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Introduction

Who am I?

I work in the Electronic Trading Group (ETG) at Knight Capital.  In my career I previously worked at Credit 
Suisse and at Goldman Sachs.  I started my career in derivatives, and later switched to quantitative cash 
trading.  At Knight I’m responsible for execution across all of our electronic strategies.

Who is Knight?
• Knight is a Broker-Dealer originally established to cater to the retail community
• Knight is the leading source of off-exchange liquidity in U.S. equities across all market segments
• Knight provides market making and agency based trading in U S European and Asian equities ADRs• Knight provides market making and agency-based trading in U.S., European and Asian equities, ADRs, 

ETFs, futures and options
• Knight is the largest U.S. market-maker, trading in more than 19,000 U.S. Equities
• Knight provides connectivity to more than 100 external market centers worldwide, including exchanges, 

ECNs ATSs dark pools ATFs MTFs and broker-dealersECNs, ATSs, dark pools, ATFs, MTFs and broker-dealers
• In 2009, Knight traded approximately 2.5 trillion shares and executed more than 980 million trades, an 

average of 600,000 trades per hour
• Knight is #1 in shares traded of Listed securities with 17.3% market share*
• Knight is #1 in shares traded on NASDAQ Capital Market Global Market and Global Select Market• Knight is #1 in shares traded on NASDAQ Capital Market, Global Market, and Global Select Market 

securities with a combined market share of 23.9%*
• Knight is #1 in shares traded of Bulletin Board and Pink Sheet securities with 86.5% market share*
• Knight is #1 in shares traded of S&P 500 securities with a 15.1% market share*
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• Knight also trades in Fixed Income, Currencies & Commodities, and offers Capital Markets and 
Investment Banking services as well.

*Autex, 2009
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High Frequency Trading Decisions

Long-dated Trading High Frequency Trading

Holding Period Weeks to Years Seconds to Minutes

Expected Returns 1% -- 10% per position
>> typical bid-offer spread

.01% -- .10% per position
~ typical bid-offer spread

I’m going to be discussing high frequency trading in the context of providing liquidity to the 

Trading Style Liquidity Taking Liquidity Providing

g g g g q y g p g q y
markets – i.e. voluntarily placing bids and offers on a large number of stocks into public and 
semi-public trading venues (exchanges, ECN’s, dark pools, etc.).

When engaging in such activity, the high frequency trader hopes to get paid the bid-ask spread 
in return for suffering negative selection (i.e. he or she is more likely to be a buyer in a falling 
market and a seller in a rising market). 

Generally the difference between profit and loss is very thin, and making real-time decisions on 
size and price is a difficult and delicate affair.
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Parametric Approach

Imagine that for every stock in my universe, at all times, I have a short-dated return forecast for 
the mid-market price.  The return forecast may be zero, positive or negative, and will typically be 
smaller than or similar in size to the stock’s half-spread.

Here is a simple rule for a high frequency trading strategy:

1. Size:  100 shares to buy; 100 shares to sell

2. Price:  BuyPrice = Mid-Market + A x Forecast – B x MCR – Current half-spready p

SellPrice = Mid-Market + A x Forecast – B x MCR + Current half-spread

where MCR is the stock’s marginal contribution to my portfolio risk.

I then have two parameters, A and B, which I determine by backtesting my strategy.

Generally this is a sound approach, albeit in practice the models will have many, many more 
parameters than the two I’ve specified here.
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This approach is sometimes referred to as Global Parametric Optimization.
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Parametric Approach (cont.)

What are the strengths and weaknesses of the parametric approach?

Strength Weakness

Rules are intuitive 

Optimization tends to be stable 

Edge cases handled poorly 

Rule-sets can grow to be very complex g y p

Not adaptive to changes in market structure 

Co ld Stochastic Control Theor offer a better approach?Could Stochastic Control Theory offer a better approach?

