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Chapter 1

Stochastic Differential Equations

1.1 Introduction

Classical mathematical modelling is largely concerned with the derivation and use of ordinary and

partial differential equations in the modelling of natural phenomena, and in the mathematical and

numerical methods required to develop useful solutions to these equations. Traditionally these differ-

ential equations are deterministic by which we mean that their solutions are completely determined

in the value sense by knowledge of boundary and initial conditions - identical initial and boundary

conditions generate identical solutions. On the other hand, a Stochastic Differential Equation (SDE)

is a differential equation with a solution which is influenced by boundary and initial conditions, but

not predetermined by them. Each time the equation is solved under identical initial and bound-

ary conditions, the solution takes different numerical values although, of course, a definite pattern

emerges as the solution procedure is repeated many times.

Stochastic modelling can be viewed in two quite different ways. The optimist believes that the

universe is still deterministic. Stochastic features are introduced into the mathematical model simply

to take account of imperfections (approximations) in the current specification of the model, but there

exists a version of the model which provides a perfect explanation of observation without redress

to a stochastic model. The pessimist, on the other hand, believes that the universe is intrinsically

stochastic and that no deterministic model exists. From a pragmatic point of view, both will construct

the same model - its just that each will take a different view as to origin of the stochastic behaviour.

Stochastic differential equations (SDEs) now find applications in many disciplines including inter

alia engineering, economics and finance, environmetrics, physics, population dynamics, biology and

medicine. One particularly important application of SDEs occurs in the modelling of problems

associated with water catchment and the percolation of fluid through porous/fractured structures.

In order to acquire an understanding of the physical meaning of a stochastic differential equation

(SDE), it is beneficial to consider a problem for which the underlying mechanism is deterministic and

fully understood. In this case the SDE arises when the underlying deterministic mechanism is not

7



8 CHAPTER 1. STOCHASTIC DIFFERENTIAL EQUATIONS

fully observed and so must be replaced by a stochastic process which describes the behaviour of the

system over a larger time scale. In effect, although the true mechanism is deterministic, when this

mechanism cannot be fully observed it manifests itself as a stochastic process.

1.1.1 Meaning of Stochastic Differential Equations

A useful example to explore the mapping between an SDE and reality is consider the origin of the

term “noise”, now commonly used as a generic term to describe a zero-mean random signal, but in

the early days of radio noise referred to an unwanted signal contaminating the transmitted signal due

to atmospheric effects, but in particular, imperfections in the transmitting and receiving equipment

itself. This unwanted signal manifest itself as a persistent background hiss, hence the origin of the

term. The mechanism generating noise within early transmitting and receiving equipment was well

understood and largely arose from the fact that the charge flowing through valves is carried in units

of the electronic charge e (1.6× 10−19 coulombs per electron) and is therefore intrinsically discrete.

Consider the situation in which a stream of particles each carrying charge q land on the plate of a

leaky capacitor, the kth particle arriving at time tk > 0. Let N(t) be the number of particles to have

arrived on the plate by time t then

N(t) =

∞∑
k=1

H(t− tk) ,

where H(t) is Heaviside’s function1. The noise resulting from the irregular arrival of the charged

particles is called shot noise. The situation is illustrated in Figure 1.1

R

C

q

q

q

Figure 1.1: A model of a leaky capacitor receiving charges q

Let V (t) be the potential across the capacitor and let I(t) be the leakage current at time t then

1The Heaviside function, often colloquially called the ‘Step Function”, was introduced by Oliver Heaviside (1850-

1925), an English electrical engineer, and is defined by the formula

H(x) =

∫ x

−∞
δ(s) ds → H(x) =

 1 x > 0
1
2

x = 0

0 x < 0

Clearly the derivative of H(x) is δ(x), Dirac’s delta function
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conservation of charge requires that

CV = q N(t)−
∫ t

0
I(s) ds

where V (t) = RI(t) by Ohms law. Consequently, I(t) satisfies the integral equation

CRI(t) = q N(t)−
∫ t

0
I(s) ds . (1.1)

We can solve this equation by the method of Laplace transforms, but we avoid this temptation.

Another approach

Consider now the nature of N(t) when the times tk are unknown other than that electrons behave

independently of each other and that the interval between the arrivals of electrons of the plate is

Poisson distributed with parameter λ. With this understanding of the underlying mechanism in

place, N(t) is a Poisson deviate with parameter λt. At time t+∆t equation (1.1) becomes

CRI(t+∆t) = q N(t+∆t)−
∫ t+∆t

0
I(s) ds .

After subtracting equation (1.1) from the previous equation the result is that

CR [I(t+∆t)− I(t)] = q [N(t+∆t)−N(t)]−
∫ t+∆t

t
I(s) ds . (1.2)

Now suppose that ∆t is sufficiently small that I(t) does not change its value significantly in the

interval [t, t+∆t] then ∆I = I(t+∆t)− I(t) and∫ t+∆t

t
I(s) ds ≈ I(t)∆t .

On the other hand suppose that ∆t is sufficiently large that many electrons arrive on the plate

during the interval (t, t+∆t). So although [N(t+∆t)−N(t)] is actually a Poisson random variable

with parameter λ∆t, the central limit theorem may be invoked and [N(t + ∆t) − N(t)] may be

approximated by a Gaussian deviate with mean value λ∆t and variance λ∆t. Thus

N(t+∆t)−N(t) ≈ λ∆t+ λ∆W , (1.3)

where ∆W is a Gaussian random variable with zero mean value and variance ∆t. The sequence of

values for ∆W as time is traversed in units of ∆t define the independent increments in a Gaussian

processW (t) formed by summing the increments ∆W . ClearlyW (t) has mean value zero and variance

t. The conclusion of this analysis is that

CR∆I = q (λ∆t+
√
λ∆W )− I(t)∆t (1.4)

with initial condition I(0) = 0. Replacing ∆I, ∆t and ∆W by their respective differential forms

leads to the Stochastic Differential Equation (SDE)

dI =
(qλ− I)

CR
dt+

q
√
λ

CR
dW . (1.5)

In this representation, dW is the increment of a Wiener process. Both I and W are functions which

are continuous everywhere but differentiable nowhere. Equation (1.5) is an example of an Ornstein-

Uhlenbeck process.
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1.2 Some applications of SDEs

1.2.1 Asset prices

The most relevant application of SDEs for our purposes occurs in the pricing of risky assets and

contracts written on these assets. One such model is Heston’s model of stochastic volatility which

posits that S, the price of a risky asset, evolves according to the equations

dS

S
= µdt+

√
V (

√
1− ρ2 dW1 + ρ dW2)

dV = κ (γ − V ) dt+ σ
√
V dW2

(1.6)

in which ρ, κ and γ take prescribed values and V (t) is the instantaneous level of volatility of the

stock, and dW1 and dW2 are differentials of uncorrelated Wiener processes. In the course of these

lectures we shall meet other financial models.

1.2.2 Population modelling

Stochastic differential equations are often used in the modelling of population dynamics. For example,

the Malthusian model of population growth (unrestricted resources) is

dN

dt
= aN , N(0) = N0 , (1.7)

where a is a constant and N(t) is the size of the population at time t. The effect of changing

environmental conditions is achieved by replacing a dt by a Gaussian random variable with non-zero

mean a dt and variance b2 dt to get the stochastic differential equation

dN = aN dt+ bN dW , N(0) = N0 , (1.8)

in which a and b (conventionally positive) are constants. This is the equation of a Geometric Random

Walk and is identical to the risk-neutral asset model proposed by Black and Scholes for the evolution

of the price of a risky asset. To take account of limited resources the Malthusian model of population

growth is modified by replacing a in equation (1.8) by the term α(M − N) to get the well-known

Verhulst or Logistic equation

dN

dt
= αN(M −N) , N(0) = N0 (1.9)

where α and M are constants with M representing the carrying capacity of the environment. The

effect of changing environmental conditions is to make M a stochastic parameter so that the logistic

model becomes

dN = aN(M −N) dt+ bN dW (1.10)

in which a and b ≥ 0 are constants.
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The Malthusian and Logistic models are special cases of the general stochastic differential equation

dN = f(N) dt+ g(N) dW (1.11)

where f and g are continuously differentiable in [0,∞) with f(0) = g(0) = 0. In this case, N = 0 is a

solution of the SDE. However, the stochastic equation (1.11) is sensible only provided the boundary

at N = ∞ is unattainable (a natural boundary). This condition requires that there exist K > 0 such

that f(N) < 0 for all N > K. For example, K =M in the logistic model.

1.2.3 Multi-species models

The classical multi-species model is the prey-predator model. Let R(t) and F (t) denote respectively

the populations of rabbits and foxes is a given environment, then the Lotka-Volterra two-species

model posits that
dR

dt
= R(α− β F )

dF

dt
= F (δ R− γ) ,

where α is the net birth rate of rabbits in the absence of foxes, γ is the natural death rate of foxes

and β and δ are parameters of the model controlling the interaction between rabbits and foxes. The

stochastic equations arising from allowing α and γ to become random variables are

dR = R(α− β F ) dt+ σr RdW1 .

dF = F (δ R− γ) dt+ σf F dW2 .

The generic solution to these equations is a cyclical process in which rabbits dominate initially,

thereby increasing the supply of food for foxes causing the fox population to increase and rabbit

population to decline. The increasing shortage of food then causes the fox population to decline and

allows the rabbit population to recover, and so on.

There is a multi-species variant of the two-species classical Lotka-Volterra multi-species model with

differential equations
dxk
dt

= (ak + bkjxj)xk , k n.s. , (1.12)

where the choice and algebraic signs of the ak’s and the bjk’s distinguishes prey from predator. The

simplest generalisation of the Lotka-Volterra model to stochastic a environment assumes the original

ak is stochastic to get

dxk = (ak + bkjxj)xk dt+ ck xk dWk , k not summed. (1.13)

The generalised Lokta-Volterra models also have cyclical solutions. Is there an analogy with business

cycles in Economics in which the variables xk now denote measurable economic variables?
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Chapter 2

Continuous Random Variables

2.1 The probability density function

Function f(x) is a probability density function (PDF) with respect to a subset S ⊆ Rn provided

(a) f(x) ≥ 0 ∀ x ∈ S , (ii)

∫
S
f(x) dx = 1 . (2.1)

In particular, if E ⊆ S is an event then the probability of E is

p(E) =

∫
E
f(x) dx .

2.1.1 Change of independent deviates

Suppose that y = g(x) is an invertible mapping which associates X ∈ SX with Y ∈ SY where SY is

the image of the original sample space SX under the mapping g. The probability density function

fY (y) of Y may be computed from the probability density function fX(x) of X by the rule

fY (y) = fX(x)
∣∣∣ ∂(x1, · · · , xn)
∂(y1, · · · , yn)

∣∣∣ . (2.2)

2.1.2 Moments of a distribution

Let X be a continuous random variable with sample space S and PDF f(x) then the mean value of

the function g(X) is defined to be

ḡ =

∫
S
g(x)f(x) dx .

Important properties of the distribution itself are defined from this definition by assigning various

scalar, vector of tensorial forms to g. The momentMpq···w of the distribution is defined by the formula

Mp q···w = E [XpXq · · ·Xw ] =

∫
S
(xpxq · · ·xw) f(x) dx . (2.3)

13
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2.2 Ubiquitous probability density functions in continuous finance

Although any function satisfying conditions (2.1) qualifies as a probability density function, there

are several well-known probability density functions that occur frequently in continuous finance and

with which one must be familiar. These are now described briefly.

2.2.1 Normal distribution

A continuous random variable X is Gaussian distributed with mean µ and variance σ2 if X has

probability density function

f(x) =
1√
2πσ

exp
[
− (x− µ)2

2σ2

]
.

Basic properties

• If X ∼ N(µ, σ2) then Y = (X − µ)/σ ∼ N(0, 1) . This result follows immediately by change of

independent variable from X to Y .

• Suppose that Xk ∼ N(µk, σ
2
k) for k = 1, . . . , n are n independent Gaussian deviates then

mathematical induction may be used to establish the result

X = X1 +X2 + . . .+Xn ∼ N
( n∑
k=1

µk ,
n∑
k=1

σ2k

)
.

2.2.2 Log-normal distribution

The log-normal distribution with parameters µ and σ is defined by the probability density function

f(x ; µ, σ) =
1√
2π σ

1

x
exp

[
− (log x− µ)2

2σ2

]
x ∈ (0,∞) (2.4)

Basic properties

• If X is log-normally distributed with parameters (µ, σ) then Y = logX ∼ N(µ, σ2). This result

follows immediately by change of independent variable from X to Y .

• If X is log-normally distributed with parameters (µ, σ) independent Gaussian deviates then

E [X] = eµ+σ
2/2 and V [X] = e2µ+σ

2
(eσ

2 − 1) and the median of X is eµ.

2.2.3 Gamma distribution

The Gamma distribution with shape parameter α and scale parameter λ is defined by the probability

density function

f(x) =
1

λΓ(α)

(x
λ

)α−1
e−x/λ ,
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where λ and α are positive parameters.

Basic properties

• If X is Gamma distributed with parameters (α, λ) then E [X] = αλ and V [X] = αλ2.

• Suppose that X1, · · · , Xn are n independent Gamma deviates such that Xk has shape parameter

αk and scale parameter λ, the same for all values of k, then mathematical induction may be

used to establish the result that X = X1 + X2 + . . . + Xn is Gamma distributed with shape

parameter α1 + α2 + · · ·+ αn and scale parameter λ.

2.3 Limit Theorems

“Limit Theorems” are arguably the most important theoretical results in probability. The results

come in two flavours:

(i) Laws of Large Numbers where the aim is to establish convergence results relating sample

and population properties. For example, how many times must one toss a coin to be 99% sure

that the relative frequency of heads is within 5% of the true bias of the coin.

(ii) Central Limit Theorems where the aim is to establish properties of the distribution of the

sample properties.

Subsequent statements will assume that X1, X2, . . . , Xn is a sample of n independent and identically

distributed (i.i.d.) random variables. The sum of the random variables in the sample will be denoted

by Sn = X1 + · · ·+Xn. There are three different ways in which a random sequence Yn can converge

to, say T , as n→ ∞.

Definition

(a) We say that Yn → Y strongly as n→ ∞ if

Prob ( |Yn − Y | → 0 as n→ ∞ ) = 1 .

(b) We say that Yn → Y as n→ ∞ in the mean square sense if

∥Yn − Y ∥ =
√

E [ (Yn − Y )2 ] → 0 as n→ ∞ .

(c) We say that Yn → Y weakly as n→ ∞ if given ε > 0,

Prob ( |Yn − Y | ≥ ε ) → 0 as n→ ∞ .

Weak convergence (sometimes called stochastic convergence) is the weakest convergence condi-

tion. Strong convergence and mean square convergence both imply weak convergence.
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Before considering specific limit theorems, we establish Chebyshev’s inequality.

Chebyshev’s inequality

Let g(x) be a non-negative function of a continuous random variable X then

Prob ( g(X) > K ) <
E [ g(X) ]

K
.

Justification Let X have pdf f(x) then

E [ g(X) ] =

∫
g(x) f(x) dx ≥ K

∫
g(x)≥K

f(x) dx = K Prob ( g(X) > K ) .

Chebyshev’s inequality follows immediately from this result.

Corollary

Let X be a random variable drawn from a distribution with finite mean µ and finite variance σ2 then

it follows directly from Chebyshev’s inequality that

Prob ( |X − µ | > ϵ) ≤ σ2

ϵ2
.

Justification Take g(x) = (X − µ)2/σ2 and K = ε2/σ2. Clearly E [ g(X) ] = 1 and Chebyshev’s

inequality now gives

Prob ( (X − µ)2/σ2 > ε2/σ2 ) <
σ2

ε2
→ Prob ( |X − µ | > ε ) <

σ2

ε2
.

The weak law of large numbers

Let X1, X2, . . . , Xn be a sample of n i.i.d random variables drawn from a distribution with finite

mean µ and finite variance σ2, then for any positive ϵ

Prob

( ∣∣∣∣Snn − µ

∣∣∣∣ > ϵ

)
→ 0 as n→ ∞ .

Justification To establish this result, apply Chebyshev’s inequality with X = Sn/n. In this case

E(X) = µ and σ2X = σ2/n. It follows directly from Chebyshev’s inequality that

p(|X − µ| > ϵ) ≤ σ2

nϵ2
→ 0 as n→ ∞ .

The strong law of large numbers

Let X1, X2, . . . , Xn be a sample of n i.i.d random variables drawn from a distribution with finite

mean µ and finite variance σ2, then

Sn
n

→ µ as n→ ∞ w.p. 1 .

[In fact, the finite variance condition is not necessary for the strong law of large numbers to be true.]
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2.3.1 The central limit results

Let X1, X2, . . . Xn be a sample of n i.i.d. random variables from a distribution with finite mean µ

and finite variance σ2, then the random variable

Yn =
Sn − nµ

σ
√
n

has mean value zero and unit variance. In particular, the unit variance property means that Yn does

not degenerate as n → ∞ by contrast with Sn/n. The law of the iterated logarithm controls the

growth of Yn as n→ ∞.

Central limit theorem

Under the conditions on X stated previously, the derived deviate Yn satisfies

lim
n→∞

Prob (Yn ≤ y ) =
1√
2π

∫ y

−∞
e−t

2/2 dt .

The crucial point to note here is that the result is independent of distribution provided each deviate

Xk is i.i.d. with finite mean and variance. For example, The strong law of large numbers would

apply to samples drawn from the distribution with density f(x) = 2(1+x)−3 with x ∈ R but not the

central limit theorem.

2.4 The Wiener process

In 1827 the Scottish botanist Robert Brown (1773-1858) first described the erratic behaviour of

particles suspended in fluid, an effect which subsequently came to be called “Brownian Motion”. In

1905 Einstein explained Brownian motion mathematically1 and this led to attempts by Langevin and

others to formulate the dynamics of this motion in terms of stochastic differential equations. Norbert

Wiener (1894-1964) introduced a mathematical model of Brownian motion based on a canonical

process which is now called the Wiener process.

