Stochastic Control for Optimal Market-Making

Ashwin Rao
ICME, Stanford University
January 8, 2022

Overview

Trading Order Book (TOB)

Basics of Trading Order Book (TOB)

- Buyers/Sellers express their intent to trade by submitting bids/asks
- These are Limit Orders (LO) with a price P and size N
- Buy LO (P, N) states willingness to buy N shares at a price $\leq P$
- Sell LO (P, N) states willingness to sell N shares at a price $\geq P$
- Trading Order Book aggregates order sizes for each unique price
- So we can represent with two sorted lists of (Price, Size) pairs

Bids: $\left[\left(P_{i}^{(b)}, N_{i}^{(b)}\right) \mid 1 \leq i \leq m\right], P_{i}^{(b)}>P_{j}^{(b)}$ for $i<j$
Asks: $\left[\left(P_{i}^{(a)}, N_{i}^{(a)}\right) \mid 1 \leq i \leq n\right], P_{i}^{(a)}<P_{j}^{(a)}$ for $i<j$

- We call $P_{1}^{(b)}$ as simply Bid, $P_{1}^{(a)}$ as Ask, $\frac{P_{1}^{(a)}+P_{1}^{(b)}}{2}$ as Mid
- We call $P_{1}^{(a)}-P_{1}^{(b)}$ as Spread, $P_{n}^{(a)}-P_{m}^{(b)}$ as Market Depth
- A Market Order (MO) states intent to buy/sell N shares at the best possible price(s) available on the TOB at the time of MO submission

Trading Order Book (TOB) Activity

- A new Sell LO (P, N) potentially removes best bid prices on the TOB

$$
\text { Removal: }\left[\left(P_{i}^{(b)}, \min \left(N_{i}^{(b)}, \max \left(0, N-\sum_{j=1}^{i-1} N_{j}^{(b)}\right)\right)\right) \mid\left(i: P_{i}^{(b)} \geq P\right)\right]
$$

- After this removal, it adds the following to the asks side of the TOB

$$
\left(P, \max \left(0, N-\sum_{i: P_{i}^{(b)} \geq P} N_{i}^{(b)}\right)\right)
$$

- A new Buy MO operates analogously (on the other side of the TOB)
- A Sell Market Order N will remove the best bid prices on the TOB

$$
\text { Removal: }\left[\left(P_{i}^{(b)}, \min \left(N_{i}^{(b)}, \max \left(0, N-\sum_{j=1}^{i-1} N_{j}^{(b)}\right)\right)\right) \mid 1 \leq i \leq m\right]
$$

- A Buy Market Order N will remove the best ask prices on the TOB

$$
\text { Removal: }\left[\left(P_{i}^{(a)}, \min \left(N_{i}^{(a)}, \max \left(0, N-\sum_{j=1}^{i-1} N_{j}^{(a)}\right)\right)\right) \mid 1 \leq i \leq n\right]
$$

TOB Dynamics and Market-Making

- Modeling TOB Dynamics involves predicting arrival of MOs and LOs
- Market-makers are liquidity providers (providers of Buy and Sell LOs)
- Other market participants are typically liquidity takers (MOs)
- But there are also other market participants that trade with LOs
- Complex interplay between market-makers \& other mkt participants
- Hence, TOB Dynamics tend to be quite complex
- We view the TOB from the perspective of a single market-maker who aims to gain with Buy/Sell LOs of appropriate width/size
- By anticipating TOB Dynamics \& dynamically adjusting Buy/Sell LOs
- Goal is to maximize Utility of Gains at the end of a suitable horizon
- If Buy/Sell LOs are too narrow, more frequent but small gains
- If Buy/Sell LOs are too wide, less frequent but large gains
- Market-maker also needs to manage potential unfavorable inventory (long or short) buildup and consequent unfavorable liquidation

Notation for Optimal Market-Making Problem

- We simplify the setting for ease of exposition
- Assume finite time steps indexed by $t=0,1, \ldots, T$
- Denote $W_{t} \in \mathbb{R}$ as Market-maker's trading PnL at time t
- Denote $I_{t} \in \mathbb{Z}$ as Market-maker's inventory of shares at time $t\left(I_{0}=0\right)$
- $S_{t} \in \mathbb{R}^{+}$is the TOB Mid Price at time t (assume stochastic process)
- $P_{t}^{(b)} \in \mathbb{R}^{+}, N_{t}^{(b)} \in \mathbb{Z}^{+}$are market maker's Bid Price, Bid Size at time t
- $P_{t}^{(a)} \in \mathbb{R}^{+}, N_{t}^{(a)} \in \mathbb{Z}^{+}$are market-maker's Ask Price, Ask Size at time t
- Assume market-maker can add or remove bids/asks costlessly
- Denote $\delta_{t}^{(b)}=S_{t}-P_{t}^{(b)}$ as Bid Spread, $\delta_{t}^{(a)}=P_{t}^{(a)}-S_{t}$ as Ask Spread
- Random var $X_{t}^{(b)} \in \mathbb{Z}_{\geq 0}$ denotes bid-shares "hit" up to time t
- Random var $X_{t}^{(a)} \in \mathbb{Z}_{\geq 0}$ denotes ask-shares "lifted" up to time t

$$
W_{t+1}=W_{t}+P_{t}^{(a)} \cdot\left(X_{t+1}^{(a)}-X_{t}^{(a)}\right)-P_{t}^{(b)} \cdot\left(X_{t+1}^{(b)}-X_{t}^{(b)}\right), I_{t}=X_{t}^{(b)}-X_{t}^{(a)}
$$

