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Plzeň, Czech Republic

Rostock 25.-29.6.2o12
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Harry M. Markowitz (*1927)
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1952 Portfolio Selection, The Journal of Finance 7 (1): 77–91.

1952 The Utility of Wealth, The Journal of Political Economy
(Cowles Foundation Paper 57) LX (2): 151–158.

1955 Portfolio Selection, Ph.D. thesis at the University of
Chicago.

1959 Efficient Diversification of Investments, New York: John
Wiley & Sons.

Constructed a micro theory of portfolio management for
individual wealth holders.

Baruch College, City University of New York,
Rady School of Management, University of California at San
Diego



Merton H. Miller (1923-2000)
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1958 The Cost of Capital, Corporate Finance and the Theory
of Investment

1972 The Theory of Finance, New York: Holt, Rinehart &
Winston.

First one with ”no arbitrage”argument (no risk-less money
machines).

Harward University,
Johns Hopkins University



William F. Sharpe (*1934)
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1963 A Simplified Model for Portfolio Analysis, Management
Science 9 (2): 277–93.

1964 Capital Asset Prices - A Theory of Market Equilibrium
Under Conditions of Risk, Journal of Finance XIX (3):
425–42.

Binomial method for the valuaiton of options.

Stanford University,
University of California, Berkeley,
UCLA



Prize in Economic Sciences in Memory of Alfred Nobel

1990 Nobel Prize in Economics:

for their pioneering work in the theory of financial economics

Harry M. Markowitz Merton H. Miller William F. Sharp

Jan Posṕı̌sil Stochastic Calculus in Finance



Robert C. Merton (*1944)
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1969 Merton’s portfolio problem (consumption vs. investment)

1971 Merton’s model for pricing European options (equity =
option in firm’s asset)

1971 Theory of rational option pricing,

1973 ICAPM International Capital Asset Pricing Model

First one who uses continuous-time default probabilities to
model options on the common stock of a company, i.e. he
uses stochastic calculus in finance

Columbia University
California Institute of Technology
Massachusetts Institute of Technology



Myron S. Sholes (*1941)
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1973 The pricing options and corporate liabilities,

Together with Fischer Black (1938-1995), the fanous
Black-Scholes formula, a fair price for a European call option
(i.e. the right to buy one share of a given stock at a specified
price and time).

Stanford University



Prize in Economic Sciences in Memory of Alfred Nobel

1997 Nobel Prize in Economics:

for a new method to determine the value of derivatives

Robert C. Merton Myron S. Sholes
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Stochastic Calculus for Finance I and II

Steven E. Shreve: Stochastic Calculus for Finance I, The
Binomial Asset Pricing Model, Springer, New York, 2004.

Steven E. Shreve: Stochastic Calculus for Finance II,
Continuous-Time Models, Springer, New York, 2004.
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Management Mathematics 1 and 2

KMA/MAM1A: Management Mathematics 1
(4th year, winter term, 2+1, 5 ECTS credicts)

The Binomial No-Arbitrage Pricing Model

Probability Theory on Coin Toss Space

State Prices

American Derivative Securities

Random Walk

KMA/MAM2A: Management Mathematics 2
(4th year, summer term, 2+1, 5 ECTS credits)

Stochastic Calculus

Risk-Neutral Pricing

Connections with PDEs

Exotic Options

American Derivative Securities

Change of Numéraire
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One-Period Binomial Pricing Model

At time t0: initial stock price is S0 > 0.
We toss a coin: the result is either head (H) or tail (T).
At time t1: stock price will be either S1(H) or S1(T ).

Denote u = S1(H)
S0

the up-factor and d = S1(T )
S0

the down-factor.
Assume d < u (if d > u relabel; if d = u then S1 not random), it
is common to have d = 1/u.
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Arbitrage

Let r be the interest rate at the money market. Assume r ≥ 0 and
same for

investing 1 EUR at t0 −→ (1 + r) EUR at t1,

borrowing 1 EUR at t0 −→ debt (1 + r) EUR at t1.