The Wiener process, denoted W (t) t ≥ 0, is a continuous stochastic process which takes the initial

value W (0) = 0 with probability one and is such that the increment [W (t) −W (s)] from W (s) to

W (t) (t > s) is an independent Gaussian process with mean value zero and variance (t− s). If Wt is

a Wiener process, then

∆Wt =Wt+∆t −Wt

is a Gaussian process satisfying

E [∆Wt ] = 0 , V [∆Wt ] = ∆t . (2.5)

1The canonical equation is called the diffusion equation, written

∂θ

∂t
=

∂2θ

∂x2

in one dimension. It is classified as a parabolic partial differential equation and typically describes the evolution of

temperature in heated material.
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It is often convenient to write ∆Wt =
√
∆t ϵt for the increment experienced by the Wiener process

W (t) in traversing the interval [t, t+∆t] where ϵt ∼ N(0, 1). Similarly, the infinitesimal increment dW

inW (t) during the increment dt is often written dW =
√
dt ϵt. Suppose that t = t0 < · · · < tn = t+T

is a dissection of [t, t+ T ] then

W (t+ T )−W (t) =

n∑
k=1

[W (tk)−W (tk−1) ] =

n∑
k=1

√
(tk − tk−1) ϵk , ϵk ∼ N(0, 1) . (2.6)

Note that this incremental form allows the mean and variance properties of the Wiener process to

be established directly from the properties of the Gaussian distribution.

2.4.1 Covariance

Let t and s be times with t > s then

E [W (t)W (s) ] = E [W (s)(W (t)−W (s)) +W 2(s) ] = E [W 2(s) ] = s . (2.7)

In the derivation of result (2.7) it has been recognised that W (s) and the Wiener increment W (t)−
W (s) are independent Gaussian deviates. In general, E [W (t)W (s) ] = min(t, s).

2.4.2 Derivative of a Wiener process

The formal derivative of the Wiener process W (t) is the limiting value of the ratio

lim
∆t→0

W (t+∆t)−W (t)

∆t
. (2.8)

However W (t+∆t)−W (t) =
√
∆t ϵt and so

W (t+∆t)−W (t)

∆t
=

ϵt
√
∆t

.

Thus the limit (2.8) does not exist as ∆t→ 0+ and so W (t) has no derivative in the classical sense.

Intuitively this means that a particle with position x(t) =W (t) has no well defined velocity although

its position is a continuous function of time.

2.4.3 Definitions

1. A martingale is a gambling term for a fair2 game in which the current information set It pro-

vides no advantage in predicting future winnings. A random variable Xt with finite expectation

is a martingale with respect to the probability measure P if

E P [Xt+s | It ] = Xt , s > 0 . (2.9)

2Of course, martingale gambling strategies are an anathema to casinos; this is the primary reason for a house limit

which, of course, precludes martingale strategies.
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Thus the future expectation of X is its current value, or put another way, the future offers no

opportunity for arbitrage.

2. A random variable Xt with finite expectation is said to be a sub-martingale with respect to

the probability Q if

EQ [Xt+s | It ] ≥ Xt , s > 0 . (2.10)

3. Let t0 < t1 · · · < t · · · be an increasing sequence of times with corresponding information sets

I0, I1, · · · , It, · · ·. These information sets are said to form a filtration if

I0 ⊆ I1 ⊆ · · · ⊆ It ⊆ · · · (2.11)

For example, Wt =W (t) is a martingale with respect to the information set I0. Why? Because

E [Wt | I0 ] = 0 =W (0) ,

but W 2
t is a sub-martingale since E [W 2

t | I0 ] = t > 0.
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Chapter 3

Review of Integration

Before advancing to the discussion of stochastic differential equations, we need to review what is

meant by integration. Consider briefly the one-dimensional SDE

dxt = a(t, xt) dt+ b(t, xt) dWt , x(t0) = x0 , (3.1)

where dWt is the differential of the Wiener process W (t), and a(t, x) and b(t, x) are deterministic

functions of x and t. The motivation behind this choice of direction lies in the observation that the

formal solution to equation (3.1) may be written

xt = x0 +

∫ t

t0

a(s, xs) ds+

∫ t

t0

b(s, xs) dWs . (3.2)

Although this solution contains two integrals, to have any worth we need to know exactly what is

meant by each integral appearing in this solution.

At a casual glance, the first integral on the right hand side of solution (3.2) appears to be a Riemann

integral while the second integral appears to be a Riemann-Stieltjes integral. However, a complication

arises from the fact that xs is a stochastic process and so a(s, xs) and b(s, xs) behave stochastically

in the integrals although a and b are themselves deterministic functions of t and x.

In fact, the first integral on the right hand side of equation (3.2) can always be interpreted as a

Riemann integral. However, the interpretation of the second integral is problematic. Often it is an

Ito integral, but may be interpreted as a Riemann-Stieltjes integral under some circumstances.

3.1 Bounded Variation

Let Dn denote the dissection a = x0 < x1 < · · · < xn = b of the finite interval [a, b]. The p-variation

of a function f over the domain [a, b] is defined to be

Vp(f) = lim
n→∞

n∑
k=1

| f(xk)− f(xk−1) |p , p > 0 , (3.3)

21
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where the limit is taken over all possible dissections of [a, b]. The function f is said to be of bounded

p-variation if Vp(f) < M < ∞. In particular, if p = 1, then f is said to be a function of bounded

variation over [a, b]. Clearly if f is of bounded variation over [a, b] then f is necessarily bounded in

[a, b]. However the converse is not true; not all functions which are bounded in [a, b] have bounded

variation.

Suppose that f has a finite number of maxima and minima within [a, b], say a < ξ1 < · · · < ξm < b.

Consider the dissection formed from the endpoints of the interval and the m ordered maxima and

minima of f . In the interval [ξk−1, ξk], the function f either increases or decreases. In either event,

the variation of f over [ξk−1, ξk] is | f(ξk)− f(ξk−1) | and so the variation of f over [a, b] is

m∑
k=0

| f(ξk+1)− f(ξk) | <∞ .

Let Dn be any dissection of [a, b] and suppose that xk−1 ≤ ξj ≤ xk, then the triangle inequality

| f(xk)− f(xk−1) | = | [ f(xk)− f(ξj) ] + [ f(ξj)− f(xk−1) ] |

≤ | f(xk)− f(ξj) |+ | f(ξj)− f(xk−1) |

ensures that

V (f) = lim
n→∞

n∑
k=1

| f(xk)− f(xk−1) | ≤
m∑
k=0

| f(ξk+1)− f(ξk) | <∞ . (3.4)

Thus f is a function of bounded variation. Therefore to find functions which are bounded but are

not of bounded variation, it is necessary to consider functions which have at least a countable family

of maxima and minima. Consider, for example,

f(x) =

 sin(π/x) x > 0

0 x = 0

and let Dn be the dissection with nodes x0 = 0, xk = 2/(2n− 2k + 1) when 1 ≤ k ≤ n− 1 and with

xn = 1. Clearly f(x0) = f(xn) = 0 while f(xk) = sin((n − k)π + π/2) = (−1)n−k. The variation of

f over Dn is therefore

Vn(f) =

n∑
k=1

| f(xk)− f(xk−1) |

= | f(x0)− f(x1) |+ · · · | f(xk)− f(xk−1) |+ · · · | f(xn)− f(xn−1) |

= 1 + 2 · · · (n− 2) times · · ·+ 2 + 1

= 2(n− 1)

Thus f bounded in [0, 1] but is not a function of bounded variation in [0, 1].
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3.2 Riemann integration

Let Dn denote the dissection a = x0 < x1 < · · · < xn = b of the finite interval [a, b]. A function f is

Riemann integrable over [a, b] whenever

S(f) = lim
n→∞

n∑
k=1

f(ξk) (xk − xk−1) , ξk ∈ [xk−1, xk] (3.5)

exists and takes a value which is independent of the choice of ξk. The value of this limit is called the

Riemann integral of f over [a, b] and has symbolic representation∫ b

a
f(x) dx = S(f) .

The dissection Dn and the interpretation of the summation on the right hand side of equation (3.5)

are illustrated in Figure 3.1.

x0 x1 x2 xnξ1 ξ2 ξn−1

x

f

Figure 3.1: Illustration of a Riemann sum.

The main result is that for f to be Riemann integrable over [a, b], it is sufficient that f is a function

of bounded variation over [a, b]. There are two issues to address.

1. The existence of the limit (3.5) must be established;

2. It must be verified that the value of the limit is independent of the choice of ξk. This indepen-

dence is a crucial property of Riemann integration not enjoyed in the integration of stochastic

functions.
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Independence of limit

Let η
(L)
k and η

(U)
k be respectively the values of x ∈ [xk−1, xk] at which f attains its minimum and

maximum values. Thus f(η
(L)
k ) ≤ f(ξk) ≤ f(η

(U)
k ). Let S(L)(f) and S(U)(f) be the values of the limit

(3.5) in which ξk takes the respective values η
(L)
k and η

(U)
k then

S(L)
n (f) =

n∑
k=1

f(η
(L)
k )(xk − xk−1) ≤

n∑
k=1

f(ξk)(xk − xk−1) ≤
n∑
k=1

f(η
(U)
k )(xk − xk−1) = S(U)

n (f) .

Assuming the existence of limit (3.5) for all choices of ξ, it therefore follow that

S(L)(f) ≤ S(f) ≤ S(U)(f) (3.6)

where S(f) is the value of the limit (3.5) in which the sequence of ξ values are arbitrary. In particular,

|S(U)
n (f)− S(L)

n (f) | =
∣∣∣ n∑
k=1

f(η
(U)
k )(xk − xk−1)−

n∑
k=1

f(η
(L)
k )(xk − xk−1)

∣∣∣
=

∣∣∣ n∑
k=1

(
f(η

(U)
k )− f(η

(L)
k )

)
(xk − xk−1)

∣∣∣
≤

n∑
k=1

| f(η(U)
k )− f(η

(L)
k )| (xk − xk−1)

Suppose now that ∆n is the length of the largest sub-interval of Dn then it follows that

|S(U)
n (f)− S(L)

n (f) | ≤ ∆n

n∑
k=1

| f(η(U)
k )− f(η

(L)
k )| ≤ ∆n V (f) . (3.7)

Since f is a function of bounded variation over [a, b] then V (f) < M < ∞. On taking the limit of

equation (3.7) as n→ ∞ and using the fact that ∆n → 0, it is seen that S(U)(f) = S(L)(f).

3.3 Riemann-Stieltjes integration

Riemann-Stieltjes integration is similar to Riemann integration except that summation is now per-

formed with respect to g, a function of x, rather than x itself. For example, if F is the cumulative

distribution function of the random variable X, then one definition for the expected value of X is

the Riemann-Stieltjes integral

E [X ] =

∫ b

a
x dF (3.8)

in which x is integrated with respect to F .

Let Dn denote the dissection a = x0 < x1 < · · · < xn = b of the finite interval [a, b]. The Riemann-

Stieltjes integral of f with respect to g over [a, b] is defined to be the value of the limit

lim
n→∞

n∑
k=1

f(ξk) [ g(xk)− g(xk−1) ] , ξk ∈ [xk−1, xk] (3.9)
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when this limit exists and takes a value which is independent of the choice of ξk and the limiting

properties of the dissectionDn. Young has shown that the conditions for the existence of the Riemann-

Stieltjes integral are met provided the points of discontinuity of f and g in [a, b] are disjoint, and

that f is of p-variation and g is of q variation where p > 0, q > 0 and p−1 + q−1 > 1.

Note that neither f nor g need be continuous functions, and of course, when g is a differentiable

function of x then the Riemann-Stieltjes of f with respect to g may be replaced by the Riemann

integral of fg′ provided fg′ is a function of bounded variation on [a, b]. So in writing down the

prototypical Riemann-Stieltjes integral ∫
f dg

it is usually assumed that g is not a differentiable function of x.

3.4 Stochastic integration of deterministic functions

The discussion of stochastic differential equations will involve the treatment of integrals of type∫ b

a
f(t) dWt (3.10)

in which f is a deterministic function of t. To determine what conditions must be imposed on f

to guarantee the existence of this Riemann-Stieltjes integral, it is necessary to determine the value

of p for which Wt is of bounded p-variation. Consider the interval [t, t + h] and the properties of

|W (t+ h)−W (t)|p.

Let X = Wt+h −Wt ∼ N(0, h) and let Y = |Wt+h −Wt|p = |X|p. The sample space of Y is [0,∞)

and fY (y), the probability density function of Y , satisfies

fY (y) = 2 fX
dx

dy
=

2y1/p−1

p
√
2π h

e−x
2/2h =

√
2

π h

y1/p−1

p
e−y

2/p/2h ,

where x = y1/p. If p = 2, then

fY (y) =

√
1

2π h
y−1/2 e−y/2h

making Y a gamma deviate with scale parameter λ = 2h and shape parameter α = 1. Otherwise,

E [Y ] = µ =

∫ ∞

0

√
2

π h

y1/p

p
e−y

2/p/2h =
1

p

√
2

π h

∫ ∞

0
y1/p e−y

2/p/2h =
(2h)p/2√

π
Γ
( p+ 1

2

)
,

and the variance of Y is

V [Y ] =

∫ ∞

0

√
2

π h

y1/p+1

p
e−y

2/p/2h − µ2

=
1

p

√
2

π h

∫ ∞

0
y1/p+1 e−y

2/p/2h − µ2

=
(2h)p√
π

Γ
(
p+

1

2

)
− µ2 =

(2h)p√
π

[
Γ
(
p+

1

2

)
− 1√

π
Γ2

( p+ 1

2

) ]
.
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The process of forming the p-variation of the Wiener process Wt requires the summation of objects

such as |Wt+h−Wt|p in which the values of h are simply the lengths of the intervals of the dissection,

i.e. over the interval [0, T ] the p-variation of Wt requires the investigation of the properties of

V (p)
n (W ) =

n∑
k=1

|W (tk+1)−W (tk)|p , tk+1 − tk = hk h1 + h2 + · · ·+ hn = T

and for Wt to be of p-variation on [0, T ], the limit of V
(p)
n (W ) must be finite for all dissections as

n→ ∞. Consider however the uniform dissection in which h1 = · · · = hn = T/n. In this case

E[V (p)
n (W )] =

n∑
k=1

E[|W (tk+1)−W (tk)|p] =
(2T )p/2√

π
Γ
( p+ 1

2

)
n1−p/2 ,

If p < 2, the expected value E[V (p)
n (W )] is unbounded and so Wt cannot be of p-variation when

p < 2. When p = 2 it is clear that E[V (p)
n (W )] = T . For general dissection Dn the distribution of

V
(2)
n (W ) is unclear but when h1 = · · · = hn = T/n the function V

(2)
n (W ) is chi-squared distributed

being the sum of the squares of n independent and identically distributed Gaussian random deviates.

The expected value of each term in the sum required to form the p-variation of Wt always exceeds

a constant multiple of 1/np/2 and therefore the sum of these expected values diverges for all p ≤ 2

and converges for p > 2. The variance of the p-variation behaves like a sum of terms with behaviour

1/np, and always converges. Thus the Wiener process is of bounded p-variation for p > 2.

Consequently, the properties of the Riemann-Stieltjes integral (3.8) guarantee that the stochastic

integral (3.10) is defined as a Riemann-Stieltjes integral for all functions f with bounded q-variation

where q < 2. Clearly functions of bounded variation (q = 1) satisfy this condition, and therefore if f

is Riemann integrable over [a, b], then the the stochastic integral (3.10) exists and can be treated as

a Riemann-Stieltjes integral.



Chapter 4

The Ito and Stratonovich Integrals

4.1 A simple stochastic differential equation

To motivate the Ito and Stratonovich integrals, consider the generic one dimensional SDE

dxt = a(t, xt) dt+ b(t, xt) dWt (4.1)

where dWt is the increment of the Wiener process, and a(t, x) and b(t, x) are deterministic functions of

x and t. Of course, a and b behave randomly in the solution of the SDE by virtue of their dependence

on x. The meanings of a(t, x) and b(t, x) become clear from the following argument.

Since E [ dWt ] = 0, it follows directly from equation (4.1) that E [ dx ] = a(t, x) dt. For this reason,

a(t, x) is often called the drift component of the stochastic differential equation. One usually regards

the equation dx/dt = a(t, x) as the genitor differential equation from which the SDE (4.1) is born.

This was precisely the procedure used to obtain SDEs from ODEs in the introductory chapter.

Furthermore,

V (dx) = E [ (dx− a(t, x) dt)2 ] = E [ b(t, x) dW 2
t ] = b(t, x) E [ dW 2

t ] = b2(t, x) dt . (4.2)

Thus b2(t, x) dt is the variance of the stochastic process dx and therefore b2(t, x) is the rate at which

the variance of the stochastic process grows in time. The function b2(t, x) is often called the diffusion

of the SDE and b(t, x), being dimensionally a standard deviation, is usually called the volatility of

the SDE. In effect, an ODE is an SDE with no volatility.

Note, however, that the definition of the terms a(t, x) and b(t, x) should not be confused with the

idea that the solution to an SDE simply behaves like the underlying ODE dx/dt = a(t, x) with

superimposed noise of volatility b(x, t) per unit time. In fact, b(x, t) contributes to both drift and

variance. Therefore, one cannot estimate the parameters of an SDE by treating the drift (determin-

istic behaviour of the solution) and volatility (local variation of solution) as separate processes.

27
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4.1.1 Motivation for Ito integral

It has been noted previously that the solution to equation (4.1) has formal expression

x(t) = x(s) +

∫ t

s
a(r, xr) dr +

∫ t

s
b(r, xr) dWr , t ≥ s , (4.3)

where the task is now to state how each integral on the right hand side of equation (4.3) is to be

computed. Consider the computation of the integrals in (4.3) over the interval [t, t + h] where h

is small. Assuming that xt is a continuous random function of t and that a(t, x) and b(t, x) are

continuous functions of (t, x), then a(r, xr) and b(r, xr) in (4.3) may be approximated by a(t, xt) and

b(t, xt) respectively to give

x(t+ h) ≈ x(t) + a(t, xt)

∫ t+h

t
dr + b(t, xt)

∫ t+h

t
dWr ,

= x(t) + a(t, xt)h+ b(t, xt) [W (t+ h)−W (t) ] .

(4.4)

Note, in particular, that E [ b(t, xt) (W (t+ h)−W (t) ] = 0 and therefore the stochastic contribution

to the solution (4.4) is a martingale1, that is, it is non-anticipative. This solution intuitively agrees

with ones conceptual picture of the future, namely that ones best estimate of the future is the current

state plus a drift which, of course, is deterministic.