Not a new idea:

“Applications of Mathematical Control Theory to Finance: Modeling Simple Dynamic Cash Balance Problems”, S. Sethi and G. 
L Thompson (1970) Journal of Financial and Quantitative Analysis 5 pp 381-394L. Thompson (1970), Journal of Financial and Quantitative Analysis, 5, pp. 381-394.

“Optimal Investment Models and Risk-Sensitive Stochastic Control”, W. H. Fleming (1995), IMA Volume of Mathematical 
Finance, 65, pp. 35-45.

“An Application of Stochastic Control Theory to Financial Economics”, W. H. Fleming and T. Pang (2003), SIAM Journal on 
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Control and Optimization, 43, pp. 502-531.

… and many more.



Review of Variational Calculus

Remember back to Freshman Calculus, and the problem of the guy and the rowboat:

x

Jack wants to get to Jill as fast as he can, who is 2 miles down-river from him, but he needs to 
cross the ½-mile wide river to get to her He can row at 3mph but once across he can run atcross the ½-mile wide river to get to her.  He can row at 3mph, but once across he can run at 
9mph along the bank.  Toward which point along the bank should Jack row so as to reach Jill in 
the smallest amount of time “T” ?

T = √ ¼ + x2 / 3 + (2 – x) / 9 dT/dx|x=xo = 0  xo = 0.1767 miles
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We say that the optimal point “xo” is a solution to the algebraic equation dTime/dx = 0.



Review of Variational Calculus (cont.)

What if there is a variable current with a velocity v(y) [and the shore is too rocky to run along]?

y
v(y)

x

Now we need to find the optimal path yo(x) for Jack to row.  For any path y(x), the time it takes 
Jack to reach Jill is given by:
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and the optimal path yo(x) must satisfy the Euler-Lagrange Equation:
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In this case we say the optimal path yo(x) is a solution to the differential equation
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Review of Variational Calculus (cont.)

Now let’s add turbulence to the river, so that as he rows across, Jack’s rowboat is tossed about 
by the rapids.  

y
v(y)

x

How do we help Jack get to Jill in this situation?  Jack’s path to Jill is no longer deterministic –
though his boat’s motion is partially determined by the direction in which Jack rows, there is also 
a random component to the motion due to the turbulence In a case such as this we need to

x

a random component to the motion due to the turbulence.  In a case such as this we need to 
provide Jack with an optimal policy which he can follow – instructions for Jack which will 
optimize his path to Jill no matter where in the river he finds himself.  This policy will take as 
inputs Jack’s current position and velocity, and will output the optimal direction that Jack should 
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row.   Finding optimal policies is the job of Stochastic Control Theory.



Review of Variational Calculus (cont.)

In general, finding an optimal policy requires three specifications:

1. System dynamics for the state variables

2. A quantity to minimize or maximize

3 Relationships between “controls” and system state variables; these often appear as constraints3. Relationships between controls  and system state variables; these often appear as constraints.

“Controls”, as their name implies, are variables under the control of the system operator (e.g. 
Jack) while the state variables attain their values as a consequence of the controls and the 
system dynamics In helping Jack get to Jill we might have the following:system dynamics.  In helping Jack get to Jill, we might have the following:

1. dx = (vo cos – v(y)) dt  + x dzx

dy = vo sin dt + y dzy

2. T = ∫dt we want to minimize T

3. 2 = ∫dx we need to travel two miles upriver

½ = ∫dy we need to cross the ½-mile wide river

where  is the angle with respect to the shoreline indicating the direction Jack is rowing.
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Review of Variational Calculus (cont.)

More generally, with x a vector of state variables, u a vector of controls, and R the quantity to 
minimize or maximize:


T

dztttdttttd ]),,(),([]),,(),([ xuxGxuxFx

We have the following system of equations for u*, the optimal controls:

 
T

TTBdttttLR
0
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We have the following system of equations for u , the optimal controls:
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Where “H” is called the Value Function and satisfies the differential equation:
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The above equations are known as the Hamilton-Jacobi-Bellman Equations.
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Stochastic Control Theory and High Frequency Trading

Let’s consider the following simplified model for Stock ABC:

• The mid-market price of ABC follows algebraic Brownian motion ((t) is presumed known).

dzdttdS   )(

• The spread of ABC is constant with a width 2.