- Goal to maximize $\mathbb{E}\left[U\left(W_{T}+I_{T} \cdot S_{T}\right)\right]$ for appropriate concave $U(\cdot)$

Markov Decision Process (MDP) Formulation

- Order of MDP activity in each time step $0 \leq t \leq T-1$:
- Observe State $:=\left(t, S_{t}, W_{t}, I_{t}\right)$
- Perform Action := $\left(P_{t}^{(b)}, N_{t}^{(b)}, P_{t}^{(a)}, N_{t}^{(a)}\right)$
- Experience TOB Dynamics resulting in:
- random bid-shares hit $=X_{t+1}^{(b)}-X_{t}^{(b)}$ and ask-shares lifted $=X_{t+1}^{(a)}-X_{t}^{(a)}$
- update of W_{t} to W_{t+1}, update of I_{t} to I_{t+1}
- stochastic evolution of S_{t} to S_{t+1}
- Receive next-step $(t+1)$ Reward R_{t+1}

$$
R_{t+1}:= \begin{cases}0 & \text { for } 1 \leq t+1 \leq T-1 \\ U\left(W_{t+1}+I_{t+1} \cdot S_{t+1}\right) & \text { for } t+1=T\end{cases}
$$

- Goal is to find an Optimal Policy π^{*} :

$$
\pi^{*}\left(t, S_{t}, W_{t}, I_{t}\right)=\left(P_{t}^{(b)}, N_{t}^{(b)}, P_{t}^{(a)}, N_{t}^{(a)}\right) \text { that maximizes } \mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]
$$

- Note: Discount Factor when aggregating Rewards in the MDP is 1

Avellaneda-Stoikov Continuous Time Formulation

- We go over the landmark paper by Avellaneda and Stoikov in 2006
- They derive a simple, clean and intuitive solution
- We adapt our discrete-time notation to their continuous-time setting
- $X_{t}^{(b)}, X_{t}^{(a)}$ are Poisson processes with hit/lift-rate means $\lambda_{t}^{(b)}, \lambda_{t}^{(a)}$

$$
d X_{t}^{(b)} \sim \operatorname{Poisson}\left(\lambda_{t}^{(b)} \cdot d t\right), d X_{t}^{(a)} \sim \operatorname{Poisson}\left(\lambda_{t}^{(a)} \cdot d t\right)
$$

$$
\begin{gathered}
\lambda_{t}^{(b)}=f^{(b)}\left(\delta_{t}^{(b)}\right), \lambda_{t}^{(a)}=f^{(a)}\left(\delta_{t}^{(a)}\right) \text { for decreasing functions } f^{(b)}, f^{(a)} \\
d W_{t}=P_{t}^{(a)} \cdot d X_{t}^{(a)}-P_{t}^{(b)} \cdot d X_{t}^{(b)}, I_{t}=X_{t}^{(b)}-X_{t}^{(a)}\left(\text { note: } I_{0}=0\right)
\end{gathered}
$$

- Since infinitesimal Poisson random variables $d X_{t}^{(b)}$ (shares hit in time $d t$) and $d X_{t}^{(a)}$ (shares lifted in time $d t$) are Bernoulli (shares hit/lifted in time $d t$ are 0 or 1$), N_{t}^{(b)}$ and $N_{t}^{(a)}$ can be assumed to be 1
- This simplifies the Action at time t to be just the pair: $\left(\delta_{t}^{(b)}, \delta_{t}^{(a)}\right)$
- TOB Mid Price Dynamics: $d S_{t}=\sigma \cdot d z_{t}$ (scaled brownian motion)
- Utility function $U(x)=-e^{-\gamma x}$ where $\gamma>0$ is coeff. of risk-aversion

Hamilton-Jacobi-Bellman (HJB) Equation

- We denote the Optimal Value function as $V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$

$$
V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)=\max _{\delta_{t}^{(b)}, \delta_{t}^{(a)}} \mathbb{E}\left[-e^{-\gamma \cdot\left(W_{T}+I_{T} \cdot S_{T}\right)}\right]
$$

- $V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$ satisfies a recursive formulation for $0 \leq t<t_{1}<T$:

$$
V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)=\max _{\delta_{t}^{(b)}, \delta_{t}^{(a)}} \mathbb{E}\left[V^{*}\left(t_{1}, S_{t_{1}}, W_{t_{1}}, I_{t_{1}}\right)\right]
$$

- Rewriting in stochastic differential form, we have the HJB Equation

$$
\begin{gathered}
\max _{\delta_{t}^{(b)}, \delta_{t}^{(a)}} \mathbb{E}\left[d V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)\right]=0 \text { for } t<T \\
V^{*}\left(T, S_{T}, W_{T}, I_{T}\right)=-e^{-\gamma \cdot\left(W_{T}+I_{T} \cdot S_{T}\right)}
\end{gathered}
$$