This simple approximation procedure (which will subsequently be identified as the Euler-Maruyama

approximation) is consistent with the view that the first integral on the right hand side of (4.3) is a

standard Riemann integral. On the other hand, the second integral on the right hand side of (4.3)

is a stochastic integral with the martingale property, that is, it is a non-anticipative random variable

with expected value zero - the value when h = 0. Let s = t0 < t1 < · · · < tn = t be a dissection of

[s, t]. The extension of the approximation procedure used in the derivation of (4.4) to the interval

[s, t] suggests the definition

∫ t

s
b(r, xr) dWr = lim

n→∞

n−1∑
k=0

b(tk, x(tk)) [W (tk+1)−W (tk) ] . (4.5)

This definition automatically endows the stochastic integral with the martingale property - the reason

is that b(tk, xk) depends on the behaviour of the Wiener process in (s, tk) alone and so the value of

b(tk, xk) is independent of W (tk+1)−W (tk).

In fact, the computation of the stochastic integral in equation (4.5) is based on the mean square

1A martingale refers originally to a betting strategy popular in 18th century France in which the expected winnings

of the strategy is the original stake. The simplest example of a martingale is the double or quit strategy in which a

bet is doubled until a win is achieved. In this strategy the total loss after n unsuccessful bets is (2n − 1)S where S is

the original stake. The bet at the (n + 1)-th play is 2n S so that the first win necessarily recovers all previous losses

leaving a profit of S. Since a gambler with unlimited wealth eventually wins, devotees of the martingale betting strategy

regarded it as a sure-fire winner. In reality, however, the exponential growth in the size of bets means that gamblers

rapidly become bankrupt or are prevented from executing the strategy by the imposition of a maximum bet.
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limiting process. More precisely, the Ito Integral of b(t, xt) over [a, b] is defined by

lim
n→∞

E
[ n∑
k=1

b(tk−1 , xk−1) (Wk −Wk−1 )−
∫ b

a
b(t, xt) dWt

]2
= 0 , (4.6)

where xk = x(tk) and Wk = W (tk). The limiting process in (4.6) defines the Ito integral of b(t, xt)

(assuming that xt is known), and the computation of integrals defined in this way is called Ito

Integration. Most importantly, the Ito integral is a martingale, and stochastic differential equations

of the type (4.1) are more correctly called Ito stochastic differential equations.

In particular, the rules for Ito integration can be different from the rules for Riemann/Riemann-

Stieltjes integration. For example,∫ t

s
dWr =W (t)−W (s) , but

∫ t

s
Wr dWr ̸=

W 2(t)−W 2(s)

2
.

To appreciate why the latter result is false, simply note that

E
[ ∫ t

s
Wr dWr

]
= 0 ̸= E

[W 2(t)−W 2(s)

2

]
=
t− s

2
> 0 .

Clearly the Riemann-Stieltjes integral is a sub-martingale, but what has gone wrong with the

Riemann-Stieltjes integral in the previous illustration is the crucial question. Suppose one considers∫ t

s
Wr dWr

within the framework of Riemann-Stieltjes integration with f(t) = W (t) and g(t) = W (t). The

key observation is that W (t) is of p-variation with p > 2 and therefore p−1 + q−1 < 1 in this

case. Although this observation is not helpful in evaluating this integral (if indeed it has a value),

the fact that inequality p−1 + q−1 > 1 fails indicates that the integral cannot be interpreted as a

Riemann-Stieltjes integral. Clearly the rules of Ito-Calculus are quite different from those of Liebnitz’s

Calculus.

4.2 Stochastic integrals

The findings of the previous section suggest that special consideration must be given to the compu-

tation of the generic integral ∫ b

a
f(t,Wt) dWt . (4.7)

While superficially taking the form of a Riemann-Stieltjes, both components of the integrand have

p-variation and q-variation such that p > 2 and q > 2 and therefore p−1 + q−1 < 1. Nevertheless,

expression (4.7) may be assigned a meaning in the usual way. Let Dn denote the dissection a = t0 <

t1 < · · · < tn = b of the finite interval [a, b]. Formally,∫ b

a
f(t,Wt) dWt = lim

n→∞

n∑
k=1

f(ξk,W (ξk))
(
W (tk)−W (tk−1)

)
, ξk ∈ [tk−1, tk] (4.8)
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whenever this limit exist. Of course, if ξk ∈ (tk−1, tk) there in general the integral cannot be a

martingale because f(ξk,W (ξk)) encapsulates the behaviour of Wt in the interval [tk−1, ξk], and

therefore the random variable f(ξk,W (ξk)) is not in general independent of W (tk)−W (tk−1). Thus

E [ f(ξk,W (ξk)) (W (tk)−W (tk−1) ) ] ̸= 0 . tk−1 < ξk <= tk .

Pursuing this idea to its ultimate conclusion indicates that the previous integral is a martingale if and

only if ξk = tk−1, because in this case f(ξk,W (ξk)) and W (tk) −W (tk−1) are independent random

variables thereby making the expectation of the integral zero.

To provide an explicit example of this idea, consider the case f(t,Wt) = Wt, that is, compute the

stochastic integral

I =

∫ b

a
Wt dWt . (4.9)

Let Wk =W (tk), let ξk = tk−1 + λ (tk − tk−1) where λ ∈ [0, 1] then W (ξk) =Wk−1+λ and∫ b

a
Wt dWt = lim

n→∞

n∑
k=1

W (ξk)
(
W (tk)−W (tk−1)

)
= lim

n→∞

n∑
k=1

Wk−1+λ(Wk −Wk−1) , (4.10)

It is straightforward algebra to show that

n∑
k=1

Wk−1+λ(Wk −Wk−1) =

n∑
k=1

1

2

[
W 2
k −W 2

k−1 − (Wk −Wk−1+λ)
2 + (Wk−1+λ −Wk−1)

2
]

from which it follows that

n∑
k=1

Wk+λ(Wk −Wk−1) =
1

2

[
W 2
k −W 2

k−1 − (Wk −Wk−1+λ)
2 + (Wk−1+λ −Wk−1)

2
]

=
1

2

[
W 2
n −W 2

0

]
+

1

2

n∑
k=1

[
(Wk−1+λ −Wk−1)

2 − (Wk −Wk−1+λ)
2
]
.

Now observe that

E [ (Wk −Wk−1+λ)
2] = (1− λ)(tk − tk−1) , E [ (Wk−1+λ −Wk−1)

2] = λ(tk − tk−1)

and also that E[ (Wk −Wk−1+λ)(Wk−1+λ −Wk−1) ] although property will not be needed in what

follows. Evidently

E
[ n∑
k=1

Wk+λ(Wk −Wk−1)
]
=
b− a

2
+

1

2

n∑
k=1

(2λ− 1)(tk − tk−1) = λ(b− a) , (4.11)

from which it follows immediately that the integral is a martingale provided λ = 0. The choice λ = 0

(left hand endpoint of dissection intervals) defines the Ito integral. In particular, the value of the

limit defining the integral would appear to depend of the choice of ξk within the dissection Dn.

The choice λ = 1/2 (midpoint of dissection intervals) is called the Stratonovich integral and leads to

a sub-martingale interpretation of the limit (4.8).
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4.3 The Ito integral

The Ito Integral of f(t,Wt) over [a, b] is defined by∫ b

a
f(t,Wt) dWt = lim

n→∞

n∑
k=1

f(tk−1 ,Wk−1) (Wk −Wk−1 ) , (4.12)

where Wk = W (tk) and convergence of the limiting process is measured in the mean square sense,

i.e. in the sense that

lim
n→∞

E
[ n∑
k=1

f(tk−1 ,Wk−1) (Wk −Wk−1 )−
∫ b

a
f(t,Wt) dWt

]2
= 0 . (4.13)

The direct computation of Ito integrals from the definition (4.13) is now illustrated with reference to

the Ito integral (4.9). Recall that

Sn =

n∑
k=1

Wk−1 (Wk −Wk−1 ) =
1

2
(W 2(b)−W 2(a))− 1

2

n∑
k=1

(Wk −Wk−1)
2 . (4.14)

It is convenient to note thatWk−Wk−1 =
√
tk − tk−1 εk where ε1, · · · , εn are n uncorrelated standard

normal deviates. When expressed in this format

Sn =

n∑
k=1

Wk−1 (Wk −Wk−1 ) =
1

2
(W 2(b)−W 2(a))− 1

2

n∑
k=1

(tk − tk−1) ε
2
k ,

which may in turn be rearranged to give

Sn −
1

2
[W 2(b)−W 2(a)− (b− a)] =

1

2

n∑
k=1

(tk − tk−1) (ε
2
k − 1) . (4.15)

To finalise the calculation of the Ito Integral and establish the mean square convergence of the right

hand side of (4.15) we note that

lim
n→∞

E
[
Sn −

1

2
[W 2(b)−W 2(a)− (b− a)]

]2
=

1

4
lim
n→∞

E
[ ( n∑

k=1

(tk − tk−1) (ε
2
k − 1)

)2 ]
=

1

4
lim
n→∞

E
[ n∑
j,k=1

(tj − tj−1)(tk − tk−1) (ε
2
k − 1)(ε2j − 1)

]
=

1

4
lim
n→∞

n∑
k=1

(tk − tk−1)
2 E [ (ε2k − 1)2 ]

(4.16)

where the last line reflects the fact that , (ε2k − 1) and (ε2j − 1) are independent zero-mean random

deviates for j ̸= k. Clearly

E [ (ε2k − 1)2 ] = E [ ε4k ]− 2E [ ε2k ] + 1 = 3− 2 + 1 = 2 .
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In conclusion,

lim
n→∞

E
[
Sn −

1

2
[W 2(b)−W 2(a)− (b− a)]

]2
=

1

2
lim
n→∞

n∑
k=1

(tk − tk−1)
2 = 0 . (4.17)

The mean square convergence of the Ito integral is now established and so∫ b

a
Ws dWs =

1

2

[
W 2(b)−W 2(a)− (b− a)

]
. (4.18)

As has already been indicated, the Ito’s definition of a stochastic integral does not obey the rules of

classical Calculus - the term (b−a)/2 would be absent in classical Calculus. The important advantage

enjoyed by the Ito stochastic integral is that it is a martingale.

The correlation formula for Ito integration

Another useful property of Ito integration is the correlation formula which states that if f(t,Wt)

and g(t,Wt) are two stochastic functions then

E
[ ∫ b

a
f(t,Wt) dWt

∫ b

a
g(s,Ws) dWs

]
=

∫ b

a
E [ f(t,Wt) g(t,Wt) ] dt ,

and in the special case f = g, this result reduces to

E
[ ∫ b

a
f(t,Wt) dWt

∫ b

a
f(s,Ws) dWs

]
=

∫ b

a
E [ f2(t,Wt) ] dt .

This is a useful result in practice as we shall see later.

Proof The justification of the correlation formula begins by considering the partial sums

S(f)
n =

n∑
k=1

f(tk−1 ,Wk−1) (Wk −Wk−1 ) , S(g)
n =

n∑
k=1

g(tk−1 ,Wk−1) (Wk −Wk−1 ) , (4.19)

from which the Ito integral is defined. It follows that

E
[ ∫ b

a
f(t,Wt) dW

∫ b

a
g(s,Ws) dWs

]
= lim

n→∞

n∑
j,k=1

E [ f(tk−1 ,Wk−1) g(tj−1 ,Wj−1)(Wk −Wk−1 ) (Wj −Wj−1 ) ]

(4.20)

The products f(tk−1 ,Wk−1)g(tj−1 ,Wj−1) and (Wk−Wk−1)(Wj−Wj−1) are uncorrelated when j ̸= k,

and so the contributions to the double sum in equation (4.20) arise solely from the case k = j to get

E
[ ∫ b

a
f(t,Wt) dWt

∫ b

a
g(t,Wt) dWt

]
= lim

n→∞

n∑
k=1

E
[
f(tk−1 ,Wk−1) g(tk−1 ,Wk−1)(Wk−Wk−1 )

2
]
.
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From the fact that f(tk−1 ,Wk−1)g(tj−1 ,Wk−1) is uncorrelated with (Wk −Wk−1)
2, it follows that

E
[
f(tk−1 ,Wk−1) g(tk−1 ,Wk−1)(Wk −Wk−1 )

2
]
= E [ f(tk−1 g(tk−1 ,Wk−1) ] E [ (Wk −Wk−1 )

2 ]

After replacing E [ (Wk −Wk−1 )
2 ] by (tk − tk−1), it is clear that

E
[ ∫ b

a
f(t,Wt) dWt

∫ b

a
g(t,Wt) dWt

]
= lim

n→∞

n∑
k=1

E [ f(tk−1 ,Wk−1) g(tk−1 ,Wk−1) ](tk − tk−1) .

The right hand side of the previous equation is by definition the limiting process corresponding to

the Riemann integral of E [ f(tk−1 ,Wk−1) g(tk−1 ,Wk−1)(tk − tk−1) ] over the interval [a, b], which in

turn establishes the stated result that

E
[ ∫ b

a
f(t,Wt) dWt

∫ b

a
g(t,Wt) dWt

]
=

∫ b

a
E [ f(t ,Wt) g(t ,Wt) ] dt . (4.21)

4.3.1 Application

A frequently occurring application of the correlation formula arises when the Wiener process W (t)

is absent from f , i.e. the task is to assign meaning to the integral

ξ =

∫ b

a
f(t) dWt . (4.22)

in which f(t) is a function of bounded variation. The integral, although clearly interpretable as

an integral of Riemann-Stieltjes type, is nevertheless a random variable with E[ ξ ] = 0 because

E[ dWt ] = 0. Furthermore, by recognising that the value of the integral is the limit of a weighted

sum of independent Gaussian random variables, it is clear that ξ is simply a Gaussian deviate with

zero mean value. To complete the specification of ξ it therefore remains to compute the variance

of the integral in equation (4.22). The correlation formula is useful in this respect and indicates

immediately that

V[ ξ ] =
∫ b

a
f2(t) dt (4.23)

thereby completing the specification of ξ.

4.4 The Stratonovich integral

The fact that Ito integration does not conform to the traditional rules of Riemann and Riemann-

Stieltjes integration makes Ito integration an awkward procedure. One way to circumvent this awk-

wardness is to introduce the Stratonovich integral which can be demonstrated to obey the traditional

rules of integration under quite relaxed condition but, of course, the martingale property of the Ito

integral must be sacrificed in the process. The Stratonovich integral is a sub-martingale. The overall

strategy is that Ito integrals and Stratonovich integrals are related, but that the latter frequently

conforms to the rules of traditional integration in a way to be made precise at a later time.
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Given a suitably differentiable function f(t,Wt), the Stratonovich integral of f with respect to the

Wiener process W (t) (denoted by “◦”) is defined by∫ b

a
f(t,Wt) ◦ dWt = lim

n→∞

n∑
k=1

f(ξk,W (ξk)) (Wk −Wk−1 ) , ξk =
tk−1 + tk

2
, (4.24)

in which the function f is sampled at the midpoints of the intervals of a dissection, and where the

limiting procedure (as with the Ito integral) is to be interpreted in the mean square sense, i.e. the

value of the integral requires that

lim
n→∞

E
[ n∑
k=1

f(ξk ,W (ξk) ) (Wk −Wk−1 )−
∫ b

a
f(t,Wt) ◦ dWt

]2
= 0 . (4.25)

To appreciate how Stratonovich integration might differ from Ito integration, it is useful to compute∫ b

a
Wt ◦ dWt .

The calculation mimics the procedure used for the Ito integral and begins with the Riemann-Stieltjes

partial sum

Sn =

n∑
k=1

Wk−1/2 (Wk −Wk−1 ) (4.26)

where the notation Wk−1+λ = W (tk−1 + λ(tk − tk−1) ) has been used for convenience. This sum in

now manipulated into the equivalent algebraic form

1

2

[ n∑
k=1

(W 2
k −W 2

k−1) +

n∑
k=1

(Wk−1/2 −Wk−1)
2 −

n∑
k=1

(Wk −Wk−1/2)
2
]
,

where we note that (Wk−1/2−Wk−1) and (Wk−Wk−1/2) are uncorrelated Gaussian deviates with mean

zero and variance (tk − tk−1)/2. Consequently we may write (Wk−1/2 −Wk−1) =
√

(tk − tk−1)/2 εk

and (Wk−Wk−1/2) =
√

(tk − tk−1)/2 ηk in which εk and ηk are uncorrelated standard normal deviates

for each value of k. Thus the partial sum underlying the definition of the Stratonovich integral is

Sn =
1

2

[
W 2(b)−W 2(a) +

1

2

n∑
k=1

(tk − tk−1) (ε
2
k − η2k)

]
. (4.27)

The argument used to establish the mean square convergence of the Ito integral may be repeated

again, and in this instance the argument will require the consideration of

lim
n→∞

E
[
Sn −

W 2(b)−W 2(a)

2

]2
= lim

n→∞
E
[ 1

4

n∑
k=1

(tk − tk−1) (ε
2
k − η2k)

]2
= lim

n→∞
E
[ 1

4

n∑
k=1

(tk − tk−1)(tj − tj−1) (ε
2
k − η2k)(ε

2
j − η2j )

]
= lim

n→∞

1

4

n∑
k=1

(tk − tk−1)
2 E [ (ε2k − η2k)

2 ] ,
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where the last line of the previous calculation has recognised the fact that εk and ηk are uncorrelated

deviates for distinct values of k. Furthermore, the independence of εk and ηk for each value of k

indicates that

E [ (ε2k − η2k)
2 ] = E [ ε4k ]− 2E [ ε2kη

2
k ] + E [ η4k ] = 3− 2× 1× 1 + 3 = 4 .

In conclusion,

lim
n→∞

E
[
Sn −

(W 2(b)−W 2(a))

2

]2
= lim

n→∞

n∑
k=1

(tk − tk−1)
2 = 0 , (4.28)

thereby establishing the result

I =

∫ b

a
Wt ◦ dWt =

W 2(b)−W 2(a)

2
. (4.29)

This example suggests several properties of the Stratonovich integral:-

1. Unlike the Ito integral, the Stratonovich integral is in general anticipatory - in the previous

example E [ I ] = (b− a)/2 > 0 and so I is a sub-martingale;

2. On the basis of this example it would seem that the Stratonovich integral conforms to the

traditional rules of Integral Calculus;

3. There is a suggestion that the Stratonovich integral differs from the Ito integral through a

“mean value” which in this example is interpretable as a drift.