• Market participants can place passive limit orders to buy at the bid or to sell at the ask, or they may 
place active market orders to buy at the ask or sell on the bid.  Note that limit orders “earn” spread but 
market orders “pay” spread.

• Limit orders to buy and sell are filled at rates given by:
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• We assume no market impact.
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Stochastic Control Theory and High Frequency Trading (cont.)

As market makers, what do we get to control?  We can control four variables:

1. Whether we place a limit order to buy   Let’s define this as b(t) which takes values of either 0 or 1

2. Whether we place a limit order to sell   Let’s define this as s(t) which takes values of either 0 or 1

3 Whether we place a market order to buy  Let’s define this as m (t) which takes values of either 0 or 13. Whether we place a market order to buy   Let s define this as mb(t) which takes values of either 0 or 1

4. Whether we place a market order to sell   Let’s define this as ms(t) which takes values of either 0 or 1

Let’s denote N(t) the number of shares we hold in inventory at time t.  Then N(t) is given by:

 dtftmftmtvttvtdN obosbbss )()()()()()(  

What quantity do we want to extremize?  We want to maximize our risk-adjusted PnL:

         
T

dttNtSftmtSftmtStvttStvttSU 222 )()()()()()()()()()()()( 

with  our risk aversion coefficient.
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So we have 4 state variables (S, vs, vb, N), each with an evolution equation, and 4 controls (b, s, 
mb, ms).  Plugging into the HJB equations …
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Stochastic Control Theory and High Frequency Trading (cont.)

… gives a somewhat intimidating 2nd order partial differential equation for H=H(S,vs,vb,N,t):
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This PDE, though a bit scary to look at, is solvable using standard numerical techniques from 
derivative pricing, operations research, physics, etc.p g, p , p y ,

So … let’s assume we’ve solved our HJB equations using one of the excellent open-source PDE 
solvers available for download, and have used the optimality conditions shown earlier to get 
our optimal controls.

• Is the calculation fast enough?  Probably not.

• Can we speed it up? Yes
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Can we speed it up?  Yes.
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Stochastic Control Theory and High Frequency Trading (cont.)

We’ve now found the optimal policies (our ’s and m’s), and also the Value Function, H.  We 
know what to do with our optimal policies – but what good is the Value Function?  

Imagine you are happily using your optimal ’s and m’s to make markets, when a salesperson 
calls asking you bid on a block trade. It is a large number of shares to buy (N0), but you can 
execute it outside the NBBO at a price P.  Should you take the trade, or pass?  

The Value Function serves as a decision engine for questions like this one.g q

You take your current estimate of (t) and the current values of S, vs, vb, & N.  Now evaluate the 
Value Function for two different starting conditions: N shares and zero dollars; or N + N sharesValue Function for two different starting conditions: N shares and zero dollars; or N + N0 shares 
and –N0P dollars.  Whichever is higher tells you whether to do the trade or not!  Very valuable 
information.

Doug Borden  |  Knight Equity Markets  |  dborden@knight.com 15



Summary

• Stochastic Control Theory provides a rigorous framework for making decisions under 
conditions of uncertainty.

• High Frequency Trading decisions lend themselves to be cast into such a framework.

• Even the simplest of market models leads to very complicated differential equations

• BUT:  Physics, Engineering, Operations Research, and two decades of derivatives pricing all y , g g, p , p g
provide a wealth of tools for solving the resulting HJB equations.

• Very interesting approach which is only now being explored• Very interesting approach which is only now being explored.

If you are interested in exploring employment opportunities with ETG, please send your CV to Jessica 
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f y g y G y
Wang at jewang@knight.com 201-386-2897
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