Converting HJB to a Partial Differential Equation

- Change to $V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$ is comprised of 3 components:
- Due to pure movement in time t
- Due to randomness in TOB Mid-Price S_{t}
- Due to randomness in hitting/lifting the Bid/Ask
- With this, we can expand $d V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$ and rewrite HJB as:

$$
\begin{aligned}
\max _{\delta_{t}^{(b)}, \delta_{t}^{(a)}}\{ & \frac{\partial V^{*}}{\partial t} d t+\mathbb{E}\left[\sigma \frac{\partial V^{*}}{\partial S_{t}} d z_{t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} V^{*}}{\partial S_{t}^{2}}\left(d z_{t}\right)^{2}\right] \\
& +\lambda_{t}^{(b)} \cdot d t \cdot V^{*}\left(t, S_{t}, W_{t}-S_{t}+\delta_{t}^{(b)}, I_{t}+1\right) \\
& +\lambda_{t}^{(a)} \cdot d t \cdot V^{*}\left(t, S_{t}, W_{t}+S_{t}+\delta_{t}^{(a)}, I_{t}-1\right) \\
& +\left(1-\lambda_{t}^{(b)} \cdot d t-\lambda_{t}^{(a)} \cdot d t\right) \cdot V^{*}\left(t, S_{t}, W_{t}, I_{t}\right) \\
& \left.-V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)\right\}=0
\end{aligned}
$$

Converting HJB to a Partial Differential Equation

We can simplify this equation with a few observations:

- $\mathbb{E}\left[d z_{t}\right]=0$
- $\mathbb{E}\left[\left(d z_{t}\right)^{2}\right]=d t$
- Organize the terms involving $\lambda_{t}^{(b)}$ and $\lambda_{t}^{(a)}$ better with some algebra
- Divide throughout by $d t$

$$
\begin{aligned}
\max _{\delta_{t}^{(b)}, \delta_{t}^{(a)}}\{ & \frac{\partial V^{*}}{\partial t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} V^{*}}{\partial S_{t}^{2}} \\
& +\lambda_{t}^{(b)} \cdot\left(V^{*}\left(t, S_{t}, W_{t}-S_{t}+\delta_{t}^{(b)}, I_{t}+1\right)-V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)\right) \\
& \left.+\lambda_{t}^{(a)} \cdot\left(V^{*}\left(t, S_{t}, W_{t}+S_{t}+\delta_{t}^{(a)}, I_{t}-1\right)-V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)\right)\right\}=0
\end{aligned}
$$

Converting HJB to a Partial Differential Equation

Next, note that $\lambda_{t}^{(b)}=f^{(b)}\left(\delta_{t}^{(b)}\right)$ and $\lambda_{t}^{(a)}=f^{(a)}\left(\delta_{t}^{(a)}\right)$, and apply the max only on the relevant terms

$$
\begin{aligned}
& \frac{\partial V^{*}}{\partial t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} V^{*}}{\partial S_{t}^{2}} \\
& +\max _{\delta_{t}^{(b)}}\left\{f^{(b)}\left(\delta_{t}^{(b)}\right) \cdot\left(V^{*}\left(t, S_{t}, W_{t}-S_{t}+\delta_{t}^{(b)}, I_{t}+1\right)-V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)\right)\right\} \\
& +\max _{\delta_{t}^{(a)}}\left\{f^{(a)}\left(\delta_{t}^{(a)}\right) \cdot\left(V^{*}\left(t, S_{t}, W_{t}+S_{t}+\delta_{t}^{(a)}, I_{t}-1\right)-V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)\right)\right\}=0
\end{aligned}
$$

This combines with the boundary condition:

$$
V^{*}\left(T, S_{T}, W_{T}, I_{T}\right)=-e^{-\gamma \cdot\left(W_{T}+I_{T} \cdot S_{T}\right)}
$$

Converting HJB to a Partial Differential Equation

- We make an "educated guess" for the structure of $V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$:

$$
\begin{equation*}
V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)=-e^{-\gamma\left(W_{t}+\theta\left(t, S_{t}, l_{t}\right)\right)} \tag{1}
\end{equation*}
$$

and reduce the problem to a PDE in terms of $\theta\left(t, S_{t}, I_{t}\right)$

- Substituting this into the above PDE for $V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$ gives:

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}+\frac{\sigma^{2}}{2}\left(\frac{\partial^{2} \theta}{\partial S_{t}^{2}}-\gamma\left(\frac{\partial \theta}{\partial S_{t}}\right)^{2}\right) \\
& +\max _{\delta_{t}^{(b)}}\left\{\frac{f^{(b)}\left(\delta_{t}^{(b)}\right)}{\gamma} \cdot\left(1-e^{-\gamma\left(\delta_{t}^{(b)}-S_{t}+\theta\left(t, S_{t}, I_{t}+1\right)-\theta\left(t, S_{t}, I_{t}\right)\right)}\right)\right\} \\
& +\max _{\delta_{t}^{(a)}}\left\{\frac{f^{(a)}\left(\delta_{t}^{(a)}\right)}{\gamma} \cdot\left(1-e^{-\gamma\left(\delta_{t}^{(a)}+S_{t}+\theta\left(t, S_{t}, l_{t}-1\right)-\theta\left(t, S_{t}, I_{t}\right)\right)}\right)\right\}=0
\end{aligned}
$$

- The boundary condition is:

$$
\theta\left(T, S_{T}, I_{T}\right)=I_{T} \cdot S_{T}
$$

Indifference Bid/Ask Price

- It turns out that $\theta\left(t, S_{t}, I_{t}+1\right)-\theta\left(t, S_{t}, I_{t}\right)$ and $\theta\left(t, S_{t}, I_{t}\right)-\theta\left(t, S_{t}, I_{t}-1\right)$ are equal to financially meaningful quantities known as Indifference Bid and Ask Prices
- Indifference Bid Price $Q^{(b)}\left(t, S_{t}, I_{t}\right)$ is defined as:

$$
\begin{equation*}
V^{*}\left(t, S_{t}, W_{t}-Q^{(b)}\left(t, S_{t}, I_{t}\right), I_{t}+1\right)=V^{*}\left(t, S_{t}, W_{t}, I_{t}\right) \tag{2}
\end{equation*}
$$