4.4.1 Relationship between the Ito and Stratonovich integrals

The connection between the Ito and Stratonovich integrals suggested by the illustrative example,

namely that the value of the Stratonovich integral is the sum of the values of the Ito integral and

a deterministic drift term, is correct for the class of functions f(t,Wt) satisfying the reasonable

conditions ∫ b

a
E [ f(t,Wt) ]

2 dt <∞ ,

∫ b

a
E
[ ∂f(t,Wt)

∂Wt

]2
dt <∞ . (4.30)

The primary result is that the Ito integral of f(t,Wt) and the Stratonovich integral of f(t,Wt) are

connected by the identity∫ b

a
f(t,Wt) ◦ dWt =

∫ b

a
f(t,Wt) dWt +

1

2

∫ b

a

∂f(t ,Wt)

∂Wt
dt . (4.31)

Of course, the first of conditions (4.30) is also necessary for the convergence of the Ito and Stratonovich

integrals, and so it is only the second condition which is new. Its role is to ensure the existence of

the second integral on the right hand side of (4.31). The derivation of identity (4.31) is based on

the idea that f(t,Wt) can be expanded locally as a Taylor series. The strategy of the proof focusses
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on the construction of an identity connecting the partial sums from which the Stratonovich and Ito

integrals take their values. Thus∫ b

a
f(t,Wt) ◦ dWt = lim

n→∞
SStratonovich
n ,

∫ b

a
f(t,Wt) dWt = lim

n→∞
SIto
n ,

where

SStratonovich
n =

n∑
k=1

f(tk−1/2,Wk−1/2) (Wk −Wk−1 ) , SIto
n =

n∑
k=1

f(tk−1,Wk−1) (Wk −Wk−1 ) .

The difference SStratonovich
n −SIto

n is first constructed, and the expression then simplified by replacing

f(tk−1/2,Wk−1/2) by a two-dimensional Taylor series about t = tk−1 and W = Wk−1. The steps in

this calculation are as follows.

SStratonovich
n − SIto

n =

n∑
k=1

[
f(tk−1/2,Wk−1/2)− f(tk−1,Wk−1)

]
(Wk −Wk−1)

=

n∑
k=1

[
f(tk−1,Wk−1) + (tk−1/2 − tk−1)

∂f(tk−1Wk−1)

∂t

+ (Wk−1/2 −Wk−1)
∂f(tk−1Wk−1)

∂W
+ · · · − f(tk−1,Wk−1)

]
(Wk −Wk−1)

=
n∑
k=1

(tk−1/2 − tk−1)
∂ f(tk−1Wk−1)

∂t
(Wk −Wk−1)

+

n∑
k=1

(Wk−1/2 −Wk−1)
∂f(tk−1Wk−1)

∂W
(Wk −Wk−1 ) + · · ·

The first summation on the right hand side of this computation is O(tk− tk−1)
3/2, and therefore this

takes the value zero as n→ ∞ being of order O(tk − tk−1)
3 in the limiting process of mean squared

convergence. This simplification of the previous equation yields

SStratonovich
n − SIto

n =

n∑
k=1

(Wk−1/2 −Wk−1)
∂f(tk−1Wk−1)

∂W
(Wk −Wk−1 ) + · · ·

which is now restructured using the identity (Wk −Wk−1 ) = (Wk −Wk−1/2 ) + (Wk−1/2 −Wk−1 )

to give

SStratonovich
n = SIto

n +
1

2

n∑
k=1

∂f(tk−1,Wk−1)

∂W
(tk − tk−1)

+

n∑
k=1

∂f(tk−1Wk−1)

∂W

[
(Wk−1/2 −Wk−1)(Wk −Wk−1)−

tk − tk−1

2

]
.

(4.32)

Taking account of the fact that E [ (Wk−1/2 −Wk−1) (Wk −Wk−1) − (tk − tk−1)/2 ] = 0, the second

of conditions (4.30) now guarantees mean square convergence, and the identity∫ b

a
f(t,Wt) o dWt =

∫ b

a
f(t,Wt) dWt +

1

2

∫ b

a

∂f(t ,Wt)

∂W
dt (4.33)

connecting the Ito and Stratonovich integrals for a large range of functions is recovered. Of course,

the second integral is to be interpreted as a Riemann integral.
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4.4.2 Stratonovich integration conforms to the classical rules of integration

The efficacy of the Stratonovich approach to Ito integration is based on the fact that the value of a

large class of Stratonovich integrals may be computed using the rules of standard integral calculus.

To be specific, suppose g(t,Wt) is a deterministic function of t and Wt then the main result is that∫ b

a

∂g(t,Wt)

∂Wt
◦ dWt = g(b,W (b) )− g(a,W (a) )−

∫ b

a

∂g

∂t
dt . (4.34)

In particular, if g = g(Wt) (g does not make explicit reference to t) then identity (4.34) becomes∫ b

a

∂g(t,Wt)

∂Wt
◦ dWt = g(b,W (b) )− g(a,W (a) ) . (4.35)

Thus the Stratonovich integral of a function of a Wiener process conforms to the rules of standard

integral calculus. Identity (4.34) is now justified.

Proof

Let Dn denote the dissection a = t0 < t1 < · · · < tn = b of the finite interval [a, b]. The Taylor series

expansion of g(t,Wt) about t = tk−1/2 gives

g(tk ,Wk) = g(tk−1/2 ,Wk−1/2) +
∂g(tk−1/2 ,Wk−1/2)

∂t
(tk − tk−1/2)

+
∂g(tk−1/2 ,Wk−1/2)

∂Wt
(Wk −Wk−1/2) + · · ·

+
1

2

∂2g(tk−1/2 ,Wk−1/2)

∂W 2
t

(Wk −Wk−1/2)
2 + · · ·

g(tk−1 ,Wk−1) = g(tk−1/2 ,Wk−1/2) +
∂g(tk−1/2 ,Wk−1/2)

∂t
(tk−1 − tk−1/2)

+
∂g(tk−1/2 ,Wk−1/2)

∂Wt
(Wk−1 −Wk−1/2) + · · ·

+
1

2

∂2g(tk−1/2 ,Wk−1/2)

∂W 2
t

(Wk−1 −Wk−1/2)
2 + · · ·

(4.36)

Equations (4.36) provide the building blocks for the derivation of identity (4.34). The equations are

first subtracted and then summed from k = 1 to k = n to obtain

n∑
k=1

g(tk ,Wk)− g(tk−1 ,Wk−1) =
n∑
k=1

∂g(tk−1/2 ,Wk−1/2)

∂t
(tk − tk−1)

+
n∑
k=1

∂g(tk−1/2 ,Wk−1/2)

∂Wt
(Wk −Wk−1) + · · ·

+
1

2

n∑
k=1

∂2g(tk−1/2 ,Wk−1/2)

∂W 2
t

[
(Wk −Wk−1/2)

2 − (Wk−1 −Wk−1/2)
2
]
+ · · ·

The left hand side of this equation is g(b,W (b) )− g(a,W (a) ). Now take the limit of the right hand
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side of this equation to get

lim
n→∞

n∑
k=1

∂g(tk−1/2 ,Wk−1/2)

∂t
(tk − tk−1) =

∫ b

a

∂g(t,Wt)

∂t
dt

lim
n→∞

n∑
k=1

∂g(tk−1/2 ,Wk−1/2)

∂Wt
(Wk −Wk−1) =

∫ b

a

∂g(t,Wt)

∂Wt
◦ dWt

(4.37)

while the mean square limit of the third summation may be demonstrated to be zero. It therefore

follows directly that∫ b

a

∂g(t,Wt)

∂Wt
o dWt = g(b,W (b) )− g(a,W (a) )−

∫ b

a

∂g

∂t
dt . (4.38)

Example Evaluate the Ito integral ∫ b

a
Wt dWt .

Solution The application of identity (4.33) with f(t,Wt) =Wt gives∫ b

a
Wt o dWt =

∫ b

a
Wt dWt +

1

2

∫ b

a
dt =

∫ b

a
Wt dWt +

b− a

2
.

The application of identity (4.38) with g(t,Wt) =W 2
t /2 now gives∫ b

a
Wt o dWt =

1

2

[
W 2(b)−W 2(a)

]
.

Combining both results together gives the familiar result∫ b

a
Wt dWt =

1

2

[
W 2(b)−W 2(a)− (b− a)

]
.

4.5 Stratonovich representation on an SDE

The discussion of stochastic integration began by observing that the generic one-dimensional SDE

dxt = a(t, xt) dt+ b(t, xt) dWt (4.39)

had formal solution

xb = xa +

∫ b

a
a(s, xs) ds+

∫ b

a
b(s, xs) dWs , b ≥ a , (4.40)

in which the second integral must be interpreted as an Ito stochastic integral. Because every Ito

integral has an equivalent Stratonovich representation, then the Ito SDE (4.39) will have an equivalent

Stratonovich representation which may be obtained by replacing the Ito integral in the formal solution

by a Stratonovich integral and auxiliary terms. The objective of this section is to find the Stratonovich

SDE corresponding to (4.39).
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Let f(t, xt) be a function of (t, x) where xt is the solution of the SDE (4.39). The key idea is to

expand f(t, x) by a Taylor series about (tk−1, xk−1). By definition,∫ b

a
f(t, xt) ◦ dWt = lim

n→∞

n∑
k=1

f(tk−1/2, xk−1/2) (Wk −Wk−1 )

= lim
n→∞

n∑
k=1

[
f(tk−1 , xk−1) +

∂ f(tk−1 , xk−1)

∂t
( tk−1/2 − tk−1 )

+
∂ f(tk−1 , xk−1)

∂x
(xk−1/2 − xk−1) + · · ·

]
(Wk −Wk−1 )

= lim
n→∞

n∑
k=1

[
f(tk−1 , xk−1) (Wk −Wk−1 )

+
∂f(tk−1 , xk−1)

∂t
( tk−1/2 − tk−1 ) (Wk −Wk−1 )

+
∂ f(tk−1 , xk−1)

∂x
(xk−1/2 − xk−1) (Wk −Wk−1 ) + · · · .

Taking account of the fact that the limit of the second sum has value zero the previous analysis gives∫ b

a
f(t, xt)◦ dWt =

∫ b

a
f(t ,Xt) dWt+ lim

n→∞

n∑
k=1

∂ f(tk−1, xk−1)

∂x
(xk−1/2−xk−1)(Wk−Wk−1) . (4.41)

Now

xk−1/2 − xk−1 = a(tk−1, xk−1) (tk−1/2 − tk−1) + b(tk−1, xk−1) (Wk−1/2 −Wk−1) + · · ·

and therefore the summation in expression (4.41) becomes

lim
n→∞

n∑
k=1

∂f(tk−1 , xk−1)

∂ x

[
a(tk−1, xk−1) (tk−1/2 − tk−1)

+ b(tk−1, xk−1) (Wk−1/2 −Wk−1) + · · ·
]
(Wk −Wk−1 )

= lim
n→∞

n∑
k=1

∂f(tk−1 , xk−1)

∂x
b(tk−1, xk−1) (Wk−1/2 −Wk−1) (Wk −Wk−1 )

=
1

2

∫ b

a

∂f(t , xt)

∂xt
b(t, xt) dt .

Omitting the analytical details associated with the mean square limit, the final conclusion is∫ b

a
f(t, xt) o dWt =

∫ b

a
f(t , xt) dWt +

1

2

∫ b

a

∂f(t , xt)

∂xt
b(t, xt) dt . (4.42)

We apply this identity immediately with f(t, x) = b(t, x) to obtain∫ b

a
b(t, xt) o dWt =

∫ b

a
b(t , xt) dWt +

1

2

∫ b

a
b(t, xt)

∂b(t , xt)

∂xt
dt

which may in turn be used to remove the Ito integral in equation (4.40) and replace it with a

Stratonovich integral to get

xb = xa +

∫ b

a

[
a(t, xt)−

b(t, xt)

2

∂b(t , xt)

∂xt
b(t, xt)

]
dt+

∫ b

a
b(t, xt) ◦ dWt . (4.43)
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Solution (4.43) or, equivalently, the stochastic differential equation

dxt =
[
a(t, xt)−

b(t, xt)

2

∂b(t , xt)

∂xt

]
dt+ b(t, xt) ◦ dWt , (4.44)

is called the Stratonovich stochastic differential equation.



Chapter 5

Differentiation of functions of

stochastic variables

Previous discussion has focussed on the interpretation of integrals of stochastic functions. The dif-

ferentiability of stochastic functions is now examined. It has been noted previously that the Wiener

process has no derivative in the sense of traditional Calculus, and therefore differentiation for stochas-

tic functions involves relationships between differentials rather than derivatives. The primary result

is commonly called Ito’s Lemma.

5.1 Ito’s Lemma

Ito’s lemma provides the basic rule by which the differential of composite functions of deterministic

and random variables may be computed, i.e. Ito’s lemma is the stochastic equivalent of the chain

rule1 in traditional Calculus. Let F (x, t) be a suitably differentiable function then Taylor’s theorem

states that

F (t+ dt, x+ dx) = F (t, x) + Fx(t, x) dx+ Ft(t, x) dt

+
1

2

[
Fxx (dx)

2 + 2Ftx (dt)(dx) + Ftt (dt)
2
]
+ o(dt) .

(5.1)

The differential dx is now assigned to a stochastic process, say the process defined by the simple

stochastic differential equation

dx = a(t, x) dt+ b(t, x) dWt . (5.2)

1The chain rule is the rule for differentiating functions of a function.

41
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Substituting expression (5.2) into (5.1) gives

F (t+ dt, x+ dx)− F (t, x) =
∂F

∂t
dt+

∂F

∂x

[
a(t, x) dt+ b(t, x) dWt

]
+

1

2

∂2F

∂x2

[
a2(t, x)(dt)2 + 2a(t, x)b(t, x) dt dWt + b2(t, x) (dWt)

2
]

+
∂2F

∂t∂x
(dt)

[
a(t, x) dt+

1

2
b(t, x) dWt

]
+
∂2F

∂t2
(dt)2 + o(dt) .

The differential dF = F (t+ dt, x+ dx)− F (t, x) is expressed to first order in the differentials dt and

dWt, bearing in mind that (dWt)
2 = dt + o(dt) and (dt) (dWt) = O(dt3/2). After ignoring terms of

higher order than dt (which would vanish in the limit as dt→ 0), the final result of this operation is

Ito’s Lemma in two dimensions, namely

dF =
[ ∂F (t, x)

∂t
+
∂F (t, x)

∂x
a(t, x) +

b2(t, x)

2

∂2F (t, x)

∂x2

]
dt+

∂F

∂x
b(t, x) dWt . (5.3)

Ito’s lemma is now used to solve some simple stochastic differential equations.

Example Solve the stochastic differential equation

dx = a dt+ b dWt

in which a and b are constants and dWt is the differential of the Wiener process.

Solution The equation dx = a dt+ b dWt may be integrated immediately to give

x(t)− x(s) =

∫ t

s
dx =

∫ t

s
a dt+

∫ t

s
b dW = a(t− s) + b(Wt −Ws) .

The initial value problem therefore has solution x(t) = x(s) + a(t− s) + b (Wt −Ws).

Example Use Ito’s lemma to solve the first order SDE

dS = µS dt+ σS dWt

where µ and σ are constant and dW is the differential of the Wiener process. This SDE describes

Geometric Brownian motion and was used by Black and Scholes to model stock prices.

Solution The formal solution to this SDE obtained by direct integration has no particular value.

While it might seem beneficial to divide both sides of the original SDE by S to obtain

dS

S
= µdt+ σ dWt ,

thereby reducing the problem to that of the previous problem, the benefit of this procedure is illusory

since d(logS) ̸= dS/S in a stochastic environment. In fact, if dS = a(t, S) dt+ b(t, S) dW then Ito’s

lemma gives

d(logS) =
[ a(t, S)

S
− b2(t, S)

2S2

]
dt+

b(t, S)

S
dWt
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When a(t, S) = µS and b(t, S) = σ S, it follows from the previous equation that

d(logS) = (µ− σ2/2) dt+ σ dWt .

This is the SDE encountered in the previous example. It can be integrated to give the solution

S(t) = S(s) exp
[
(µ− σ2/2)(t− s) + σ(Wt −Ws)

]
.

Another approach Another way to solve this SDE is to recognise that if F (t, S) is any function

of t and S then Ito’s lemma states that

dF =
[ ∂F
∂t

+ µS
∂F

∂S
+
σ2 S2

2

∂2F

∂S2

]
dt+ σS

∂F

∂S
dWt

A simple class of solutions arises when the coefficients of the dt and dW are simultaneously functions

of time t only. This idea suggest that we consider a function F such that S ∂F/∂S = c with c

constant. This occurs when F (t, S) = c logS + ψ(t). With this choice,

∂F

∂t
+ µS

∂F

∂S
+
σ2 S2

2

∂2F

∂S2
=
dψ

dt
+ c

[
µ− σ2

2

]
and the resulting expression for F is

F (t, S(t) )− F (s, S(s) ) = ψ(t)− ψ(s) + c
[
µ− σ2

2

]
(t− s) + cσ(Wt −Ws) .

Example Use Ito’s lemma to solve the first order SDE

dx = ax dt+ b dWt

in which a and b are constants and dWt is the differential of the Wiener process.

Solution The linearity of the drift specification means that the equation can be integrated by

multiplying with the classical integrating factor of a linear ODE. Let F (t, x) = x e−at then Ito’s

lemma gives

dF = dx e−at − ax e−at dt = e−at(ax dt+ b dWt − ax dt ) = b e−at dWt .

Integration now gives

d(xe−at ) = be−at dWt → x(t) = x(0) eat +

∫ t

0
ea(t−s) dWs . (5.4)

The solution in this case is a Riemann-Stieltjes integral. Evidently the value of this integral is a

Gaussian deviate with mean value zero and variance∫ t

0
e2a(t−s) ds =

e2at − 1

2a
.



44 CHAPTER 5. DIFFERENTIATION OF FUNCTIONS OF STOCHASTIC VARIABLES

5.1.1 Ito’s lemma in multi-dimensions

Ito’s lemma in many dimensions is established in a similar way to the one-dimensional case. Suppose

that x1, · · · , xN are solutions of the N stochastic differential equations

dxi = ai(t, x1 · · ·xN ) dt+
M∑
p=1

σip(t, x1 · · ·xN ) dWp , (5.5)

where σip is an N ×M array and dW1, · · · , dWM are increments in the M (≤ N) Wiener processes

W1, · · · ,WM . Suppose further that these Wiener processes have correlation structure characterised

by the M ×M array Q in which Qij dt = E [dWidWj ]. Clearly Q is a positive definite array, but not

necessarily a diagonal array.