Arbitrage = a trading strategy that begins with no money, has
zero probability of losing money, and has a positive probability of
making money.

Lemma

No arbitrage if and only if 0 < d < 1 + r < u.
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Derivative securities

European call option = the right (but not the obligation) to buy
one share of the stock at time one for the strike price K .
Assume: S1(T ) < K < S1(H).

T ⇒ option expires worthless,

H ⇒ option can be exercised, yields profit S1(H)− K .

The option at time one is worth (S1 − K )+ = max{0,S1 − K}.
European put option pays off (K − S1)+.
Both are derivative securities, pay either V1(H) or V1(T ).

Fundamental question: How much is it worth at time zero?
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Assumptions

1 Shares of stock can be subdivided for sale and purchase (exist
lots of options).

2 The interest rate is the same for investing and borrowing
(close to be true for large institutions).

3 The purchase price = the selling price, i.e. the bid-ask spread
is zero (NOT satisfied in practice, not trivial).

4 At any time, the stock can take only two possible values in
the next period (binomial model). or the stock price is a
geometric Brownian motion (continuous-time model) that
leads to Black-Scholes-Merton model (this assumption is
empirically NOT true).
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Problem: Find V0

- At t0: initial wealth X0, we buy ∆0 shares of stock,
our cash position is X0 −∆0S0,
- At t1:

X1 = ∆0S1 + (1 + r)(X0 −∆0S0)

= (1 + r)X0 + ∆0[S1 − (1 + r)S0]

- Choose X0 and ∆0 so that X1(H) = V1(H) and X1(T ) = V1(T ):

V1(H) = (1 + r)X0 + ∆0[S1(H)− (1 + r)S0]

V1(T ) = (1 + r)X0 + ∆0[S1(T )− (1 + r)S0].

- Solution:

∆0 =
V1(H)− V1(T )

S1(H)− S1(T )
- delta hedging formula

X0 =
1

1 + r
[p̃V1(H) + q̃V1(T )] =: V0 - we hedged a short position,

where p̃ = 1+r−d
u−d and q̃ = 1− p̃ = u−1−r

u−d are risk neutral
probabilities
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Example: r = 0.25, S0 = 4,K = 5

- At t0: X0 = 1.20, we buy ∆0 = 0.5 shares of stock for ∆0S0 = 2,
i.e. we borrow 0.80 to do so,
our cash position: X0 −∆0S0 = −0.80 (i.e. debt),
- At t1: cash position: (1 + r)(X0 −∆0S0) = −1 (i.e. grater debt),
our portfolio will be

either X1(H) = ∆0S1(H) + (1 + r)(X0 −∆0S0) = 4− 1 = 3

or X1(T ) = ∆0S1(T ) + (1 + r)(X0 −∆0S0) = 1− 1 = 0.

value of the option is

either V1(H) = (S1(H)− K )+ = (8− 5)+ = 3

or V1(T ) = (S1(T )− K )+ = (2− 5)+ = 0.

We have replicated the option by trading in the stock and money
market. Here p̃ = q̃ = 1/2 and the no-arbitrage price

V0 =
1

1 + r
[p̃V1(H) + q̃V1(t)] =

2

5
[3 + 0] =

6

5
= 1.20.
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Multi-Period Binomial Pricing Model

For example general three period model:

Consider N coin tosses ω1, ω2, . . . , ωN .
Now ∆n can be different in each time tn.
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Replicating in N-Period Binomial Pricing Model

Theorem

Let 0 < d < 1 + r < u, p̃ = 1+r−d
u−d , q̃ = u−1−r

u−d . Let VN be
(a derivative security paying off at time N) a random variable.
Define recursively backward in time for n = N − 1,N − 2, . . . , 1, 0
values Vn and ∆n by

Vn =
1

1 + r
[p̃Vn+1(H) + q̃Vn+1(T )],

∆n =
Vn+1(H)− Vn+1(T )

Sn+1(H)− Sn+1(T )
=

Vn+1(H)− Vn+1(T )

(u − d)Sn
.

Define recursively forward

X0 = V0,

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn).