- $Q^{(b)}\left(t, S_{t}, I_{t}\right)$ is the price to buy a share with guarantee of immediate purchase that results in Optimum Expected Utility being unchanged
- Likewise, Indifference Ask Price $Q^{(a)}\left(t, S_{t}, I_{t}\right)$ is defined as:

$$
\begin{equation*}
V^{*}\left(t, S_{t}, W_{t}+Q^{(a)}\left(t, S_{t}, I_{t}\right), I_{t}-1\right)=V^{*}\left(t, S_{t}, W_{t}, I_{t}\right) \tag{3}
\end{equation*}
$$

- $Q^{(a)}\left(t, S_{t}, I_{t}\right)$ is the price to sell a share with guarantee of immediate sale that results in Optimum Expected Utility being unchanged
- We abbreviate $Q^{(b)}\left(t, S_{t}, l_{t}\right)$ as $Q_{t}^{(b)}$ and $Q^{(a)}\left(t, S_{t}, l_{t}\right)$ as $Q_{t}^{(a)}$

Indifference Bid/Ask Price in the PDE for θ

- Express $V^{*}\left(t, S_{t}, W_{t}-Q_{t}^{(b)}, I_{t}+1\right)=V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$ in terms of θ :

$$
\begin{gather*}
-e^{-\gamma\left(W_{t}-Q_{t}^{(b)}+\theta\left(t, S_{t}, I_{t}+1\right)\right)}=-e^{-\gamma\left(W_{t}+\theta\left(t, S_{t}, l_{t}\right)\right)} \\
\Rightarrow Q_{t}^{(b)}=\theta\left(t, S_{t}, I_{t}+1\right)-\theta\left(t, S_{t}, I_{t}\right) \tag{4}
\end{gather*}
$$

- Likewise for $Q_{t}^{(a)}$, we get:

$$
\begin{equation*}
Q_{t}^{(a)}=\theta\left(t, S_{t}, I_{t}\right)-\theta\left(t, S_{t}, I_{t}-1\right) \tag{5}
\end{equation*}
$$

- Using equations (??) and (??), bring $Q_{t}^{(b)}$ and $Q_{t}^{(a)}$ in the PDE for θ

$$
\begin{gathered}
\frac{\partial \theta}{\partial t}+\frac{\sigma^{2}}{2}\left(\frac{\partial^{2} \theta}{\partial S_{t}^{2}}-\gamma\left(\frac{\partial \theta}{\partial S_{t}}\right)^{2}\right)+\max _{\delta_{t}^{(b)}} g\left(\delta_{t}^{(b)}\right)+\max _{\delta_{t}^{(a)}} h\left(\delta_{t}^{(b)}\right)=0 \\
\text { where } g\left(\delta_{t}^{(b)}\right)=\frac{f^{(b)}\left(\delta_{t}^{(b)}\right)}{\gamma} \cdot\left(1-e^{-\gamma\left(\delta_{t}^{(b)}-S_{t}+Q_{t}^{(b)}\right)}\right) \\
\text { and } h\left(\delta_{t}^{(a)}\right)=\frac{f^{(a)}\left(\delta_{t}^{(a)}\right)}{\gamma} \cdot\left(1-e^{-\gamma\left(\delta_{t}^{(a)}+S_{t}-Q_{t}^{(a)}\right)}\right)
\end{gathered}
$$

Optimal Bid Spread and Optimal Ask Spread

- To maximize $g\left(\delta_{t}^{(b)}\right)$, differentiate g with respect to $\delta_{t}^{(b)}$ and set to 0

$$
\begin{gather*}
e^{-\gamma\left(\delta_{t}^{(b)^{*}}-S_{t}+Q_{t}^{(b)}\right)} \cdot\left(\gamma \cdot f^{(b)}\left(\delta_{t}^{(b)^{*}}\right)-\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}\left(\delta_{t}^{(b)^{*}}\right)\right)+\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}\left(\delta_{t}^{(b)^{*}}\right)=0 \\
\Rightarrow \delta_{t}^{(b)^{*}}=S_{t}-Q_{t}^{(b)}+\frac{1}{\gamma} \cdot \ln \left(1-\gamma \cdot \frac{f^{(b)}\left(\delta_{t}^{(b)^{*}}\right)}{\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}\left(\delta_{t}^{(b)^{*}}\right)}\right) \tag{6}
\end{gather*}
$$

- To maximize $g\left(\delta_{t}^{(a)}\right)$, differentiate h with respect to $\delta_{t}^{(a)}$ and set to 0

$$
\begin{gather*}
e^{-\gamma\left(\delta_{t}^{(a)^{*}}+S_{t}-Q_{t}^{(a)}\right)} \cdot\left(\gamma \cdot f^{(a)}\left(\delta_{t}^{(a)^{*}}\right)-\frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}\left(\delta_{t}^{(a)^{*}}\right)\right)+\frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}\left(\delta_{t}^{(a)^{*}}\right)=0 \\
\Rightarrow \delta_{t}^{(a)^{*}}=Q_{t}^{(a)}-S_{t}+\frac{1}{\gamma} \cdot \ln \left(1-\gamma \cdot \frac{f^{(a)}\left(\delta_{t}^{(a)^{*}}\right)}{\frac{\partial f^{(a)}}{\partial \delta_{t}^{(a)}}\left(\delta_{t}^{(a)^{*}}\right)}\right) \tag{7}
\end{gather*}
$$