Let F (t, x1 · · ·xN ) be a suitably differentiable function then Taylor’s theorem states that

F (t+ dt, x1 + dx1 · · ·xN + dxN ) = F (t, x1 · · ·xN ) +
∂F

∂t
dt+

N∑
j=1

∂F

∂xj
dxj

+
1

2

[ ∂2F
∂t2

(dt)2 + 2

N∑
j=1

∂2F

∂xj∂t
(dxj) dt+

N∑
j,k=1

∂2F

∂xj∂xk
(dxj)(dxk)

]
+ o(dt) .

(5.6)

The differentials dx1, · · · , dxN are now assigned to the stochastic process in (5.5) to get

F (t+ dt, x1 + dx1 · · ·xN + dxN )− F (t, x1 · · ·xN ) =
∂F

∂t
dt+

N∑
j=1

∂F

∂xj

[
aj dt+

M∑
p=1

σjp dWp

]
+

1

2

∂2F

∂t2
(dt)2 +

N∑
j=1

∂2F

∂xj∂t

[
aj dt+

M∑
p=1

σjp dWp

]
dt

+
1

2

N∑
j,k=1

∂2F

∂xj∂xk

[
aj dt+

M∑
p=1

σjp dWp

][
ak dt+

M∑
q=1

σkq dWq

]
+ o(dt) .

(5.7)

Equation (5.7) is now simplified by eliminating all terms of order (dt)3/2 and above to obtain in the

first instance.

dF =
∂F

∂t
dt+

N∑
j=1

∂F

∂xj

[
aj dt+

M∑
p=1

σjp dWp

]
+

1

2

N∑
j,k=1

∂2F

∂xk∂xk

M∑
p=1

M∑
q=1

σjpσkq dWp dWq + o(dt) .

(5.8)

Recall that Qij dt = E [dWidWj ], which in this context asserts that dWpdWq = Qpq dt+ o(dt). Thus

the multi-dimensional form of Ito’s lemma becomes

dF =
[ ∂F
∂t

+

N∑
j=1

∂F

∂xj
aj +

1

2

N∑
j,k=1

∂2F

∂xj∂xk
gjk

]
dt+

N∑
j=1

M∑
p=1

∂F

∂xj
σjp dWp , (5.9)

where g is the N ×N array with (j, k)th entry

gjk =
M∑
p=1

M∑
q=1

σjpσkq Qpq . (5.10)
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5.1.2 Ito’s lemma for products

Suppose that x(t) and y(t) satisfy the stochastic differential equations

dx = µx dt+ σx dWx , dy = µy dt+ σy dWy

then one might reasonably wish to compute d(xy). In principle, this computation will require an

expansion of x(t+ dt)y(t+ dt)− x(t)y(t) to order dt. Clearly

d(xy) = x(t+ dt)y(t+ dt)− x(t)y(t)

= [x(t+ dt)− x(t)]y(t+ dt) + x(t)[y(t+ dt)− y(t)]

= [x(t+ dt)− x(t)][y(t+ dt)− y(t)] + [x(t+ dt)− x(t)]y(t) + x(t)[y(t+ dt)− y(t)]

= (dx) y(t) + x(t) (dy) + (dx) (dy) .

The important observation is that there is an additional contribution to d(xy) in contrast to classical

Calculus where this contribution vanishes because it is O(dt2).

5.2 Further examples of SDEs

We now consider various SDEs that arise in Finance.

5.2.1 Multi-dimensional Ornstein Uhlenbeck equation

The Ornstein Uhlenbeck (OU) equation in N dimensions posits that the N dimensional state vector

X satisfies the SDE

dX = (B −AX) dt+ C dW

where B is an N × 1 vector, A is a nonsingular N ×N matrix and C is an N ×M matrix while dW

is the differential of the M dimensional Wiener process W (t). Classical Calculus suggests that Ito’s

lemma should be applied to F = eAt(X −A−1B). The result is

dF = AeAt(X −A−1B) dt+ eAt dX = eAt((AX −B) dt+ dX) = eAtC dW .

Integration over [0, t] now gives

F (t)− F (0) =

∫ t

0
eAsC dW → eAt(X −A−1B) = (X0 −A−1B) +

∫ t

0
eAsC dWs

→ X = (I − e−At)A−1B + e−AtX0 +

∫ t

0
e−A(t−s)C dWs
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The solution is a multivariate Gaussian process with mean value (I − e−At)A−1B + e−AtX0 and

covariance

Σ = E
[ ( ∫ t

0
e−A(t−s)C dWs

)(∫ t

0
e−A(t−s)C dWs

)T ]
=

∫ t

0

∫ t

0
E
[ (
e−A(t−s)C dWs

)(
e−A(t−v)C dWv

)T ]
=

∫ t

0

∫ t

0
e−A(t−s)C E[ dWsdW

T
v ]CT e−A

T (t−v)

=

∫ t

0

∫ t

0
e−A(t−s)C EQδ(s− v)CT e−A

T (t−v) ds dv

=

∫ t

0
e−A(t−s)CQCT e−A

T (t−s) ds

=

∫ t

0
e−AuCQCT e−A

Tu du .

5.2.2 Logistic equation

Recall how the Logistic model was a modification of the Malthusian model of population to take

account of limited resources. The Logistic model captured the effect of changing environmental

conditions by proposing that the maximum supportable population was a Gaussian random variable

with mean value, and in so doing gave rise to the stochastic differential equation

dN = aN(M −N) dt+ bN dWt , N(0) = N0 (5.11)

in which a and b ≥ 0 are constants. Although there is no foolproof way of treating SDEs with

state-dependent diffusions, two possible strategies are:-

(a) Introduce a change of dependent variable that will eliminate the dependence of the diffusive

term on state variables;

(b) Use the change of dependent variable that would be appropriate for solving the underlying

ODE obtained by ignoring the diffusive term.

Note also that any change of dependent variable that involves either multiplying the original unknown

by a function of t or adding a function of t to the original unknown necessarily obeys the rules of

classical Calculus. The reason is that the second derivative of such a change of variable with respect

to the state variable is zero.

In the case of equation (5.11) strategy (a) would suggest that the appropriate change of variable is

ψ = logN while strategy (b) would suggest the change of variable ϕ = 1/N because the underlying

ODE is a Bernoulli equation. The resulting SDE in each case can be rearranged into the format

Case (a) dψ = [ (aM − b2/2) dt+ b dWt ]− a eψ dt , ψ(0) = logN0 ,

Case (b) dϕ = −ϕ [ (aM − b2) dt+ b dWt ] + a dt , ϕ(0) = 1/N0 .
(5.12)
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In either case it seems convenient to define

ξ(t) = (aM − b2/2)t+ bWt , ξ(0) = 0 . (5.13)

In case (a) the equation satisfied by z(t) = ψ(t)− ξ(t) is

dz = −a ez+ξ dt = −a ez eξ dt → e−z dz = −a eξ dt

with initial condition z(0) = ψ(0) = logN0. Clearly the equation satisfied by z has solution∫ z(t)

z(0)
e−z dz = −a

∫ t

0
eξ(s) ds = −e−z(t) + e−z(0) → e−z(t) = e−z(0) + a

∫ t

0
eξ(s) ds (5.14)

in which all integrals are Riemann-Stieltjes integrals. The definition of z and initial conditions are

now substituted into solution (5.14) to get the final solution

eξ(t)

N(t)
=

1

N0
+ a

∫ t

0
eξ(s) ds

which may be rearranged to give

N(t) =
N0 exp [ (aM − b2/2)t+ bWt ]

1 + aN0

∫ t

0
exp [ (aM − b2/2)s+ bWs ] ds

. (5.15)

If approach (b) is used, then the procedure is to solve for z(t) = log ϕ(t) obtaining in the process a

differential equation for z that is effectively equivalent to equation (5.14).

5.2.3 Square-root process

The process X(t) obeys a square-root process if

dX = α(θ −X) dt+ σ
√
X dWt

in which θ is the mean process, α controls the rate of restoration to the mean and σ is the volatility

control. While the square-root and OU process have identical drift specifications, there the similarity

ends. The square-root process, unlike the OU process, has no known closed-form solution although

its moments of all orders can be calculated in closed form as can its transitional probability density

function. The square-root process has been proposed by Cox, Ingersoll and Ross as the prototypical

model of interest rates in which context it is commonly known as the CIR process. An extension of

the CIR process proposed by Chan, Karoyli, Longstaff and Saunders introduces a “levels” parameter

γ to obtain the SDE

dX = α(θ −X) dt+ σXγ dWt .

In this case only the mean process is known in closed form. Neither higher order moments nor the

transitional probability density function have known closed-form expressions.
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5.2.4 Constant Elasticity of Variance Model

The Constant Elasticity of Variance (CEV) model proposes that S, the spot price of an asset, evolves

according to the stochastic differential equation

dS = µS dt+ σSα dWt (5.16)

where µ is the mean stock return (sum of a risk-free rate and an equity premium), dW is the

differential of the Wiener process, σ is the volatility control and α is the elasticity factor or levels

parameter. This model generalises the Black-Scholes model through the inclusion of the elasticity

factor α which need not take the value 1. Let ψ = S2−2α then Ito’s lemma gives

dψ = (2− 2α)S1−2α dS +
(2− 2α)(1− 2α)

2
S−2α(σ2S2α) dt

= (1− α)(1− 2α)σ2 dt+ (2− 2α)S1−2α (µSdt+ σSα dWt)

= (1− α)[(1− 2α)σ2 − 2µS2−2α] dt+ 2σ(1− α)S1−α dWt .

S is now eliminated from the previous equation to get the final SDE

dψ = (1− α)[(1− 2α)σ2 − 2µψ] dt+ 2σ(1− α)
√
ψ dWt .

Interestingly ψ satisfies a model equation that is structurally similar to the CIR class of model,

particularly when α ∈ (1/2, 1).

Applications of equation (5.16) often set µ = 0 and re-express equation (5.17) in the form

dF = σFα dWt , (5.17)

where F (t) is now the forward price of the underlying asset. When α < 1, the volatility of stock

price (i.e. σFα−1) increases after negative returns are experienced resulting in a shift of probability

to the left hand side of the distribution and a fatter left hand tail.

5.2.5 SABR Model

The Stochastic Alpha, Beta, Rho model, or SABR model for short, was proposed by Hagan et al. [?]

in order to rectify the difficulty that the volatility control parameter σ in the CEV model is constant,

whereas returns from real assets are known to be negatively correlated with volatility. The SABR

model incorporates this correlation by treating σ in the CEV model as a stochastic process in its own

right and appending to the CEV model a separate evolution equation for σ to obtain

dF = σF β (
√

1− ρ2 dW1 + ρ dW2 )

dσ = σα dW2 ,
(5.18)

where dW1 and dW2 are uncorrelated Wiener processes and the levels parameter β ∈ [0, 1]. Thus σ

of the CEV model is driven by a Wiener process correlated with parameter ρ to the Wiener process

in the model for the forward price F . The choice α = 0 in the SABR model gives the CEV model.
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The volatility in the SABR model follows a geometric walk with zero drift and solution

σ(t) = σ0 exp
(
− α2t

2
+ αW2(t)

)
,

where σ0 is the initial value of σ. Despite the closed-form expression for σ(t) the SABR model has no

closed-form solutions except in the cases β = 0 (solve for F ) and β = 1 (solve for logF ). In overview,

the values of the parameters ρ and β control the curvature of the volatility smile whereas the value

of α, the volatility of volatility, controls the skewness of the lognormal distribution of volatility.

5.3 Heston’s Model

The SABR model is a recent example of a stochastic volatility options pricing model of which there

exists many. The most renowned and widely used of these is Heston’s model. The model was proposed

in 1993 and when reformulated in terms of y = logS posits that

dy = (r + β h) dt+
√
h (ρ dWt +

√
1− ρ2 dZt) ,

dh = κ(γ − h) dt+ σ
√
h dWt ,

(5.19)

where h is volatility and dWt and dZt are increments in the independent Wiener processes Wt and

Zt, the parameter β = λ(1−ρ2)−1/2 contains the equity premium, r is the risk-free force of interest

and ρ ∈ [−1, 1] is the correlation between innovations in asset returns and volatility.

However, Heston’s model is an example of a bivariate affine process. While the transitional probability

density function cannot be computed in closed form, it is possible to determine the characteristic

function of Heston’s model in closed form. This calculation requires the solution of partial differential

equations and will be the focus of our attention in a later chapter.

5.4 Girsanov’s lemma

Girsanov’s lemma is concerned with changes of measure and the Radon-Nikodym2 derivative. A

simple way to appreciate what is meant by a change in measure is to consider the evolution of asset

prices as described by a binomial with transitions of fixed duration. Suppose the spot price of an

asset is S, and that at the next transition the price of the asset is either Su (> S) with probability

q or Sd (< S) with probability (1 − q), and take Q to be the measure under which the expected

one-step-ahead asset price is S, i.e. the process is a Q-Martingale. Clearly the value of q satisfies

Suq + Sd(1− q) = S → q =
S − Sd
Su − Sd

leading to upward and downward movements of the asset price with respective probabilities

q =
S − Sd
Su − Sd

, 1− q =
Su − S

Su − Sd
.

2The Radon-Nikodym derivative is essentially a Jacobian.
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Let P be another measure in which the asset price at each transition moves upwards with probability

p and downwards with probability (1−p) and consider a pathway (or filtration) through the binomial

tree consisting of N transitions in which the asset price moved upwards n times and downwards N−n
times attaining the sequence of states S1, S2, · · · , SN . The likelihoods associated with this path under

the P and Q measures are respectively

L(P )(S1, · · · , SN ) = pn(1− p)N−n , L(Q)(S1, · · · , SN ) = qn(1− q)N−n .

The likelihood ratio of the Q measure to the P measure is therefore

LN (S1, · · · , SN ) =
qn(1− q)N−n

pn(1− p)N−n =
(q
p

)n(1− q

1− p

)N−n
.

Clearly the value of LN is a function of the path (or filtration - say FN ) - straightforward in this case

because it is only the number of upward and downward movements that matter and not when these

movements occur. The quantity LN is called the “Radon-Nikodym” derivative of Q with respect to

P and is commonly written

LN =
dQ
dP

∣∣∣∣
FN

.

Moreover

LN+1

LN
=


q

p
SN+1 > SN ,

1− q

1− p
SN+1 < SN .

The expectation of LN+1 under the P measure conditional on the filtration FN gives

EP[LN+1 | FN ] = p
(
LN × q

p

)
+ (1− p)

(
LN × 1− q

1− p

)
= LN .

Thus LN , or in general the Radon-Nikodym derivative, is a martingale with respect to the P measure.

But L0 = 1 and so iteration of the identity EP[LN+1 | FN ] = LN indicates that EP[LN ] = 1. In this

illustration we associate the P measures with risk in our (risk-averse) world and for this reason

it is usually called the “Physical” measure. By contrast, the measure Q is commonly called the

“Risk-Neutral” measure.

Now consider EP[ψ LN | FN ]. The value is

ψU

(q
p
LN

)
p+ ψD

(1− q

1− p
LN

)
(1− p) = (ψU q + ψD (1− q))LN = EQ[ψ | FN ]

and so the Radon-Nikodym derivative enjoys the key property that it allows expectations with respect

to the Q measure to be expressed as expectations with respect to the P via the formula

EQ [ Ψ ] = EP [ ΨLN ]

where Ψ, for example, is the payoff from a call option.
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5.4.1 Change of measure for a Wiener process

The illustrative example involving the binomial tree expressed changes in measure in terms of re-

weighting the probability of upward and downward movement, and in so doing the probabilities

associated with pathways through the tree. The same procedure can be extended to continuous

processes, and in particular the Wiener process. The natural measure P on the Wiener process is

associated with the probability density function

p(x) =
1√
2π

exp
[
− x2

2

]
.

Suppose, for example, that the Wiener process W (t) attains the values (x1, . . . , xn) at the respective

times (t1, . . . , tn) in which D = {t0, · · · , tn} is a dissection of the finite interval [0, T ]. Because

increments of W (t) are independent, then the likelihood L(n)(P ) associated with this path is

L(P )(x1, · · · , xn) =
n∏
i=1

1√
2π∆ti

exp

(
−(∆xi)

2

2∆ti

)
,

where ∆xi = xi − xi−1 and ∆ti = ti − ti−1. The limit of this expression may be interpreted as the

measure P for the continuous process W (t). The question is now to determine how W (t) changes

under a different measure, say Q, and of course what restrictions (if any) must be imposed on Q.

Equivalent measure

Equivalence in the case of the binomial tree is the condition p > 0 ⇐⇒ q > 0. In effect, the

measures P and Q must both refer to binomial trees and not a binomial tree in one measure and a

cascading process in the other measure. Equivalence between the measures P and Q in the binomial

tree is a particular instance of the following definition of equivalence.

Two measures P and Q are equivalent (i.e. one can be distorted into the other) if and only if the

measures agree on which events have zero probability, i.e.

P(X) > 0 ⇐⇒ Q(X) > 0 .

Given two equivalent measures P and Q, the “Radon-Nikodym” derivative of Q with respect to P is

defined by the likelihood ratio

dQ
dP

= lim
n→∞

L(Q)(x1, · · · , xn)
L(P )(x1, · · · , xn)

.

Alternatively one may write

Q(X) =

∫
X
dQ(x) =

∫
X
ϕdP(x)

where ϕ = dQ/dP is the Radon-Nikodym derivative of Q with respect to P. Clearly ϕ simply states

what distortion should be applied to the measure P to get the measure Q. Given and function Ψ,

then

EQ [Ψ ] = EP [Ψϕ ] .
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5.4.2 Girsanov theorem

Let W (t) be a P-Wiener process under the natural filtration Ft, namely that for which the probabil-

ities of paths are determined directly from the N(0, 1) probability density function, and define Z(t)

to be a process adapted from W (t) for which Novikov’s condition

E
[
exp

(1
2

∫ T

0
Z2(s) ds

) ]
<∞

is satisfied for some finite time horizon T . Let Q to be a measure related to P with Radon-Nikodym

derivative

ϕ(t) =
dQ
dP

= exp
(
−

∫ t

0
Z(s) dW (s)− 1

2

∫ t

0
Z2(s) ds

)
.

