ }( ) ( ) ( ) ( )i i it I T t t Y t tλ α α= ≥ =ɶ
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Aggregated counting process:

Intensity process:
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the number at risk just before time t
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= ∫
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Nelson-Aalen estimator:

Plug this into the product-integral expression for the 
survival function (Nelson-Aalen is a step-function):

This is the Kaplan-Meier estimator
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Example 3.8: Second births
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Example 3.9: Third births
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An alternative estimator of the survival function is

For practical purposes there is little difference between the 
two estimators

But from a theoretical point of view, the Kaplan-Meier 
estimator is the natural one (and it may be generalized to 
Markov models)

{ }ˆ( ) exp ( )= −ɶS t A t

1
exp

( )≤

  = − 
  
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jT t jY T
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  = − 
  

∏
jT t jY T
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May show that  (this is Duhamel's equation)
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A t A t− ≈ − −Asymptotically:

Kaplan-Meier estimator: Properties

{ }*exp ( )= −A t

Thus:

( )ˆ ˆ( ) ( ) ( ) ( ) ( )S t S t S t A t A t− ≈ − ⋅ −

The statistical properties for Kaplan-Meier may be 
derived from those of Nelson-Aalen:

2     Var{ ˆ ˆ( )} { ( )} Var{ ( )}• ≈ ⋅S t S t A t

2 2 2ˆ     Variance estimator: ˆ ˆ( ) { ( )} ( )τ σ• = ⋅t S t t
2 2

0
ˆwith    ( ) { ( )} ( )σ −= ∫

t
t Y s dN s

     ˆ( ) is as.normally distributed around ( )S t S t•
36
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Usually the variance is estimated by Greenwood's formula:

2 2 2ˆ( ) [ ( )] ( )τ σ= ⋅ɶ ɶt S t t

2 1

0
with    ( ) [ ( ){ ( ) ( )}] ( )

t
t Y s Y s N s dN sσ −= − ∆∫ɶ

Only minor difference between the two variance estimators 

Pointwise 95% confidence limits for S(t)

ˆ ˆ ˆ( )  1.96 ( ) ( )σ± ⋅ ⋅S t S t tStandard:

{ }ˆˆexp  1.96 ( ) / log ( )ˆ( )
σ± ⋅ t S t

S tLog-log-transformed:

(cf. Exercise 3.6)

# Read data:

leukemia= 
read.table("http://folk.uio.no/borgan/abg-2008/data/leukemia.txt",header=T) 

# Compute Kaplan-Meier estimates and plot them in one figure

fit=survfit(Surv(time,status)~treat, data=leukemia, conf.type="none") 

plot(fit, mark.time=F, xlim=c(0,25), xlab="Weeks", ylab="Survival", lty=1:2)

legend("topright", c("Placebo","6-MP"), lty=1:2)

Using R exercises 3.4 and 3.7 

#  Kaplan-Meier estimate for placebo group with standard confidence limits 

fit.p=survfit(Surv(time,status)~1, data=leukemia, conf.type="plain",subset=(treat==1)) 

plot(fit.p, mark.time=F, xlim=c(0,25), xlab="Weeks", ylab="Survival",main="Placebo")

When the survfit-command is used to obtain confidence 
intervals for the cumulative hazard (cf slide 9), conf.type="log" 
will give a standard confidence interval, for the cumulative 
hazard while conf.type="log-log" will give a log-transformed 
confidence interval 

#  Kaplan-Meier estimate for placebo group with log-log transformed
#  confidence limits 

fit.p=survfit(Surv(time,status)~1, data=leukemia, conf.type="log-log",subset=(treat==1)) 

plot(fit.p, mark.time=F, xlim=c(0,25), xlab="Weeks", ylab="Survival",main="Placebo")

The default in R is to used a log-transformed confidence 
interval, but that is not a good idea

To obtain confidence intervals for the survival function,      
you should use conf.type="plain" or conf.type="log-log" 
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Estimation of the restricted mean

The mean survival time is given by (exercise 1.3)

0

E( ) ( )
∞

= ∫T S u du

Due to censoring, this may usually not be estimated

But we may consider the restricted mean, i.e. the 
expected survival in  [0,t ] :

0

( )µ = ∫
t

t S u du

This may be estimated by

0

ˆˆ ( )
t

t S u duµ = ∫
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Estimation of median survival time and other 
fractiles of the survival distribution

The p-th fractile of the survival distribution is given 
by (exercise 1.2)

( ) or equivalently ( ) 1ξ ξ= = −p pF p S p

It is estimated by

ξ p

{ }ˆ ˆinf : ( ) 1ξ = ≤ −p t S t p

Confidence intervals may be found by "inverting" the 
confidence intervals for the survival function (exercise 3.8)
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Example 3.10: Median time between first and second births

Using R: exercise 3.7 and more 

#  Estimate of restricted mean lifetime and median lifetime
#   with standard confidence limits 

fit=survfit(Surv(time,status)~treat, data=leukemia, conf.type="plain") 

print(fit, rmean=30)

#  One may find the median (and other percentiles) with confidence limits from 
#  the output of the summary command

summary(fit.p)

#  Or they may be found directly by the command

quantile(fit,probs=c(0.25,0.50,0.75))
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