Then XN = VN for all possible coin tosses outcomes ω1, . . . , ωN .
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Symmetric random walk

Consider a fair coin (p = q = 1/2). For j = 1, 2, . . . let

Xj =

{
1 if ωj = H,

−1 if ωj = T .

Define a symmetric random walk Mn, n = 0, 1, 2, . . . by

M0 = 0 and Mn =
n∑

j=1
Xj , n = 1, 2, . . . .

An example of five steps random walk:

For u = 2 and d = 1
2 and S0 given, we may write Sn = S0 · 2Mn .
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Properties of symmetric random walk:

Properties of Xj : E[Xj ] = 0,Var[Xj ] = 1, for all j .
Properties of Mn:

independent increments: for any 0 = n0 < n1 < · · · < nm, the
random variables

(Mn1 −Mn0), (Mn2 −Mn1), . . . , (Mnm −Mnm−1)

are independent and

E[Mni+1 −Mni ] = 0,

Var[Mni+1 −Mni ] = ni+1 − ni .

Mn is Markov process (memory less) and martingale (no
tendency to rise or fall),

quadratic variation:

n∑
j=1

[Mj −Mj−1]2 = n.
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Scaled symmetric random walk

Fix a positive integer n and define

W (n)(t) =
1√
n

Mnt ,

provided nt is itself an integer (if not then linearly interpolate).
A sample path of W (100):
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Properties of scaled symmetric random walk

Properties of W (n)(t):

independent increments: for any 0 = t0 < t1 < · · · < tm such
that ntj ∈ N, the random variables

(W (n)(t1)−W (n)(t0)), . . . , (W (n)(tm)−W (n)(tm−1))

are independent and for 0 ≤ s ≤ t and ns, nt ∈ N

E[W (n)(t)−W (n)(s)] = 0,

Var[W (n)(t)−W (n)(s)] = t − s.

W (n)(t) is Markov process and martingale,

quadratic variation:

nt∑
j=1

[
W (n)

(
j

n

)
−W (n)

(
j − 1

n

)]2

= t.
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Central Limit Theorem

Theorem

Fix t ≥ 0. As n→ +∞, the distribution of the scaled random walk
W (n)(t) evaluated at time t converges to the normal distribution
with mean zero and variance t.

Scaled random walk W (n)(t) approximates a Brownian motion.
Binomial model is a discrete-time version of the geometric
Brownian motion which is the basis for the Black-Scholes-Merton
option pricing formula.
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Lognormal distribution as the limit of the binomial model

Consider a Binomial model on [0, t], n steps per unit time
(nt ∈ N). Let

up factor un = 1 + σ√
n

, down factor dn = 1− σ√
n

, where

σ > 0 is the volatility parameter,
interest rate be zero: r = 0,
risk neutral probabilities be p̃ = 1+r−dn

un−dn = 1
2 and

q̃ = un−1−r
un−dn = 1

2 ,
Hnt , Tnt be the number of H, T in the first nt coin tosses,

Hnt + Tnt = nt.

random walk Mnt = Hnt − Tnt and hence
Hnt = 1

2 (nt + Mnt) and Tnt = 1
2 (nt −Mnt).

Then

Sn(t) = S(0)uHnt
n dTnt

n

= S(0)

(
1 +

σ√
n

) 1
2

(nt+Mnt)(
1− σ√

n

) 1
2

(nt−Mnt)

.
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Lognormal distribution as the limit of the binomial model

Theorem

As n→ +∞, the distribution of Sn(t) converges to the distribution
of

S(t) = S(0) exp

{
σW (t)− 1

2
σ2t

}
,

where W (t) is a normal random variable with zero mean and
variance t.