Under the probability measure Q, the process

W (ϕ)(t) =W (t) +

∫ t

0
Z(s) ds

is a standard Wiener process.

Justification

From the definition of Q it is clear that P and Q are equivalent measures. One strategy is use the

moment generating function to demonstrate that W (ϕ)(t) is a natural Wiener process under the Q
measure, namely that EQ [W (ϕ)(t) ] = 0 and that VQ [W (ϕ)(t) ] = t. We begin by recalling that the

moment generating function of the Gaussian distribution N(µ, σ2) is

M(θ) = EP[ e θX ] =
1√
2π σ

∫
R
eθXe−(X−µ)2/2σ2

dX = e θµ+θ
2σ2/2 .

The formal proof of Girsanov’s theorem starts with the Radon-Nikodym identity

EQ [Ψ ] = EP
[ dQ
dP

Ψ
]

when particularized by replacing Ψ with e θW
(ϕ)(t) to get

EQ [ e θW
(ϕ)(t) ] = EP

[ dQ
dP

e θW
(ϕ)(t)

]
= EP

[
exp

(
−

∫ t

0
Z(s) dW (s)− 1

2

∫ t

0
Z2(s) ds

)
exp

(
θW (t) + θ

∫ t

0
Z(s) ds

) ]
= exp

(
θ

∫ t

0
Z(s) ds− 1

2

∫ t

0
Z2(s) ds

)
EP

[
exp

(
θW (t)−

∫ t

0
Z(s) dW (s)

) ]

The focus is now on the computation of EP
[
exp

(
θW (t)−

∫ t
0 Z(s) dW (s)

) ]
. For convenience let

ξ(t) = θW (t)−
∫ t

0
Z(s) dW (s)
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then EP[ ξ(t) ] = 0 and

VP[ ξ(t) ] = EP[ θ2W 2(t) ]− 2θEP
[
W (t)

∫ t

0
Z(s) dW (s)

]
+ EP

[ ( ∫ t

0
Z(s) dW (s)

)2 ]
= θ2 t− 2θ

∫ t

0
Z(s)EP [W (t) dW (s) ] +

∫ t

0
Z2(s) ds

Clearly the Novikov condition simply guarantees that e ξ(t) has finite mean and variance. Moreover,

it is obvious that EP [W (t) dW (s) ] = ds and therefore

EP[ ξ(t) ] = 0 ,

VP[ ξ(t) ] = θ2 t− 2θ

∫ t

0
Z(s) ds+

∫ t

0
Z2(s) ds .

It now follows from the moment generating function of N(µ, σ2) with µ = 0 and θ = 1 that

EP[ e ξ(t) ] = exp
(θ2
2
t− θ

∫ t

0
Z(s) ds+

1

2

∫ t

0
Z2(s) ds

)
.

Consequently

EQ [ e θW
(ϕ)(t) ] = exp

(
θ

∫ t

0
Z(s) ds− 1

2

∫ t

0
Z2(s) ds

)
EP

[
exp

(
θW (t)−

∫ t

0
Z(s) dW (s)

)
= exp

(
θ

∫ t

0
Z(s) ds− 1

2

∫ t

0
Z2(s) ds

)
exp

(θ2
2
t− θ

∫ t

0
Z(s) ds+

1

2

∫ t

0
Z2(s) ds

)
= exp

(θ2
2
t
)
.

which is just the moment generating function of a standard Wiener process, thereby establish the

claim of the Girsanov’s theorem.
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Chapter 6

The Chapman Kolmogorov Equation

6.1 Introduction

Let the state of a system at time t after initialisation be described by the n-dimensional random

variable x(t) with sample space Ω. Let x1,x2, · · · be the measured state of the system at times

t1 > t2 > · · · ≥ 0, then x(t) is a stochastic process provided the joint probability density function

f(x1, t1;x2, t2; · · · ) (6.1)

exists for all possible sequences of measurements xk and times tk. When the joint probability density

function (6.1) exists, it can be used to construct the conditional probability density function

f(x1, t1;x2, t2; · · · |y1, τ1;y2, τ2; · · · ) (6.2)

which describes the likelihood of measuring x1,x2, · · · at times t1 > t2 > · · · ≥ 0, given that the

system attained the states y1,y2, · · · at times τ1 > τ2 > · · · ≥ 0 where, of necessity, t1 > t2 > · · · >
τ1 > τ2 > · · · ≥ 0. Kolmogorov’s axioms of probability yield

f(x1, t1;x2, t2; · · · |y1, τ1;y2, τ2; · · · ) =
f(x1, t1;x2, t2; · · · ;y1, τ1;y2, τ2; · · · )

f(y1, τ1;y2, τ2; · · · )
, (6.3)

i.e. the conditional density is the usual ratio of the joint density of x and y (numerator) and the

marginal density of y (denominator). In the same notation there is a hierarchy of identities which

must be satisfied by the conditional probability density functions of any stochastic process. The first

identity is

f(x1, t1 ) =

∫
Ω
f(x1, t1;x, t ) dx =

∫
Ω
f(x1, t1 |x, t) f(x, t ) dx (6.4)

which apportions the probability with which the state x1 at future time t1 is accessed at a previous

time t from each x ∈ Ω. The second group of conditions take the generic form

f(x1, t1 |x2, t2; · · · ) =

∫
Ω
f(x1, t1;x, t; x2, t2; · · · ) dx

=

∫
Ω
f(x1, t1 |x, t; x2, t2; · · · ) f(x, t |x2, t2; · · · ) dx

(6.5)

55
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in which it is taken for granted that t1 > t > t2 > · · · ≥ 0. Similarly, a third group of conditions can

be constructed from identities (6.4) and (6.5) by regarding the pair (x1, t1) as a token and replacing

it with an arbitrary sequence of pairs involving the attainment of states at times after t.

Of course, equations (6.1-6.5) are also valid when Ω is a discrete sample space in which case the

joint probability density functions are sums of delta functions and integrals over Ω are replaced by

summations over Ω.

As might be anticipated the structure presented in equations (6.1-6.5) is too general for making

useful progress, and so it is desirable to introduce further simplifying assumptions. Two obvious

simplifications are possible.

(a) Assume that (xk, tk) are independent random variables. The joint probability density function

is therefore the product of the individual probabilities f(xk, tk), i.e.

f(x1, t1;x2, t2; · · · |y1, τ1;y2, τ2; · · · ) = f(x1, t1;x2, t2; · · · ) =
∏

f(xk, tk) .

In effect, there is no conditioning whatsoever in the resulting stochastic process and conse-

quently historical states contain no useful information.

(b) Assume that the current state perfectly captures all historical information. This is the simplest

paradigm to incorporate historical information within a stochastic process. Processes with this

property are called Markov processes.

Assumption (a) is too strong. It is taken “as read” that in practice it is observations of historical

states of a system in combination with time that conditions the distribution of future states, and not

just time itself as would be the case if assumption (a) is adopted.

6.1.1 Markov process

A stochastic process possesses the Markov property if the historical information in the process is

perfectly captured by the most recent observation of the process. In effect,

f(x1, t1;x2, t2; · · · |y1, τ1;y2, τ2; · · · ) = f(x1, t1;x2, t2; · · · |y1, τ1) (6.6)

where it is again assumed that t1 > t2 > · · · > τ1 > τ2 > · · · ≥ 0. Suppose that the sequence of states

under discussion are (xk, tk) where k = 1, · · · ,m then it follows directly from equation (6.3) that

f(x1, t1;x2, t2; · · · ;xm, tm ) = f(x1, t1; |x2, t2; · · · xm, tm ) f(x2, t2; · · · ; xm, tm ) (6.7)

and from equation (6.6) that

f(x1, t1 |x2, t2; · · · xm, tm ) = f(x1, t1 |x2, t2 ) . (6.8)

Consequently, for a Markov process, results (6.7) and (6.8) may be combined to give

f(x1, t1;x2, t2; · · · ;xm, tm ) = f(x1, t1 |x2, t2 ) f(x2, t2; · · · ; xm, tm ) . (6.9)
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Equation (6.9) forms the basis of an induction procedure from which it is follows directly that

f(x1, t1;x2, t2; · · · ;xm, tm ) = f(xm, tm )
k=m−1∏
k=1

f(xk, tk |xk+1, tk+1 ) . (6.10)

6.2 Chapman-Kolmogorov equation

Henceforth the stochastic process will be assumed to possess the Markov property. Identity (6.4)

remains unchanged. However, the identities characterised by equation (6.5) are now simplified since

the Markov property requires that

f(x1, t1 |x, t; x2, t2; · · · ) = f(x1, t1 |x, t ) ,

f(x, t |x2, t2; · · · ) = f(x, t |x2, t2 ) .

Consequently, the general condition (6.5) simplifies to

f(x1, t1 |x2, t2; · · · ) =
∫
Ω
f(x1, t1 |x, t ) f(x, t |x2, t2 ) dx = f(x1, t1 |x2, t2 ) (6.11)

for Markov stochastic processes. This identity is called the Chapman-Kolmogorov equation. Further-

more, the distinction between the second and third groups of identities vanishes for Markov stochastic

processes.

Summary The probability density function f(x1, t1 ) and the conditional proba-

bility density function f(x1, t1 |x, t ) (often called the transitional probability density

function) for a Markov stochastic process satisfy the identities

f(x1, t1 ) =

∫
Ω
f(x1, t1 |x, t) f(x, t ) dx ,

f(x1, t1 |x2, t2 ) =

∫
Ω
f(x1, t1 |x, t ) f(x, t |x2, t2 ) dx .

In these identities time is regarded as a parameter which can be either discrete or

continuous.

When time is a continuous parameter the integral form of the Chapman-Kolmogorov property can

be expressed as a partial differential equation under relatively weak conditions. The continuity of the

process path with respect to time now becomes an issue to be addressed. The requirement of path

continuity imposes restrictions on the form of the transitional density function f(x1, t1 |x2, t2 ).

6.2.1 Path continuity

Suppose that a stochastic process starts at (y, t) and passes through (x, t+h). For a Markov process,

the distribution of possible states x is perfectly captured by the transitional probability density
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function f(x, t+ h |y, t ) where h ≥ 0. Given ε > 0, the probability that a path is more distant than

ε from y is just ∫
|x−y|>ε

f(x, t+ h |y, t) dx . (6.12)

A process is said to be path-continuous if for any ε > 0∫
|x−y|>ε

f(x, t+ h |y, t) dx = o(h) (6.13)

with probability one, and uniformly with respect to t, h and the state y. In effect, the probability

that a finite fraction of paths extend more than ε from y shrinks to zero faster than h. The concept

of path-continuity is often captured by the definition

Path-Continuity Given any x,y ∈ Ω satisfying |x− y| > ε and t > 0, assume

that the limit

lim
h→0+

f(x, t+ h |y, t)
h

= ϕ(x |y, t )

exists and is uniform with respect to x, y and t.

Path-continuity is characterised by the property ϕ(x |y, t ) = 0 when x ̸= y.

Example

Investigate the path continuity of the one dimensional Markov processes defined by the transitional

density functions

(a) f(x, t+ h | y, t) = 1√
2π h

e−(x−y)2/2h2 , (b) f(x, t+ h | y, t) = h

π

1

h2 + (x− y)2
.

Solution

It is demonstrated easily that both expressions are non-negative and integrate to unity with respect

to x for any t, h and y. Each expression therefore defines a valid transitional density function. Note,

in particular, that both densities satisfy automatically the consistency condition

lim
h→0+

f(x, t+ h |y, t) = δ(x− y) .

Density (a) Consider∫
|x−y|>ε

f(x, t+ h | y, t) dx =

∫ ∞

y+ε

1√
2π h

e−(x−y)2/2h2 dx+

∫ y−ε

−∞

1√
2π h

e−(x−y)2/2h2 dx

=
2√
2π h

∫ ∞

ε
e−x

2/2h2 dx

=
1√
π

∫ ∞

ε2/2h2
y−1/2 e−y dy
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Since y ≥ ε2/2h2 in this integral then y−1/2 ≤
√
2 (h/ε). Thus

1

h

∫
|x−y|>ε

f(x, t+ h | y, t) dx <
√

2

π

1

ε

∫ ∞

ε2/2h2
e−y dy =

√
2

π

1

ε

[
1− e−ε

2/2h2
]
→ 0

as h → 0+, and therefore the stochastic process defined by the transitional probability density

function (a) is path-continuous.

Density (b) Consider∫
|x−y|>ε

f(x, t+ h | y, t) dx =

∫ ∞

y+ε

h

π

dx

h2 + (x− y)2
+

∫ y−ε

−∞

h

π

dx

h2 + (x− y)2

=
2h

π

∫ ∞

ε

dx

h2 + x2

=
2

π

[
tan−1 x

h

]∞
ε

=
2

π

[ π
2
− tan−1 ε

h

]
.

For fixed ε > 0, define h = ε tan θ so that the limiting process h → 0+ may be replaced by the

limiting process θ → 0+. Thus

1

h

∫
|x−y|>ε

f(x, t+ h | y, t) dx =
2θ

πε tan θ
→ 2

πε
̸= 0

as h → 0+, and therefore the stochastic process defined by the transitional probability density

function (b) is not path-continuous.

Remarks

The transitional density function (a) describes a Brownian stochastic process. Consequently, a Brow-

nian path is continuous although it has no well-defined velocity. The transitional density function (b)

describes a Cauchy stochastic process which, by comparison with the Brownian stochastic process,

is seen to be discontinuous.

6.2.2 Drift and diffusion

Suppose that for a particular stochastic process the change of state in moving from y to x, i.e.

(x − y), occurs during the time interval [t, t + h] with probability f(x, t + h |y, t ). The drift and

diffusion of this process characterise respectively the expected rate of change in state, calculated over

all paths terminating within distance ε of y, and the rate of generation of the covariance of these

changes. The drift and diffusion are defined as follows.
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Drift The drift of a (Markov) process at y is defined to be the instantaneous rate of

change of state for all processes close to y and is the value of the limit

lim
ε→0+

[
lim
h→0+

1

h

∫
|x−y|<ε

(x− y ) f(x, t+ h |y, t) dx
]
= a(y, t) , (6.14)

which is assumed to exist, and which requires that the inner limit converges uniformly with

respect to y, t and ε.

Diffusion The instantaneous covariance of a (Markov) process at y is defined to be the

instantaneous rate of change of covariance for all processes close to y and is the value of

the limit

lim
ε→0+

[
lim
h→0+

1

h

∫
|x−y|<ε

(x− y )⊕ (x− y ) f(x, t+ h |y, t) dx
]
= g(y, t) , (6.15)

which is assumed to exist, and which requires that the inner limit converges uniformly with

respect to y, t and ε.

Finally, all third and higher order moments computed over states x,y ∈ Ω satisfying |x − y| > ε

necessarily vanish as ε→ 0+ because the integral defining the k-th moment is O(εk−2) for k ≥ 2.

6.2.3 Drift and diffusion of an SDE

Suppose that the time course of the process x(t) = {x1(t), · · · , xN (t)} follows the stochastic differential
equation

dxj = µj(x, t) dt+

M∑
α=1

σjα(x, t) dWα (6.16)

where 1 ≤ j ≤ N and dW1, · · · , dWM are increments in the correlatedM Wiener processesW1, · · · ,WM

such that EP [ dWj dWk ] = Qjk dt. The issue is now to use the general definition of drift and diffusion

to determine the drift and diffusion specifications in the case of the SDE 6.16.

The expected drift at x during [t, t+ h] is

aj = lim
h→0+

1

h
E [ dxj ] = lim

h→0+

1

h
E
[
µj(x, t)h+

M∑
α=1

σjα(x, t) dWα

]
= lim

h→0+

1

h
E [µj(x, t)h ] = µj(x, t) .

(6.17)



6.3. FORMAL DERIVATION OF THE FORWARD KOLMOGOROV EQUATION 61

The expected covariance at x during [t, t+ h] is

gjk = lim
h→0+

1

h
E [ (dxj − µj h)((dxj − µj h) ]

= lim
h→0+

1

h

M∑
α,β=1

E [σjα dWα σkβ dWβ ]

= lim
h→0+

M∑
α,β=1

σjα σkβ
h

E [ dWα dWβ ] =
M∑

α,β=1

σjαQαβ σkβ .

(6.18)

Evidently gjk is a symmetric array. Furthermore, since Q is positive definite then Q = FTF and

ΣQΣT = ΣFT FΣT = (F ΣT)T (FΣT) and therefore G = [gjk] is also positive definite, as required.

6.3 Formal derivation of the Forward Kolmogorov Equation

The construction of the differential equation representation of the Chapman-Kolmogorov condition

follows closely the discussion of path-continuity, but admits the possibility of discontinuous paths by

extending the analysis to include Markov processes for which

∫
|x−y|>ε

f(x, t+ h |y, t) dx = O(h) (6.19)

as h → 0+. The Cauchy stochastic process gives an example of a qualifying transitional probability

density function. Suppose that ε > 0 is given together with a Markov process with transitional

probability density function f(x1, t1 |x2, t2 ).

Let ψ(x) be an arbitrary twice continuously differentiable function of state, then the rate of change

of the expected value of ψ is defined by

∂

∂t

∫
Ω
ψ(x) f(x, t |y, T ) dx = lim

h→0+

1

h

[ ∫
Ω
ψ(x) [ f(x, t+ h |y, T )− f(x, t |y, T ) ] dx

]
= lim

h→0+

1

h

[ ∫
Ω
ψ(x)

( ∫
Ω
f(x, t+ h | z, t) f(z, t |y, T ) dz

)
dx

−
∫
Ω
ψ(z) f(z, t |y, T ) dz

]
= lim

h→0+

1

h

[ ∫
Ω

∫
Ω
ψ(x)f(z, t |y, T ) f(x, t+ h | z, t) dx dz

−
∫
Ω
ψ(z) f(z, t |y, T ) dz

]
(6.20)

where the Chapman-Kolmogorov property has been used on the first integral on the right hand side

of equation (6.20). The sample space Ω is now divided into the regions |x − z| < ε and |x − z| > ε
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where ε is sufficiently small that ψ(x) may be represented by the Taylor series expansion

ψ(x) = ψ(z) +
N∑
k=1

(xk − zk)
∂ψ(z)

∂ zk
+

1

2

N∑
j,k=1

(xj − zj ) (xk − zk)
∂2ψ(z)

∂ zj ∂ zk

+

N∑
j,k=1

(xj − zj)(xk − zk)Rjk(x, z)

(6.21)

within the region |x − z| < ε and in which Rjk(x, z) → 0 as |x − z| → 0. The right hand side of

equation (6.21) is now manipulated through a number of steps after first replacing ψ(x) by its Taylor

series and rearranging expression

lim
h→0+

1

h

[ ∫
Ω

∫
Ω
ψ(x)f(z, t |y, T ) f(x, t+ h | z, t) dx dz−

∫
Ω
ψ(z) f(z, t |y, T ) dz

]
(6.22)

by means of the decomposition

lim
ε→0+

[
lim
h→0+

1

h

∫
Ω

∫
|x−z|<ε

ψ(x) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

+ lim
h→0+

1

h

∫
Ω

∫
|x−z|>ε

ψ(x) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

− lim
h→0+

1

h

∫
Ω
ψ(z) f(z, t |y, T ) dz

]
.