- (??) and (??) are implicit equations for $\delta_{t}^{(b)^{*}}$ and $\delta_{t}^{(a)^{*}}$ respectively

Solving for θ and for Optimal Bid/Ask Spreads

- Let us write the PDE in terms of the Optimal Bid and Ask Spreads

$$
\begin{align*}
& \frac{\partial \theta}{\partial t}+\frac{\sigma^{2}}{2}\left(\frac{\partial^{2} \theta}{\partial S_{t}^{2}}-\gamma\left(\frac{\partial \theta}{\partial S_{t}}\right)^{2}\right) \\
& +\frac{f^{(b)}\left(\delta_{t}^{(b)^{*}}\right)}{\gamma} \cdot\left(1-e^{-\gamma\left(\delta_{t}^{(b)^{*}}-S_{t}+\theta\left(t, S_{t}, l_{t}+1\right)-\theta\left(t, S_{t}, l_{t}\right)\right)}\right) \tag{8}\\
& +\frac{f^{(a)}\left(\delta_{t}^{(a)^{*}}\right)}{\gamma} \cdot\left(1-e^{-\gamma\left(\delta_{t}^{(a)^{*}}+S_{t}+\theta\left(t, S_{t}, l_{t}-1\right)-\theta\left(t, S_{t}, l_{t}\right)\right)}\right)=0
\end{align*}
$$

with boundary condition $\theta\left(T, S_{T}, I_{T}\right)=I_{T} \cdot S_{T}$

- First we solve PDE (??) for θ in terms of $\delta_{t}^{(b)^{*}}$ and $\delta_{t}^{(a)^{*}}$
- In general, this would be a numerical PDE solution
- Using (??) and (??), we have $Q_{t}^{(b)}$ and $Q_{t}^{(a)}$ in terms of $\delta_{t}^{(b)^{*}}$ and $\delta_{t}^{(a)^{*}}$
- Substitute above-obtained $Q_{t}^{(b)}$ and $Q_{t}^{(a)}$ in equations (??) and (??)
- Solve implicit equations for $\delta_{t}^{(b)^{*}}$ and $\delta_{t}^{(a)^{*}}$ (in general, numerically)

Building Intuition

- Define Indifference Mid Price $Q_{t}^{(m)}=\frac{Q_{t}^{(b)}+Q_{t}^{(a)}}{2}$
- To develop intuition for Indifference Prices, consider a simple case where the market-maker doesn't supply any bids or asks

$$
V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)=\mathbb{E}\left[-e^{-\gamma\left(W_{t}+l_{t} \cdot S_{T}\right)}\right]
$$

- Combining this with the diffusion $d S_{t}=\sigma \cdot d z_{t}$, we get:

$$
V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)=-e^{-\gamma\left(W_{t}+I_{t} \cdot S_{t}-\frac{\gamma \cdot l_{t}^{2} \cdot \sigma^{2}(T-t)}{2}\right)}
$$

- Combining this with equations (??) and (??), we get:

$$
\begin{gathered}
Q_{t}^{(b)}=S_{t}-\left(2 I_{t}+1\right) \frac{\gamma \sigma^{2}(T-t)}{2}, Q_{t}^{(a)}=S_{t}-\left(2 I_{t}-1\right) \frac{\gamma \sigma^{2}(T-t)}{2} \\
Q_{t}^{(m)}=S_{t}-I_{t} \gamma \sigma^{2}(T-t), Q_{t}^{(a)}-Q_{t}^{(b)}=\gamma \sigma^{2}(T-t)
\end{gathered}
$$

- These results for the simple case of no-market-making serve as approximations for our problem of optimal market-making

Building Intuition

- Think of $Q_{t}^{(m)}$ as inventory-risk-adjusted mid-price (adjustment to S_{t})
- If market-maker is long inventory $\left(I_{t}>0\right), Q_{t}^{(m)}<S_{t}$ indicating inclination to sell than buy, and if market-maker is short inventory, $Q_{t}^{(m)}>S_{t}$ indicating inclination to buy than sell
- Armed with this intuition, we come back to optimal market-making, observing from eqns (??) and (??):

$$
P_{t}^{(b)^{*}}<Q_{t}^{(b)}<Q_{t}^{(m)}<Q_{t}^{(a)}<P_{t}^{(a)^{*}}
$$

- Think of $\left[P_{t}^{(b)^{*}}, P_{t}^{(a)^{*}}\right]$ as "centered" at $Q_{t}^{(m)}$ (rather than at $\left.S_{t}\right)$, i.e., $\left[P_{t}^{(b)^{*}}, P_{t}^{(a)^{*}}\right]$ will (together) move up/down in tandem with $Q_{t}^{(m)}$ moving up/down (as a function of inventory position I_{t})

$$
\begin{array}{r}
Q_{t}^{(m)}-P_{t}^{(b)^{*}}=\frac{Q_{t}^{(a)}-Q_{t}^{(b)}}{2}+\frac{1}{\gamma} \cdot \ln \left(1-\gamma \cdot \frac{f^{(b)}\left(\delta_{t}^{(b)^{*}}\right)}{\frac{\partial f^{(b)}}{\partial \delta_{t}^{(b)}}\left(\delta_{t}^{(b)^{*}}\right)}\right) \\
P_{t}^{(a)^{*}}-Q_{t}^{(m)}=\frac{Q_{t}^{(a)}-Q_{t}^{(b)}}{2}+\frac{1}{\gamma} \cdot \ln \left(1-\gamma \cdot \frac{f^{(a)}\left(\delta_{t}^{(a)^{*}}\right)}{\partial f^{(a)}\left(\delta^{\left.(a)^{*}\right)}\right)}\right. \tag{10}
\end{array}
$$