Note that X (t) = σW (t)− 1
2σ

2t is a normal random variable with

E[X (t)] = σE[W (t)]− 1

2
σ2t = −1

2
σ2t,

Var[X (t)] = E[X (t)− E[X (t)]]2 = E[σW (t)]2 = σ2E[W (t)]2 = σ2t.
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Brownian motion (Wiener process)

Brownian motion is random drifting of particles suspended in a
fluid or gas.
Albert Einstein: Annus Mirabilis (1905) paper about ”stochastic
model of Brownian motion”(Nobel Prize 1921),

A. Einstein: On the movement of small particles suspended in
a stationary liquid demanded by the molecular-kinetic theory
of heat, Ann. Phys. 17.

Wiener process is mathematical description of Brownian motion:
W : [0,∞)× Ω→ R

W (0) = 0 a.s. (with prob. 1),
for all 0 = t0 < t1 < . . . tm the increments

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

are independent normally distributed random variables with

E[W (ti+1)−W (ti )] = 0

Var[W (ti+1)−W (ti )] = ti+1 − ti .
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Properties of Wiener process

For all 0 ≤ s ≤ t: W (t)−W (s) ∼ N (0, t − s), i.e.

E[W (t)−W (s)] = 0,

E[W (t)−W (s)]2 = t − s.

W (t) has continuous paths that are NOWHERE differentiable
(”infinitely fast”coin tossing).

For all 0 ≤ s ≤ t: Cov(W (s),W (t)) = E[W (s)W (t)] = s.

W (t) is Markov process and martingale.

Let Dn be a partition of the interval [0,T ]:
0 = t0 < t1 < · · · < tn = T , and
||Dn|| := max

0≤k≤n−1
(tk+1 − tk). Then quadratic variation:

[W ,W ](T ) = lim
||Dn||→0

n−1∑
j=0

[W (tj+1)−W (tj)]2 = T .

Formally we write dW (t)dW (t) = dt.
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Properties of Wiener process

Note that dW (t) dt = 0, i.e.

lim
||Dn||→0

n−1∑
j=0

[W (tj+1)−W (tj)]︸ ︷︷ ︸
≤

max
0≤k≤n−1

|W (tk+1)−W (tk )|

[tj+1 − tj ] = 0,

dt dt = 0, i.e.

lim
||Dn||→0

n−1∑
j=0

[tj+1 − tj ]︸ ︷︷ ︸
≤

max
0≤k≤n−1

[tk+1−tk ]

[tj+1 − tj ] = lim
||Dn||→0

||Dn|| · T = 0.

Jan Posṕı̌sil Stochastic Calculus in Finance



Numerical simulation of Wiener process

Consider discretized Wiener process, W (t) is specified at
discrete values of t.

For equidistant discretization δt = T/N, N some positive
integer.

Algorithm:

W0 = 0,

Wj = Wj−1 + dWj , j = 1, 2, . . . ,N,

where Wj = W (tj), tj = jδt and dWj is an independent RV of
the form

√
δtN (0, 1)

It is easy to implement.

We can simulate a function u(t) = u(W (t)) along Wiener
paths.

Jan Posṕı̌sil Stochastic Calculus in Finance



Discretized Paths of Wiener process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

t

W(t)

5 individual paths
mean of 1000 paths
mean ± variance of 1000 paths
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Function of Wiener process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
U (t) = et + W (t) / 2

t

U(t)

5 individual paths
mean of 1000 paths
mean ± variance of 1000 paths
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Geometric Brownian Motion

Let α and σ > 0 be constants. Then geometric Brownian motion is
process

S(t) = S(0) exp

{
σW (t) +

(
α− 1

2
σ2

)
t

}
.

This is the asset-price model used in the Black-Scholes-Merton
option-pricing formula.
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Volatility parameter estimate

Say we observe S(t) on a time interval [T1,T2].

Choose a partition T1 = t0 < t1 < · · · < tm = T2.

Log returns on [tj , tj+1]:

ln
S(tj+1)

S(tj)
= σ[W (tj+1)−W (tj)] +

(
α− 1

2
σ2

)
[tj+1 − tj ].