(6.23)

Substituting the Taylor series for ψ(x) into expression (6.23) gives

lim
ε→0+

lim
h→0+

1

h

[ ∫
Ω

∫
|x−z|<ε

ψ(z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

+

∫
Ω

∫
|x−z|<ε

(xk − zk)
∂ψ(z)

∂ zk
f(z, t |y, T ) f(x, t+ h | z, t) dx dz

+
1

2

N∑
j,k=1

∫
Ω

∫
|x−z|<ε

(xj − zj)(xk − zk)
∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) f(x, t+ h | z, t) dx dz

+

N∑
j,k=1

∫
Ω

∫
|x−z|<ε

(xj − zj)(xk − zk)Rjk(x, z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

+

∫
Ω

∫
|x−z|>ε

ψ(x) f(z, t |y, T ) f(x, t+ h | z, t) dx dz−
∫
Ω
ψ(z) f(z, t |y, T ) dz

]
.

(6.24)

The definition of instantaneous drift in formula (6.14) is now used to deduce that

lim
ε→0+

lim
h→0+

1

h

N∑
k=1

∫
Ω

∫
|x−z|<ε

(xk − zk)
∂ψ(z)

∂ zk
f(z, t |y, T ) f(x, t+ h | z, t) dx dz

=

N∑
k=1

∫
Ω
ak(z, t)

∂ψ(z)

∂ zk
f(z, t |y, T ) dz .

(6.25)

Similarly, the definition of instantaneous covariance in formula (6.15) is used to deduce that

lim
ε→0+

lim
h→0+

1

2h

N∑
j,k=1

∫
Ω

∫
|x−z|<ε

(xj − zj)(xk − zk)
∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) f(x, t+ h | z, t) dx dz

=
1

2

N∑
j,k=1

∫
Ω
gjk(z, t)

∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) dz . (6.26)
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Moreover, since Rjk(x, z) → 0 as |x − z| → 0 then it is obvious that the contribution from the

remainder of the Taylor series becomes arbitrarily small as ε→ 0+ and therefore

lim
ε→0+

lim
h→0+

1

h

N∑
j,k=1

∫
Ω

∫
|x−z|<ε

(xj − zj)(xk − zk)Rjk(x, z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz = 0 .

This result, together with (6.25) and (6.26) enable expression (6.24) to be further simplified to

lim
ε→0+

lim
h→0+

1

h

[ ∫
Ω

∫
|x−z|<ε

ψ(z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

+

∫
Ω

∫
|x−z|>ε

ψ(x) f(z, t |y, T ) f(x, t+ h | z, t) dx dz−
∫
Ω
ϕ(z) f(z, t |y, T ) dz

]
+

N∑
k=1

∫
Ω
ak(z, t)

∂ψ(z)

∂ zk
f(z, t |y, T ) dz+ 1

2

N∑
j,k=1

∫
Ω
gjk(z, t)

∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) dz .

(6.27)

However, f(x, t+ h | z, t) is itself a probability density function and therefore satisfies∫
Ω
f(x, t+ h | z, t) dx = 1 .

Consequently, the first integral in expression (6.27) can be manipulated into the form∫
Ω

∫
|x−z|<ε

ψ(z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

=

∫
Ω
ψ(z) f(z, t |y, T )

( ∫
Ω
f(x, t+ h | z, t) dx−

∫
|x−z|>ε

f(x, t+ h | z, t) dx
)
dz

=

∫
Ω
ψ(z) f(z, t |y, T ) dz−

∫
Ω

∫
|x−z|>ε

ψ(z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz .

(6.28)

The first integral appearing in expression (6.27) is now replaced by equation (6.28). After some

obvious cancellation, the expression becomes

lim
ε→0+

lim
h→0+

1

h

[ ∫
Ω

∫
|x−z|>ε

ψ(x) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

−
∫
Ω

∫
|x−z|>ε

ψ(z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz
]

+

N∑
k=1

∫
Ω
ak(z, t)

∂ψ(z)

∂ zk
f(z, t |y, T ) dz+ 1

2

N∑
j,k=1

∫
Ω
gjk(z, t)

∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) dz .

(6.29)

The path-continuity condition (6.12) is now used to treat the limits in expression (6.29). Clearly

lim
ε→0+

lim
h→0+

1

h

[ ∫
Ω

∫
|x−z|>ε

ψ(x) f(z, t |y, T ) f(x, t+ h | z, t) dx dz

−
∫
Ω

∫
|x−z|>ε

ψ(z) f(z, t |y, T ) f(x, t+ h | z, t) dx dz
]

=

∫
Ω

∫
Ω
ψ(x) f(z, t |y, T )ϕ(x, z) dx dz−

∫
Ω

∫
Ω
ψ(z) f(z, t |y, T )ϕ(x, z) dx dz

]
=

∫
Ω

∫
Ω
ψ(z)

[
f(x, t |y, T )ϕ(z,x)− f(z, t |y, T )ϕ(x, z)

]
dx dz ,

(6.30)
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and consequently expression (6.24) is finally simplified to∫
Ω

∫
Ω
ψ(z)

[
f(x, t |y, T )ϕ(z,x)− f(z, t |y, T )ϕ(x, z)

]
dx dz

+

N∑
k=1

∫
Ω
ak(z, t)

∂ψ(z)

∂ zk
f(z, t |y, T ) dz+ 1

2

N∑
j,k=1

∫
Ω
gjk(z, t)

∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) dz .

(6.31)

Expression (6.31) is now incorporated into equation (6.20) to obtain the final form

∫
Ω
ψ(z)

∂ f(z, t |y, T )
∂t

dz =

∫
Ω

∫
Ω
ψ(z)

[
f(x, t |y, T )ϕ(z,x)− f(z, t |y, T )ϕ(x, z)

]
dx dz

+
N∑
k=1

∫
Ω
ak(z, t)

∂ψ(z)

∂ zk
f(z, t |y, T ) dz+ 1

2

N∑
j,k=1

∫
Ω
gjk(z, t)

∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) dz .

(6.32)

Let the k-th component of a(z, t) be denoted by ak(z, t), then Gauss’s theorem gives

∫
Ω

N∑
k=1

ak(z, t)
∂ψ(z)

∂ zk
f(z, t |y, T ) dz

=

∫
Ω

N∑
k=1

∂

∂zk

(
ak ψ(z) f(z, t |y, T )

)
dV −

∫
Ω
ψ(z)

∂

∂zk

(
ak f(z, t |y, T )

)
dV

=

∫
∂Ω

N∑
k=1

nkak ψ(z) f(z, t |y, T ) dV −
∫
Ω
ψ(z)

∂

∂zk

(
ak f(z, t |y, T )

)
dV .

(6.33)

Similarly, let g(z, t) denote the symmetric N×N array with (j, k)th component gjk(z, t), then Gauss’s

theorem gives

∫
Ω

N∑
j,k=1

gjk(z, t)
∂2ψ(z)

∂ zj ∂ zk
f(z, t |y, T ) dz

=

∫
Ω

N∑
j,k=1

∂

∂zj

( ∂ψ
∂zk

gjk(z, t) f(z, t |y, T )
)
dV −

∫
Ω

N∑
j,k=1

∂ψ

∂zk

∂

∂xj

(
gjk(z, t) f(z, t |y, T )

)
dV

=

∫
∂Ω

N∑
j,k=1

nj
∂ψ

∂zk
gjk(z, t) f(z, t |y, T ) dA−

∫
Ω

N∑
j,k=1

∂

∂zk

(
ψ(z, t)

∂

∂xj

(
gjk(z, t) f(z, t |y, T )

))
dV

+

∫
Ω

N∑
j,k=1

ψ(z)
∂2

∂zj∂zk

(
gjk(z, t) f(z, t |y, T )

)
dV

=

∫
∂Ω

N∑
j,k=1

nj

[ ∂ψ
∂zk

gjk(z, t) f(z, t |y, T )− ψ(z, t)
∂

∂xk

(
gjk(z, t) f(z, t |y, T )

)]
dA

+

∫
Ω

N∑
j,k=1

ψ(z)
∂2

∂zj∂zk

(
gjk(z, t) f(z, t |y, T )

)
dV .

(6.34)
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Identities (6.33) and (6.34) are now introduced into equation (6.31) to obtain on re-arrangement∫
Ω
ψ(z)

[ ∂ f(z, t |y, T )
∂t

dz+
∂

∂zk

( N∑
k=1

ak f(z, t |y, T )
)
− 1

2

N∑
j,k=1

∂2

∂zj∂zk

(
gjk f(z, t |y, T )

)
−

∫
Ω

(
f(x, t |y, T )ϕ(z,x)− f(z, t |y, T )ϕ(x, z)

)
dx

]
dz

=

∫
∂Ω
ψ(z)nk

[
f(z, t |y, T ) ak −

1

2

∂

∂zj

(
gjk f(z, t |y, T )

)]
dA

+
1

2

∫
∂Ω

f(z, t |y, T ) ∂ψ
∂zj

gjk nk dA .

(6.35)

However, equation (6.35) is an identity in the sense that it is valid for all choices of ϕ(z). The dis-

cussion of the surface contributions in equation (6.35) is generally problem dependent. For example,

a well known class of problem requires the stochastic process to be restored to the interior of Ω when

it strikes ∂Ω. Cash-flow problems fall into this category. Such problems need special treatment and

involve point sources of probability.

In the absence of restoration and assuming that the stochastic process is constrained to the region

Ω, the transitional density function and its normal derivative are both zero on ∂Ω, that is,

∂ f(x, t |y, T )
∂ x

= f(x, t |y, T ) = 0 , x ∈ ∂Ω .

The surface terms in (6.35) make no contribution and therefore∫
Ω
ϕ(z)

[ ∂ f(z, t |y, T )
∂t

+

N∑
k=1

∂

∂zk

(
ak f(z, t |y, T )

)
− 1

2

N∑
j,k=1

∂2

∂zj∂zk

(
gjk f(z, t |y, T )

) ]
dz

=

∫
Ω
ψ(z)

[ ∫
Ω

(
f(x, t |y, T )ϕ(z,x)− f(z, t |y, T )ϕ(x, z)

)
dx

]
dz

(6.36)

for all twice continuously differentiable functions f(z). Thus f(z, t |y, T ) satisfies the partial differ-

ential equation

∂ f(z, t |y, T )
∂t

=
N∑
k=1

∂

∂zk

(1
2

N∑
j=1

∂ [ gjk(z, t) f(z, t |y, T ) ]
∂ zj

− ak(z, t) f(z, t |y, T )
)

+

∫
Ω

(
f(x, t |y, T )ϕ(z,x)− f(z, t |y, T )ϕ(x, z)

)
dx .

(6.37)

Equation (6.37) is the differential form of the Chapman-Kolmogorov condition for a Markov process

which is continuous in space and time. The equation is solved with the initial condition

f(z, T |y, T ) = δ(z− y)

and the boundary conditions

∂ f(x, t |y, T )
∂ x

= f(x, t |y, T ) = 0 , x ∈ ∂Ω .

Remarks
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(a) The Chapman-Kolmogorov equation is written for the transitional density function of a Markov

process and does not overtly arise from a stochastic differential equation. However, for the SDE

dxj = µj(x, t) dt+
M∑
α=1

σjα(x, t) dWα

it has been shown that

ak(x, t) = µk(x, t) , gjk(x, t) =

M∑
α,β=1

σjα(x, t)Qαβ σkβ(x, t) , (6.38)

and therefore in the absence of discontinuous paths, commonly called jump processes, the

Chapman-Kolmogorov equations for the prototypical SDE takes the form

∂ f(z, t |y, T )
∂t

=
N∑
k=1

∂

∂zk

(1
2

N∑
j=1

∂ [ gjk(z, t) f(z, t |y, T ) ]
∂ zj

− ak(z, t) f(z, t |y, T )
)
. (6.39)

(b) Equation (6.39) is often called the “Forward Kolmogorov” equation or the ”Fokker-Planck”

equation because of its independent discovery by Andrey Kolmogorov (1931) and Max. Planck

with his doctoral student Adriaan Fokker in (1913). The term ”forward” refers to the fact that

the equation is written for time and the “forward” variable y. There is, of course, a “Backward

Kolmogorov” equation written for the variable x.

6.3.1 Intuitive derivation of the Forward Kolmogorov Equation

Let ψ(x) be an arbitrary twice continuously differentiable function of state, then the forward Kol-

mogorov equation is constructed by asserting that

d

dt

∫
Ω
ψ(x)f(t, x) dx =

∫
Ω
E
[dψ(x)

dt

]
f(t, x) dx . (6.40)

Put simply, the rate of change of the expectation of ψ is equal to the expectation of the rate of change

of ψ. Clearly the left hand side of equation (6.40) has value∫
Ω
ψ(x)

∂f(t, x)

∂t
dx .

Let ϕ(x | y, t) denote the rate of the jump process from y at time t to x at time t+. Ito’s Lemma

applied to ψ(x) gives

E[dψ] =
N∑
k=1

∂ψ

∂xk
µk dt+

1

2

N∑
j,k=1

∂2ψ

∂xj∂xk
gjk dt

+dt
[ ∫

ψ(x)
(∫

ϕ(x | y, t)f(t, y) dy − f(t, x)

∫
ϕ(y |x, t) dy

)
dx

]
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from which it follows immediately that

E
[dψ
dt

]
=

N∑
k=1

∂ψ

∂xk
µk +

1

2

N∑
j,k=1

∂2ψ

∂xj∂xk
gjk

+

∫
ψ(x)

(∫
ϕ(x | y, t)f(t, y) dy − f(t, x)

∫
ϕ(y |x, t) dy

)
dx .

The divergence theorem is now applied to the right hand side of equation (6.40) to obtain

∫
Ω
E
[dψ(x)

dt

]
f(t, x) dx =

∫
Ω

N∑
k=1

( ∂ψ
∂xk

µk +
1

2

N∑
j,k=1

∂2ψ

∂xj∂xk
gjk

)
f dx

+

∫
ψ(x)

(∫
ϕ(x | y, t)f(t, y) dy − f(t, x)

∫
ϕ(y |x, t) dy

)
dx

= −
∫
Ω

N∑
k=1

ψ
∂(µkf)

∂xk
dx+

∫
∂Ω

N∑
k=1

ψ µkfnk dS

+
1

2

∫
Ω

N∑
j,k=1

∂ψ

∂xj
(gjkf)nk dS − 1

2

∫
Ω

∂ψ

∂xj

∂(gjkf)

∂xk
dx

+

∫
ψ(x)

(∫
ϕ(x | y, t)f(t, y) dy − f(t, x)

∫
ϕ(y |x, t) dy

)
dx

= −
∫
∂Ω

N∑
k=1

ψ
(
µkf − 1

2

∂(gkjf)

∂xj

)
nk dS +

1

2

∫
Ω

N∑
j,k=1

∂ψ

∂xj
(gjkf)nk dS

+

∫
Ω
ψ
(1
2

∂2(gjkf)

∂xj∂xk
− ∂(µkf)

∂xk

)
dx

+

∫
ψ(x)

(∫
ϕ(x | y, t)f(t, y) dy − f(t, x)

∫
ϕ(y |x, t) dy

)
dx .

The surface contributions to the previous equation are now set to zero. Thus equation (6.40) leads

to the identity

∫
Ω
ψ(x)

∂f(t, x)

∂t
dx =

∫
Ω
ψ

∂

∂xk

(1
2

∂(gjkf)

∂xj
− µkf

)
dx

+

∫
ψ(x)

(∫
ϕ(x | y, t)f(t, y) dy − f(t, x)

∫
ϕ(y |x, t) dy

)
dx .

(6.41)

which must hold for all suitably differentiable choices of the function ψ(x). In conclusion,

∂f(t, x)

∂t
=

∂

∂xk

(1
2

∂(gjkf)

∂xj
− µkf

)
+

(∫
ϕ(x | y, t)f(t, y) dy − f(t, x)

∫
ϕ(y |x, t) dy

)
. (6.42)

Of course,
∫
ϕ(y |x, t) dy is simply the rate at which the jump mechanism removes density from x.

Typically this will be the unconditional rate of the jump process.
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6.3.2 The Backward Kolmogorov equation

The construction of the backward Kolmogorov equation is a straightforward application of Ito’s

lemma. It follows immediately from Ito’s lemma that f(z, t |y, T ) satisfies

df =
∂f

∂t
dt+

N∑
j=1

∂f

∂yj
dyj +

1

2

N∑
j,k=1

∂2f

∂yj∂yk
dyj dyk

in the absence of jumps, and where y now denote backward variables which one may regard as spot

values or initial conditions. When probability density is conserved then E[ df ] = 0 and therefore

0 =
∂f

∂t
dt+

N∑
j=1

∂f

∂yj
E[ dyj ] +

1

2

N∑
j,k=1

∂2f

∂yj∂yk
E[ dyj dyk ]

=
∂f

∂t
dt+

N∑
j=1

∂f

∂yj
µj(y) dt+

1

2

N∑
j,k=1

∂2f

∂yj∂yk
gjk dt

from which it follows immediately that

∂f

∂t
+

N∑
j=1

µj(y)
∂f

∂yj
+

1

2

N∑
j,k=1

gjk(y)
∂2f

∂yj∂yk
= 0 . (6.43)

Example

Use the Backward Kolmogorov Equation to construct the characteristic function of Heston’s model

of stochastic volatility, namely

dS = S(r dt+
√
V dW1)

dV = κ(θ − V ) dt+ σ
√
V dW2 ,

(6.44)

where S and V are respectively the spot values of asset price and diffusion, dW1 and dW2 are

increments in the correlated Wiener processes W1 and W2 such that E[dW1dW2] = ρ dt, and the

parameters r (risk-free rate of interest), κ (coefficient of mean reversion), θ (mean level of the rate

of diffusion) and σ (volatility of volatility) take constant values.