Simple Functional Form for Hitting/Lifting Rate Means

- The PDE for θ and the implicit equations for $\delta_{t}^{(b)^{*}}, \delta_{t}^{(a)^{*}}$ are messy
- We make some assumptions, simplify, derive analytical approximations
- First we assume a fairly standard functional form for $f^{(b)}$ and $f^{(a)}$

$$
f^{(b)}(\delta)=f^{(a)}(\delta)=c \cdot e^{-k \cdot \delta}
$$

- This reduces equations (??) and (??) to:

$$
\begin{align*}
\delta_{t}^{(b)^{*}} & =S_{t}-Q_{t}^{(b)}+\frac{1}{\gamma} \ln \left(1+\frac{\gamma}{k}\right) \tag{11}\\
\delta_{t}^{(a)^{*}} & =Q_{t}^{(a)}-S_{t}+\frac{1}{\gamma} \ln \left(1+\frac{\gamma}{k}\right) \tag{12}
\end{align*}
$$

$\Rightarrow P_{t}^{(b)^{*}}$ and $P_{t}^{(a)^{*}}$ are equidistant from $Q_{t}^{(m)}$

- Substituting these simplified $\delta_{t}^{(b)^{*}}, \delta_{t}^{(a)^{*}}$ in (??) reduces the PDE to:

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}+\frac{\sigma^{2}}{2}\left(\frac{\partial^{2} \theta}{\partial S_{t}^{2}}-\gamma\left(\frac{\partial \theta}{\partial S_{t}}\right)^{2}\right)+\frac{c}{k+\gamma}\left(e^{-k \cdot \delta_{t}^{(b)^{*}}}+e^{-k \cdot \delta_{t}^{(a)^{*}}}\right)=0 \tag{13}
\end{equation*}
$$

with boundary condition $\theta\left(T, S_{T}, I_{T}\right)=I_{T} \cdot S_{T}$

Simplifying the PDE with Approximations

- Note that this PDE (??) involves $\delta_{t}^{(b)^{*}}$ and $\delta_{t}^{(a)^{*}}$
- However, equations (??), (??), (??), (??) enable expressing $\delta_{t}^{(b) *}$ and $\delta_{t}^{(a)^{*}}$ in terms of $\theta\left(t, S_{t}, I_{t}-1\right), \theta\left(t, S_{t}, I_{t}\right), \theta\left(t, S_{t}, I_{t}+1\right)$
- This would give us a PDE just in terms of θ
- Solving that PDE for θ would not only give us $V^{*}\left(t, S_{t}, W_{t}, l_{t}\right)$ but also $\delta_{t}^{(b)}{ }^{*}$ and $\delta_{t}^{(a)^{*}}$ (using equations (??), (??), (??), (??))
- To solve the PDE, we need to make a couple of approximations
- First we make a linear approx for $e^{-k \cdot \delta_{t}^{(b)^{*}}}$ and $e^{-k \cdot \delta_{t}^{(2) *}}$ in PDE (??):

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}+\frac{\sigma^{2}}{2}\left(\frac{\partial^{2} \theta}{\partial S_{t}^{2}}-\gamma\left(\frac{\partial \theta}{\partial S_{t}}\right)^{2}\right)+\frac{c}{k+\gamma}\left(1-k \cdot \delta_{t}^{(b)^{*}}+1-k \cdot \delta_{t}^{(a)^{*}}\right)=0 \tag{14}
\end{equation*}
$$

- Equations (??), (??), (??), (??) tell us that:

$$
\delta_{t}^{(b)^{*}}+\delta_{t}^{(a)^{*}}=\frac{2}{\gamma} \ln \left(1+\frac{\gamma}{k}\right)+2 \theta\left(t, S_{t}, I_{t}\right)-\theta\left(t, S_{t}, I_{t}+1\right)-\theta\left(t, S_{t}, I_{t}-1\right)
$$

Asymptotic Expansion of θ in I_{t}

- With this expression for $\delta_{t}^{(b)^{*}}+\delta_{t}^{(a)^{*}}$, PDE (??) takes the form:

$$
\begin{align*}
\frac{\partial \theta}{\partial t}+\frac{\sigma^{2}}{2} & \left(\frac{\partial^{2} \theta}{\partial S_{t}^{2}}-\gamma\left(\frac{\partial \theta}{\partial S_{t}}\right)^{2}\right)+\frac{c}{k+\gamma}\left(2-\frac{2 k}{\gamma} \ln \left(1+\frac{\gamma}{k}\right)\right. \tag{15}\\
& \left.-k\left(2 \theta\left(t, S_{t}, I_{t}\right)-\theta\left(t, S_{t}, I_{t}+1\right)-\theta\left(t, S_{t}, I_{t}-1\right)\right)\right)=0
\end{align*}
$$