Realized volatility on [T1,T2]:

m−1∑
j=0

[
ln

S(tj+1)

S(tj )

]2

= σ2
m−1∑
j=0

[
W (tj+1)−W (tj )

]2
+

(
α−

1

2
σ2

)m−1∑
j=0

[
tj+1 − tj

]2
+ 2σ

(
α−

1

2
σ2

)m−1∑
j=0

[
W (tj+1)−W (tj )

] [
tj+1 − tj

]

σ2 ≈
1

T2 − T1

m−1∑
j=0

[
ln

S(tj+1)

S(tj )

]2

, provided ||Dn|| is small.
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Probability Theory Preliminaries

Probability space (Ω,F ,P)

Ω any set, state space; ω ∈ Ω a sample point
F a σ-algebra of subsets of Ω; A ∈ F an event
P a probability measure on F ; P(A) a probability of event A

Random Variables

random variable X : Ω→ R on (Ω,F ,P)
realization sample X (ω)
X measurable if X−1(a) := {ω ∈ Ω; X (ω) ≤ a} ∈ F ,∀a ∈ R
distribution function Fx : R→ [0, 1]; Fx(a) := P(X−1(a))
continuous vs. discrete random variables
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Probability Theory Preliminaries

Moments of Random Variables

expectation, expected value E(X ) :=
∫

Ω
X dP

p-th moment E(X p) :=
∫

Ω
|X |p dP

variance Var(X ) := E
(
|X − E(X )|2

)
= E(|X |2)− |E(X )|2

Independence of RVs X1,X2, . . . ,Xn, . . .

Convergence of RVs Xn → X̄ as n→∞
with probability 1: Xn(ω)→ X̄ ,∀ω ∈ Ω
in p-th moment: E(|Xn − X̄ |p)→ 0
in probability: P({ω ∈ Ω; |Xn(ω)− X̄ (ω)| ≥ ε})→ 0,∀ε > 0
in distribution: FXn(a)→ FX̄ (a),∀a ∈ R
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Stochastic processes

Stochastic process is a parametrized collection of random variables:

X : T× Ω→ R, where T ⊆ R is a time set

X is a stochastic process if Xt : Ω→ R is a random variable
for each t ∈ T

sample path realization X.(ω) : T→ R, ω fixed

many possible types of time dependence

independent: Xt ,Xs if t 6= s
identically distributed: FXt (x) ≡ F (x),∀t ∈ T
independent increments: Xτ2 − Xτ1 ,Xτ4 − Xτ3 , . . .
Markovian: future depends only on present (not both present
and past)
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Diffusion processes

X : [0,T ]× Ω→ R, ∀s ∈ [0,T ], x ∈ R, ε > 0,∫
B p(s, x ; t, y)dy = P({ω; Xt(ω) ∈ B|Xs = x}) :

lim
t↓s

1
t−s

∫
|y−x|>ε

p(s, x ; t, y)dy = 0 . . . no jumps

lim
t↓s

1
t−s

∫
|y−x|<ε

(y − x)p(s, x ; t, y)dy = a(s, x) . . . drift

lim
t↓s

1
t−s

∫
|y−x|<ε

(y − x)2p(s, x ; t, y)dy = b2(s, x) . . . squared

diffusion coefficients

Markovian, sample path continuous, transition densities
p(s, x ; t, ·) satisfy Kolmogorov PDEs
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Standard Wiener process (Standard Brownian motion)

Simplest, prototype diffusion process describing physically
observed phenomenon

Standard Wiener process: W : [0,∞)× Ω→ R
W0 = 0 w.p.1
Wt −Ws ∼ N (0, t − s), i.e.

E[Wt −Ws ] = 0,

E
[
(Wt −Ws)2

]
= t − s

independent increments Wt2 −Wt1 ,Wt4 −Wt3 , . . .
sample path continuous, but NOT differentiable anywhere
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Fractional Brownian motion

Generalization of Brownian motion (B. Mandelbrott, V. Ness)

Hurst parameter H ∈ (0, 1) (for H = 1/2: BM)

EβHt βHs = 1
2

(
|t|2H + |s|2H + |t − s|2H

)
, ∀t, s ∈ R

for H > 1/2 positively correlated, for H < 1/2 negatively
correlated,

Paths for H equal to 0.25, 0.5 and 0.75:
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Deterministic integrals

Riemann-Stieltjes integral∫ T

0
f (t)dR(t) = lim

N→∞

N−1∑
j=0

f (τj)[R(tj+1)− R(tj)]

exists iff R has bounded variation on [0,T ], τj ∈ [tj , tj+1].

A stochastic integral cannot be a Riemann-Stieltjes integral
for each ω

we may consider also Lebesgue integrals
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Stochastic integrals

Itô’s stochastic integral∫ T

0
f (t, ω)dWt(ω) = lim

N→∞

N−1∑
j=0

f (tj , ω)[Wtj+1(ω)−Wtj (ω)]

admissible integrands for

E(f 2(t, ·)) <∞
f (t, ·) non-anticipative (indep. of Wτ −Wt ,∀τ > t)

f (tj , ω) evaluated at the beginning of each interval [tj , tj+1]

Stratonovich stochastic integral
T∫
0

f (s, ω) ◦ dW (t, ω) uses

mid-points: f (
tj+tj+1

2 , ω) - not used in finance
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Example

Approximation of Itô’s stochastic integral
∫ T

0
W (t)dW (t)

Exact solution: ∫ T

0

W (t)dW (t) =
1

2
W (T )2 − 1

2
T

Approximation:

N−1∑
j=0

W (tj)(W (tj+1)−W (tj))

=
1

2

N−1∑
j=0

[W (tj)
2 −W (tj)

2 − (W (tj+1)−W (tj))2]

=
1

2

(
W (T )2 −W (0)2 −

N−1∑
j=0

(W (tj+1)−W (tj))2

︸ ︷︷ ︸
expected value T ,variance of O(δt)

)

hence for small δt it converges to exact value.
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Itô’s isometry

Let f (t, ω) be bounded and let

I (t) =

∫ t

0
f (s, ω) dWs(ω)

be the Itô’s integral. Then

Itô’s isometry:

E[I 2(t)] = E
[∫ T

0
f 2(t, ω) dt

]
,

quadratic variation:

[I , I ](t) =

[∫ T

0
f 2(t, ω) dt

]
.

Jan Posṕı̌sil Stochastic Calculus in Finance



Itô’s process

Let Wt be a one-dimensional Wiener process on (Ω,F ,P).
A one-dimensional Itô’s process (or stochastic integral) is a
stochastic process Xt on (Ω,F ,P) of the form

Xt = X0 +

∫ t

0
u(s, ω) ds +

∫ t

0
v(s, ω) dWs ,

where u and v are ”nice”. In shorter differential form

dXt = u dt + v dWt .
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Itô’s formula

Theorem (One dimensional Itô’s formula)

Let Xt be an Itô’s process and let g(t, x) ∈ C2([0,∞)× R).
Then Yt = g(t,Xt) is also an Itô’s process and

dYt =
∂g

∂t
(t,Xt) dt +

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2,

where (dXt)
2 = (dXt)(dXt) is computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt.
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Example: Itô’s formula

What is
∫ T

0 W (t)dW (t) ?

Choose Xt = Wt and g(t, x) = 1
2 x2. Then Yt = g(t,Wt) = 1

2 W 2
t

and by Itô’s formula

dYt =
∂g

∂t
dt +

∂g

∂x
dWt +

1

2

∂2g

∂x2
(dWt)

2

= Wt dWt +
1

2
(dWt)

2

= Wt dWt +
1

2
dt

d

(
1

2
W 2

t

)
= Wt dWt +

1

2
dt.

In other words:∫ T

0
W (t)dW (t) =

1

2
W (T )2 − 1

2
T .
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Integration by parts

What is
∫ T

0
t dWt ?

Choose Xt = Wt and g(t, x) = t · x . Then Yt = g(t,Wt) = tWt and by
Itô’s formula

dYt = Wt dt + t dWt + 0

d(tWt) = Wt dt + t dWt

TWT =

∫ T

0

Wt dt +

∫ T

0

t dWt∫ T

0

t dWt = TWT −
∫ T

0

Wt dt.