- To solve PDE (??), we consider this asymptotic expansion of θ in I_{t} :

$$
\theta\left(t, S_{t}, I_{t}\right)=\sum_{n=0}^{\infty} \frac{I_{t}^{n}}{n!} \cdot \theta^{(n)}\left(t, S_{t}\right)
$$

- So we need to determine the functions $\theta^{(n)}\left(t, S_{t}\right)$ for all $n=0,1,2, \ldots$
- For tractability, we approximate this expansion to the first 3 terms:

$$
\theta\left(t, S_{t}, I_{t}\right) \approx \theta^{(0)}\left(t, S_{t}\right)+I_{t} \cdot \theta^{(1)}\left(t, S_{t}\right)+\frac{I_{t}^{2}}{2} \cdot \theta^{(2)}\left(t, S_{t}\right)
$$

Approximation of the Expansion of θ in I_{t}

- We note that the Optimal Value Function V^{*} can depend on S_{t} only through the current Value of the Inventory (i.e., through $I_{t} \cdot S_{t}$), i.e., it cannot depend on S_{t} in any other way
- This means $V^{*}\left(t, S_{t}, W_{t}, 0\right)=-e^{-\gamma\left(W_{t}+\theta^{(0)}\left(t, S_{t}\right)\right)}$ is independent of S_{t}
- This means $\theta^{(0)}\left(t, S_{t}\right)$ is independent of S_{t}
- So, we can write it as simply $\theta^{(0)}(t)$, meaning $\frac{\partial \theta^{(0)}}{\partial S_{t}}$ and $\frac{\partial^{2} \theta^{(0)}}{\partial S_{t}^{2}}$ are 0
- Therefore, we can write the approximate expansion for $\theta\left(t, S_{t}, I_{t}\right)$ as:

$$
\begin{equation*}
\theta\left(t, S_{t}, I_{t}\right)=\theta^{(0)}(t)+I_{t} \cdot \theta^{(1)}\left(t, S_{t}\right)+\frac{I_{t}^{2}}{2} \cdot \theta^{(2)}\left(t, S_{t}\right) \tag{16}
\end{equation*}
$$

Solving the PDE

- Substitute this approximation (??) for $\theta\left(t, S_{t}, I_{t}\right)$ in PDE (??)

$$
\begin{aligned}
& \frac{\partial \theta^{(0)}}{\partial t}+I_{t} \frac{\partial \theta^{(1)}}{\partial t}+\frac{I_{t}^{2}}{2} \frac{\partial \theta^{(2)}}{\partial t}+\frac{\sigma^{2}}{2}\left(I_{t} \frac{\partial^{2} \theta^{(1)}}{\partial S_{t}^{2}}+\frac{I_{t}^{2}}{2} \frac{\partial^{2} \theta^{(2)}}{\partial S_{t}^{2}}\right) \\
& -\frac{\gamma \sigma^{2}}{2}\left(I_{t} \frac{\partial \theta^{(1)}}{\partial S_{t}}+\frac{I_{t}^{2}}{2} \frac{\partial \theta^{(2)}}{\partial S_{t}}\right)^{2}+\frac{c}{k+\gamma}\left(2-\frac{2 k}{\gamma} \ln \left(1+\frac{\gamma}{k}\right)+k \cdot \theta^{(2)}\right)=0
\end{aligned}
$$

with boundary condition:

$$
\begin{equation*}
\theta^{(0)}(T)+I_{T} \cdot \theta^{(1)}\left(T, S_{T}\right)+\frac{I_{T}^{2}}{2} \cdot \theta^{(2)}\left(T, S_{T}\right)=I_{T} \cdot S_{T} \tag{17}
\end{equation*}
$$

- We will separately collect terms involving specific powers of I_{t}, each yielding a separate PDE:
- Terms devoid of I_{t} (i.e., I_{t}^{0})
- Terms involving I_{t} (i.e., I_{t}^{1})
- Terms involving I_{t}^{2}

Solving the PDE

- We start by collecting terms involving I_{t}

$$
\frac{\partial \theta^{(1)}}{\partial t}+\frac{\sigma^{2}}{2} \cdot \frac{\partial^{2} \theta^{(1)}}{\partial S_{t}^{2}}=0 \text { with boundary condition } \theta^{(1)}\left(T, S_{T}\right)=S_{T}
$$

- The solution to this PDE is:

$$
\begin{equation*}
\theta^{(1)}\left(t, S_{t}\right)=S_{t} \tag{18}
\end{equation*}
$$

- Next, we collect terms involving l_{t}^{2}

$$
\frac{\partial \theta^{(2)}}{\partial t}+\frac{\sigma^{2}}{2} \cdot \frac{\partial^{2} \theta^{(2)}}{\partial S_{t}^{2}}-\gamma \sigma^{2} \cdot\left(\frac{\partial \theta^{(1)}}{\partial S_{t}}\right)^{2}=0 \text { with boundary } \theta^{(2)}\left(T, S_{T}\right)=0
$$

- Noting that $\theta^{(1)}\left(t, S_{t}\right)=S_{t}$, we solve this PDE as:

$$
\begin{equation*}
\theta^{(2)}\left(t, S_{t}\right)=-\gamma \sigma^{2}(T-t) \tag{19}
\end{equation*}
$$

Solving the PDE

- Finally, we collect the terms devoid of I_{t}

$$
\frac{\partial \theta^{(0)}}{\partial t}+\frac{c}{k+\gamma}\left(2-\frac{2 k}{\gamma} \ln \left(1+\frac{\gamma}{k}\right)+k \cdot \theta^{(2)}\right)=0 \text { with boundary } \theta^{(0)}(T)=0
$$