Theorem

Suppose f (t, ω) is continuous and of bounded variation w.r.t. t ∈ [0,T ]
for a.a. ω. Then ∫ T

0

f (t) dWt = f (T )WT −
∫ T

0

Wt dft .
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Stochastic differential equations

Let 0 ≤ t ≤ T ; a, b : [0,T ]× R→ R.

stochastic differential equation (linear)

dXt(ω) = a(t,Xt(ω))dt + b(t,Xt(ω))dWt(ω),

X0(ω) = X0

(SDE)

or in integral form

Xt(ω) = X0(ω) +

+

∫ T

0
a(s,Xs(ω))ds︸ ︷︷ ︸
deterministic
integral for
eachω∈Ω

+

∫ T

0
b(s,Xs(ω))dWs(ω)︸ ︷︷ ︸

stochastic
integral
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Example: population growth

Simple population growth (or also asset pricing) model

dN

dt
= a(t)N(t), N(0) = N0,

where a(t) = r + αηt , ηt is a white noise, α and r are constant. This
equation is equivalent to

dNt = rNt dt + αNt dWt∫ t

0

dNs

Ns
= rt + αWt .

By Itô’s formula d(ln Nt) = 1
Nt

dt + 1
2

(
− 1

N2
t

)
(dNt)

2 = dNt
Nt
− 1

2α
2 dt

ln
Nt

N0
= (r − 1

2
α2)t + αWt

Nt = N0 exp

(
(r − 1

2
α2)t + αWt

)
.
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Existence and uniqueness

Theorem

Let T > 0. Suppose that

coefficient functions a, b : [0,T ]× R→ R, are continuous and
∀t, s ∈ [0,T ]; x , y ∈ R:

lipschitz: |a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ K1|x − y |
of max. lin. growth: |a(t, x)|+ |b(t, x)| ≤ K2(1 + |x |)
|a(s, x)− a(t, x)|+ |b(s, x)− b(t, x)| ≤ K3(1 + |x |)|s − t|1/2

initial value X0 is non-anticipative: E
(
|X0|2

)
<∞.

Then there exists a unique pathwise continuous solution to (SDE)
such that

E
[∫ T

0
|Xt |2 dt

]
<∞.
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Example: explosion

Equation (deterministic case: b = 0)

dXt

dt
= X 2

t , X0 = 1,

corresponding to a(x) = x2 (and NOT satisfying the max. lin.
growth cond.) has the (unique) solution

Xt =
1

1− t
, 0 ≤ t < 1.

Thus it is imposible to find a global solution (defined for all t) in
this case. We say that in t = 1 the solution explodes (|Xt(ω)|
tends to infinity).
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Example: uniqueness

Equation (deterministic case: b = 0)

dXt

dt
= 3X

2/3
t , X0 = 0,

has more than one solution. In fact, for any a > 0, the function

Xt =

{
0 t ≤ a

(t − a)3 t > a

solves the equation. In this case a(x) = 3x2/3 does NOT satisfy
the Lipschitz condition at x = 0.
Uniqueness means that if X1(t, ω) and X2(t, ω) are two continuous
processes satisfying (SDE), then

X1(t, ω) = X2(t, ω) for all t ≤ T , a.s.-P.
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Weak and strong solutions

Strong solution:

Xt(ω) = X0(ω) +

∫ t

0
a(s,Xs(ω)) ds +

∫ t

0
b(s,Xs(ω)) dWs(ω)

The version of Wiener process Wt is given in advance.

If we are only given functions a(t, x) and b(t, x) and ask for a
pair of processes (X̃t , W̃t) on a probability space (Ω, F̃ ,P)
such that

dX̃t(ω) = a(t, X̃t(ω))dt + b(t, X̃t(ω))dW̃t(ω),

then the solution X̃t (more precisely (X̃t , W̃t)) is called a weak
solution - natural concept, it does not specify beforehand the
explicit representation of the white noise.

Strong uniqueness (pathwise) vs. weak uniqueness (identity in
law)
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Example of weak solution

The Tanaka equation

dXt = sgn(Xt) dWt ,X0 = 0,

does NOT have a strong solution,
but it DOES have a weak solution:
We simply choose Xt to be any Wiener process Wt . We define W̃t

by

W̃t =

∫ t

0
sgn Ws dWs =

∫ t

0
sgn(Xs) dXs

i.e.
dW̃t = sgn(Xt) dXt .

Then
dXt = sgn(Xt) dW̃t ,

so Xt is a weak solution.
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Black-Scholes-Merton Equation

Consider an agent who at time t has a portfolio X (t), holds ∆(t)
shares of stock modelled by geometric Brownian motion:

dS(t) = αS(t)dt + σS(t)dW (t)

and the remainder X (t)−∆(t)S(t) invests in the money market
with interest rate r (const.). Then

dX (t) = ∆(t)dS(t) + r [X (t)−∆(t)S(t)]dt

= ∆(t)[αS(t)dt + σS(t)dW (t)] + r [X (t)−∆(t)S(t)]dt

= rX (t)dt + ∆(t)(α− r)S(t)dt + ∆(t)σS(t)dW (t).

Compare with the discrete model:

Xn+1 = ∆nSn+1 + (1 + r)(Xn −∆nSn)

Xn+1 − Xn = ∆n(Sn+1 − Sn) + r(Xn −∆nSn).
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Discounted stock price e−rtS(t) and portfolio e−rtX (t)

Differentials of the discounted stock price and portfolio are

d(e−rtS(t))

= dg(t, S(t)), where g(t, x) = e−rtx and by Itô’s formula,

= gt(t,S(t))dt + gx(t, S(t))dS(t) +
1

2
gxx(t, S(t))dS(t)dS(t),

= −re−rtS(t)dt + e−rtdS(t),

= (α− r)e−rtS(t)dt + σe−rtS(t)dW (t),

d(e−rtX (t))

= dg(t,X (t))

= gt(t,X (t))dt + gx(t,X (t))dX (t) +
1

2
gxx(t,X (t))dX (t)dX (t)

= −re−rtX (t)dt + e−rtdX (t)

= ∆(t)(α− r)e−rtS(t)dt + ∆(t)σe−rtS(t)dW (t)

= ∆(t)d(e−rtS(t)).
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Numerical solution of an SDE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

dX
t
 = λ X

t
 dt + µ X

t
 dW

t
, X(0) = 1, λ = 2, µ = 1

t

X(t)

exact solution
Euler−Maruyama approximation
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Numerical solution of an SPDE
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One path of the solution; H = 0.8, α = 2, σ = 15, L = 10, T = 10, x
0
(x) = x(L−x).

x

X(t,x)

One path solution to a parabolic equation.
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Numerical solution of an SPDE

Mean of 10 paths of the solution.
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Stochastic differential equations

KMA/USA-A: Introduction to Stochastic Analysis
(4th year, winter term, 2+2, 6 ECTS credits)

stochastic integal,

stochastic differential eqations (linear, bilinear),

their solution (strong, weak,
”
mild“),

qualitative properties of the solution (limiting behaviour,
stability)

KMA/SP-A: Stochastic processes
(4th year, summer term, 2+2, 6 ECTS credits)

martingales,

Markov proceses,

diffusion and jump processes,

stochastic differential equations driven by these processes.
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Erasmus Mobility

Jan Posṕı̌sil Stochastic Calculus in Finance

Bilateral agreement with cca 10 institutions

Subject area 11.0: Mathematics, Informatics, 4.0: Business Studies
and Management Science, 7.0: Geography, Geology

Upto 50 students per year
(500 studentmonths): cca 20 Bc., cca 20 Mgr., cca 10 Ph.D.

Visit

www.kma.zcu.cz/erasmus

Would you like to come to Pilsen? In Pilsen haben wir nicht nur das beste
Bier der Welt (welches das Begreifen der Mathematik in einer
besonderen Art beeinflusst), sondern auch Stochastic Analysis.

http://www.kma.zcu.cz/erasmus