- Noting that $\theta^{(2)}\left(t, S_{t}\right)=-\gamma \sigma^{2}(T-t)$, we solve as:

$$
\begin{equation*}
\theta^{(0)}(t)=\frac{c}{k+\gamma}\left(\left(2-\frac{2 k}{\gamma} \ln \left(1+\frac{\gamma}{k}\right)\right)(T-t)-\frac{k \gamma \sigma^{2}}{2}(T-t)^{2}\right) \tag{20}
\end{equation*}
$$

- This completes the PDE solution for $\theta\left(t, S_{t}, I_{t}\right)$ and hence, for $V^{*}\left(t, S_{t}, W_{t}, I_{t}\right)$
- Lastly, we derive formulas for $Q_{t}^{(b)}, Q_{t}^{(a)}, Q_{t}^{(m)}, \delta_{t}^{(b)^{*}}, \delta_{t}^{(a)^{*}}$

Formulas for Prices and Spreads

- Using equations (??) and (??), we get:

$$
\begin{align*}
& Q_{t}^{(b)}=\theta^{(1)}\left(t, S_{t}\right)+\left(2 I_{t}+1\right) \cdot \theta^{(2)}\left(t, S_{t}\right)=S_{t}-\left(2 I_{t}+1\right) \frac{\gamma \sigma^{2}(T-t)}{2} \tag{21}\\
& Q_{t}^{(a)}=\theta^{(1)}\left(t, S_{t}\right)+\left(2 I_{t}-1\right) \cdot \theta^{(2)}\left(t, S_{t}\right)=S_{t}-\left(2 I_{t}-1\right) \frac{\gamma \sigma^{2}(T-t)}{2} \tag{22}
\end{align*}
$$

- Using equations (??) and (??), we get:

$$
\begin{align*}
& \delta_{t}^{(b)^{*}}=\frac{\left(2 I_{t}+1\right) \gamma \sigma^{2}(T-t)}{2}+\frac{1}{\gamma} \ln \left(1+\frac{\gamma}{k}\right) \tag{23}\\
& \delta_{t}^{(a)^{*}}=\frac{\left(1-2 I_{t}\right) \gamma \sigma^{2}(T-t)}{2}+\frac{1}{\gamma} \ln \left(1+\frac{\gamma}{k}\right) \tag{24}
\end{align*}
$$

Optimal Bid-Ask Spread $\delta_{t}^{(b)^{*}}+\delta_{t}^{(a)^{*}}=\gamma \sigma^{2}(T-t)+\frac{2}{\gamma} \ln \left(1+\frac{\gamma}{k}\right)$ (25)
Optimal "Mid" $Q_{t}^{(m)}=\frac{Q_{t}^{(b)}+Q_{t}^{(a)}}{2}=\frac{P_{t}^{(b)^{*}}+P_{t}^{(a)^{*}}}{2}=S_{t}-l_{t} \gamma \sigma^{2}(T-t)$
(26)

Back to Intuition

- Think of $Q_{t}^{(m)}$ as inventory-risk-adjusted mid-price (adjustment to S_{t})
- If market-maker is long inventory $\left(I_{t}>0\right), Q_{t}^{(m)}<S_{t}$ indicating inclination to sell than buy, and if market-maker is short inventory, $Q_{t}^{(m)}>S_{t}$ indicating inclination to buy than sell
- Think of $\left[P_{t}^{(b)^{*}}, P_{t}^{(a)^{*}}\right]$ as "centered" at $Q_{t}^{(m)}$ (rather than at S_{t}), i.e., $\left[P_{t}^{(b)^{*}}, P_{t}^{(a)^{*}}\right]$ will (together) move up/down in tandem with $Q_{t}^{(m)}$ moving up/down (as a function of inventory position I_{t})
- Note from equation (??) that the Optimal Bid-Ask Spread $P_{t}^{(a)^{*}}-P_{t}^{(b)^{*}}$ is independent of inventory I_{t}
- Useful view: $P_{t}^{(b)^{*}}<Q_{t}^{(b)}<Q_{t}^{(m)}<Q_{t}^{(a)}<P_{t}^{(a)^{*}}$, with these spreads:

$$
\begin{aligned}
& \text { Outer Spreads } P_{t}^{(a)^{*}}-Q_{t}^{(a)}=Q_{t}^{(b)}-P_{t}^{(b)^{*}}=\frac{1}{\gamma} \ln \left(1+\frac{\gamma}{k}\right) \\
& \text { Inner Spreads } Q_{t}^{(a)}-Q_{t}^{(m)}=Q_{t}^{(m)}-Q_{t}^{(b)}=\frac{\gamma \sigma^{2}(T-t)}{2}
\end{aligned}
$$

Real-world Market-Making and Reinforcement Learning

- Real-world TOB dynamics are time-heterogeneous, non-linear, complex
- Frictions: Discrete Prices/Sizes, Constraints on Prices/Sizes, Fees
- Need to capture various market factors in the State \& TOB Dynamics
- This leads to Curse of Dimensionality and Curse of Modeling
- The practical route is to develop a simulator capturing all of the above
- Simulator is a Market-Data-learnt Sampling Model of TOB Dynamics
- Using this simulator and neural-networks func approx, we can do RL
- References: 2018 Paper from University of Liverpool and 2019 Paper from JP Morgan Research
- Exciting area for Future Research as well as Engineering Design