Solution

Start by setting Y = logS and applying Ito’s lemma to the first of equations (6.44) gives

dY =
1

S
(Sr dt+ S

√
V dW1) +

1

2

(
− 1

S2

)
S2V dt → dY = (r − V/2) dt+

√
V dW1 .

Let the transitional density of the Heston process be f = f(Y, V, t | y, v, t = T ) in which (Y, V ) are

spot values at time t ≤ T and (y, v) is the terminal state at time T . Thus (Y, V ) are the backward

variables and (y, v) are the forward variables. The Backward Kolmogorov Equation asserts that

∂f

∂t
+ (r − V/2)

∂f

∂Y
+ κ(θ − V )

∂f

∂V
+

1

2

(
V
∂2f

∂Y 2
+ 2ρσV

∂2f

∂Y ∂V
+ σ2V

∂2f

∂V 2

)
= 0 .
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The characteristic function of the transitional density is the Fourier Transform of this density with

respect to the forward variables, that is,

ϕ(Y,R, t) =

∫
R2

f(Y, V, t | y, v, t = T ) ei(ωy y+ωv v) dy dv .

Taking the Fourier transform of the Backward Kolmogorov Equation with respect to the forward

state therefore gives

∂ϕ

∂t
+ (r − V/2)

∂ϕ

∂Y
+ κ(θ − V )

∂ϕ

∂V
+

1

2

(
V
∂2ϕ

∂Y 2
+ 2ρσV

∂2ϕ

∂Y ∂V
+ σ2V

∂2ϕ

∂V 2

)
= 0 . (6.45)

The terminal condition for the Backward Kolmogorov Equation is clearly f(Y, V, T | y, v, t = T ) =

δ(y − Y )δ(v − V ) which in turn means that the terminal condition for the characteristic function is

ϕ(Y,R, T ) = ei(ωy Y+ωv V ). The key idea is that equation (6.45) has a solution in the form

ϕ(Y,R, t) = exp [β0(T − t) + β1(T − t)Y + β2(T − t)V ] (6.46)

where β0(0) = 0, β1(0) = iωy and β2(0) = iωv. To appreciate why this claim is true, let τ = T − t

and note that

∂ϕ

∂t
= −

(dβ0
dτ

+ Y
dβ1
dτ

+ V
dβ2
dτ

)
ϕ ,

∂ϕ

∂Y
= β1ϕ ,

∂ϕ

∂V
= β2ϕ ,

∂2ϕ

∂Y 2
= β21ϕ ,

∂2ϕ

∂Y ∂V
= β1β2ϕ ,

∂2ϕ

∂V 2
= β22ϕ .

Each expression is now substituted into equation (6.45) to get

−
(dβ0
dτ

+ Y
dβ1
dτ

+ V
dβ2
dτ

)
+ (r − V/2)β1 + κ(θ − V )β2 +

1

2

(
V β21 + 2ρσV β1β2 + σ2V β22

)
= 0 .

Ordinary differential equations satisfied by β0, β1 and β2 are obtained by equating to zero the constant

term and the coefficients of Y and V . Thus

dβ0
dτ

= rβ1 + κθβ2 ,

dβ1
dτ

= 0 ,

dβ2
dτ

= −β1
2

− κβ2 +
1

2
(β21 + 2ρσβ1β2 + σ2β22)

(6.47)

with initial conditions β0(0) = 0, β1(0) = iωy and β2(0) = iωv.

6.4 Alternative view of the forward Kolmogorov equation

The derivation of the forward Kolmogorov equation in Section 6.3 was largely of a technical nature

and as such the derivation provided relatively little insight into either the meaning of a stochastic

differential equation or the structure of the forward Kolmogorov equation. In this section the forward

Kolmogorov equation is derived via a two-stage physical argument.
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Suppose that X is an N -dimensional random variable with sample space S and let V be an arbitrary

but fixed N -dimensional volume of the sample with outer boundary ∂V and unit outward normal

direction n. The mass of probability density within V is∫
V
f(t,x) dV .

The dependence of a probability density function on time necessarily means that probability must

“flow” through the sample space S, i.e. there is the notion of a probability flux vector, say

p, which transports probability around the sample space in order to maintain the proposed time

dependence of the probability density function. Conservation of probability requires that the time

rate of change of the probability mass within the volume V must equate to the negative of the total

flux of probability crossing the boundary ∂V of the volume V in the outward direction, i.e.

d

dt

∫
V
f(t,x) dV = −

∫
∂V

N∑
k=1

pknk dA . (6.48)

The divergence theorem is applied to the surface integral on the right hand side of equation (6.48)

and the time derivative is taken inside the left hand side of equation (6.48) to obtain∫
V

∂f(t,x)

∂t
dV = −

∫
∂V

n∑
k=1

∂pk
∂xk

dV .

However, V is an arbitrary volume within the sample space and therefore

∂f(t,x)

∂t
= −

N∑
k=1

∂pk
∂xk

. (6.49)

Equation (6.49) is called a “conservation law” because it embodies the fact that probability is not

destroyed but rather is redistributed in time.

6.4.1 Jumps

Jump processes, whenever present, act to redistribute probability density by a mechanism different

from diffusion and therefore contribute to the right hand side of equation (6.49). Recall that

lim
h→0+

f(x, t+ h |y, t)
h

= ϕ(x |y, t ) ,

then we may think of ϕ(x |y, t ) as the rate of jump transitions from state y at time t to state x at

t+. Evidently the rate of supply of probability density to state x from all other states is simply∫
S
f(t,y )ϕ(x,y) dy

whereas the loss of probability density at state x due to transitions to other states is simply∫
S
f(t,x )ϕ(y,x) dy = f(t,x )

∫
S
ϕ(y,x) dy
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and consequently the net supply of probability to state x from all other states is∫
S
(f(t,y )ϕ(x,y)− f(t,x )ϕ(y,x) ) dy . (6.50)

Thus the final form of the forward Kolmogorov equation taking account of jump processes is

∂f(t,x)

∂t
= −

n∑
k=1

∂pk
∂xk

+

∫
S
(f(t,y)ϕ(x,y)− f(t,x)ϕ(y,x) ) dy , (6.51)

where ϕ(x,y) is the rate of transition from state y to state x. The fact that jump mechanisms simply

redistribute probability density is captured by the identity∫
R

(∫
S

(
f(t,y)ϕ(x,y)− f(t,x)ϕ(y,x)

)
dy

)
dx = 0 .

It is important to recognise that the analysis so far has used no information from the stochastic differ-

ential equation. Clearly the role of the stochastic differential equation is to provide the constitutive

equation for the probability flux.

Special case

An important special case occurs when the intensity of the jump process, say λ(t), is a function of t

alone and is independent of the state x. In this case ϕ(x,y) = λ(t)ψ(x,y) leading to the result that

∂f(t,x)

∂t
= −

n∑
k=1

∂pk
∂xk

+ λ(t)
(∫

S
f(t,y)ψ(x,y) dy − f(t,x)

)
, (6.52)

where we have made the usual assumption that∫
S
ψ(y,x) dy = 1 .

6.4.2 Determining the probability flux from an SDE - One dimension

The probability flux vector is constructed by investigating how probability density at time t is dis-

tributed around the sample space by the mechanism of diffusion. Consider now the stochastic differ-

ential equation

dx = µ(t, x) dt+
√
g(t, x) dW .

This equation asserts that during the interval [t, t + h], “point-density” f(t, x)∆x contained within

an interval of length ∆x centred on x is redistributed according to a Gaussian distribution with

mean value x+ µ(t, x)h+ o(h) and variance g(t, x)h+ o(h) ]. Thus the probability density function

describing the redistribution of probability density f(t, x)∆x is

ϕ(z : h, x) =

exp
[
− (z − x− µ(t, x)h− o(h))2

2g(t, x)h+ o(h)

]
√

2πg(t, x)h+ o(h)
(6.53)
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in which z is the variables of the density. In the analysis to follow the o(h) terms will be ignored in

order to maintain the transparency of the calculation, but it will be clear throughout that o(h) terms

make no contribution to the calculation. The idea is to compute the rate at which probability flows

across the boundary x = ψ where ψ is an arbitrary constant parameter. Figure 6.1 illustrates the

idea of an imbalance between the contribution to the region x < ψ from the region x > ψ and the

contribution to the region x > ψ from the region x < ψ. The rate at which this imbalance develops

determines p.

z x

Density f(t, x)∆V

Figure 6.1: Diffusion of probability

When x ≥ ψ, that is, the state x lies to the right of the boundary x = ψ, the fraction of the density

f(t, x)∆x at time t that diffuses into the region x < ψ is illustrated by the shaded region of Figure

6.1 in the region x < ψ and has value∫
x≥ψ

f(t, x)
(∫

z<ψ
ϕ(z : h, x) dz

)
dx .

Similarly, when x < ψ, the fraction of the density f(t, x)∆x that diffuses into the region x ≥ ψ is

illustrated by the shaded region x ≥ ψ of Figure 6.1 and has value∫
x<ψ

f(t, x)
(∫

z≥ψ
ϕ(z : h, x) dz

)
dx .

This rearrangement of density has taken place over an interval of duration h, and therefore the flux

of probability flowing from the region x < ψ into the region x ≥ ψ is

lim
h→0+

1

h

[ ∫
x<ψ

f(t, x)
(∫

z≥ψ
ϕ(z : h, x) dz

)
dx−

∫
x≥ψ

f(t, x)
(∫

z<ψ
ϕ(z : h, x) dz

)
dx

]
. (6.54)

The value of this limit is computed by L’Hopital’s rule. The key component of this calculation requires

the differentiation of ϕ(z : h, x) with respect to h. This calculation is most efficiently achieved by

logarithmic differentiation from the starting equation

log ϕ(z : h, x) = − log 2π

2
− 1

2
log h− 1

2
log g(t, x)− (z − x− µ(t, x)h)2

2g(t, x)h
.
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Differentiation with respect to h and with respect to zj gives

1

ϕ

∂ϕ

∂h
= − 1

2h
+
µ(t, x)(zk − xk − µk h)

g(t, x)h
+

(z − x− µ(t, x)h)2

2g(t, x)h2
.

1

ϕ

∂ϕ

∂z
= −(z − x− µ(t, x)h)

g(t, x)h
.

(6.55)

Evidently the previous results can be combine to show that ϕ(z : h, x) satisfies the identity

∂ϕ

∂h
= − 1

2h
ϕ− µ(t, x)

∂ϕ

∂z
− 1

2h
(z − x− µ(t, x)h)

∂ϕ

∂z

= − 1

2h

∂[(z − x+ µ(t, x)h)ϕ]

∂z
.

(6.56)

In view of identity (6.59), L’Hopital’s rule applied to equation (6.54) gives

p = lim
h→0+

[ 1

2h

∫
x<ψ

f(t, x)
[
−

∫
z≥ψ

∂[(z − x+ µ(t, x)h)ϕ]

∂z
dz

]
dx

+
1

2h

∫
x≥ψ

f(t, x)
[ ∫

z<ψ

∂[(z − x+ µ(t, x)h)ϕ]

∂z
dz

]
dx

]
,

= lim
h→0+

1

2h

[
−

∫
x<ψ

f(t, x)
(
− (ψ − x+ µ(t, x)h)ϕ

)
dx

+

∫
x≥ψ

f(t, x)
(
(ψ − x+ µ(t, x)h)ϕ

)
dx

]
.

(6.57)

Further simplification gives

p = lim
h→0+

1

2h

∫
R
f(t, x) (ψ − x+ µ(t, x)h)ϕ(ψ;x, h) dx . (6.58)

One way to make further progress is to compute the integral of p with respect to ψ over the [a, b ] such

that a < ψ < b, that is, the point ψ is guaranteed to lie within the interval [a, b ]. The computation

of this integral will require the evaluation of

I =

∫ b

a

(ψ − x+ µ(t, x)h

2h
√
g(t, x)h

)
exp

(
− (ψ − x− µ(t, x)h)2

2g(t, x)h

)
dψ .

Under the change of variable y = (ψ − x− µ(t, x))/
√
g(t, x)h, the integral for I becomes

I =

∫ (b−x−µ(t,x)h)/
√
g(t,x)h

(a−x−µ(t,x)h)/
√
g(t,x)h

(
µ(t, x) +

y
√
g(t, x)h

2h

)
e−y

2/2 dy ,

and therefore

I = µ(t, x)
[
Φ
(b− x− µ(t, x)h√

g(t, x)h

)
− Φ

(a− x− µ(t, x)h√
g(t, x)h

)]
+

√
g(t, x)h

2h

∫ b−x−µ(t,x)h)/
√
g(t,x)h

a−x−µ(t,x)h)/
√
g(t,x)h

ye−y
2/2 dy

= µ(t, x)
[
Φ
(b− x− µ(t, x)h√

g(t, x)h

)
+Φ

(a− x− µ(t, x)h√
g(t, x)h

)]
+

√
g(t, x)h

2h

[
exp

(
− (b− x− µ(t, x)h)2

2g(t, x)h

)
− exp

(
− (a− x− µ(t, x)h)2

2g(t, x)h

) ]
.
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The conclusion of this calculation is that∫ b

a
p(t, ψ) dψ = lim

h→0+

∫
R
f(x)µ(t, x)

[
Φ
(b− x− µ(t, x)h√

g(t, x)h

)
− Φ

(a− x− µ(t, x)h√
g(t, x)h

)]
dx

− lim
h→0+

∫
R
f(x)

√
g(t, x)h

2h

[
exp

(
− (b− x− µ(t, x)h)2

2g(t, x)h

)
− exp

(
− (a− x− µ(t, x)h)2

2g(t, x)h

) ]
dx .

Now consider the value of the limit under each integral. First, it is clear that

lim
h→0+

[
Φ
(b− x− µ(t, x)h√

g(t, x)h

)
− Φ

(a− x− µ(t, x)h√
g(t, x)h

)]
=

[
0 x ∈ (−∞, a) ∪ (b,∞)

1 x ∈ [a, b ]

Second,

lim
h→0+

1√
g(t, x)h

exp
(
− (b− x− µ(t, x)h)2

2g(t, x)h

)
= δ(x− b) ,

lim
h→0+

1√
g(t, x)h

exp
(
− (a− x− µ(t, x)h)2

2g(t, x)h

)
= δ(x− a) .

These limiting values now give that∫ b

a
p(t, ψ) dψ =

∫ b

a
f(t, x)µ(t, x) dx−

∫
R
f(t, x)

[
g(t, x)δ(x− b)− g(t, x)δ(x− a)

]
dx

=

∫ b

a
f(t, x)µ(t, x) dx− [f(t, b)g(t, b)− f(t, a)g(t, a) ] .

(6.59)

Equation (6.59) is now divided by (b − a) and limits taken such that (b − a) → 0+ while retaining

the point ψ within the interval [a.b ]. The result of this calculation is that

p(t, ψ) = µ(t, ψ)f(t, ψ)− ∂ [ g(t, ψ)f(t, ψ) ]

∂ψ
. (6.60)



Chapter 7

Numerical Integration of SDE

The dearth of closed form solutions to stochastic differential equations means that numerical proce-

dures enjoy a prominent role in the development of the subject.

7.1 Issues of convergence

The definition of convergence for a stochastic process is more subtle than the equivalent definition

in a deterministic environment, primarily because stochastic processes, by their very nature, cannot

be constrained to lie within ε of the limiting value for all n > N . Several types of convergence are

possible in a stochastic environment.

The first measure is based on the observation that although individual paths of a stochastic process

behave randomly, the expected value of the process, normally estimated numerically as the average

value over a large number of realisations of the process under identical conditions, behaves determin-

istically. This observation can be used to measure convergence in the usual way. The central limit

theorem indicates that if the variance of the process is finite, then convergence to the expected state

will follow a square-root N law where N is the number of repetitions.

7.1.1 Strong convergence

Suppose that X(t) is the actual solution of an SDE and Xn(t) is the solution based on an iterative

scheme with step size ∆t, we say that Xn exhibits strong convergence to X of order α if

E [ |Xn −X | ] < C (∆t)α (7.1)

Given a numerical procedure to integrate an SDE, we may identify the order of strong convergence

by the following numerical procedure.

1. Choose ∆t and integrate the SDE over an interval of fixed length, say T , many times.

75
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2. Compute the left hand side of inequality (7.1) and repeat this process for different values of ∆t.

3. Regress the logarithm of the left hand side of (7.1) against log(∆t).

If strong convergence of order α is present, the gradient of this regression line will be significant and

its value will be α, the order of strong convergence.

Although it might appear superficially that strong convergence is about expected values and not

about individual solutions, the Markov inequality

Prob ( |X| ≥ A) ≤ E [ |X| ]
A

(7.2)

indicates that the presence of strong convergence of order α offers information about individual

solutions. Take A = (∆t)β then clearly

Prob ( |Xn −X | ≥ (∆t)β) ≤ E [ |Xn −X | ]
(∆t)β

≤ C (∆t)α−β (7.3)

or equivalently

Prob ( |Xn −X | < (∆t)β ) > 1− C (∆t)α−β . (7.4)

For example, take β = α−ε where ε > 0, then the implication of the Markov inequality in combination

with strong convergence is that the solution of the numerical scheme converges to that of the SDE

with probability one as ∆t→ 0 - hence the term strong convergence.

7.1.2 Weak convergence

Strong convergence imposes restrictions on the rate of decay of the mean-of-the-error to zero as

∆t → 0. By contrast, weak convergence involves the error-of-the-mean. Suppose that X(t) is the

actual solution of an SDE and Xn(t) is the solution based on an iterative scheme with step size ∆t,

Xn is said to converge weakly to X with order α if

|E [ f(Xn) ]− E [ f(X) ] | < C (∆t)α (7.5)

where the condition is required to be satisfied for all function f belonging to a prescribed class C of

functions. The identify function f(x) = x is one obvious choice of f . Another choice for C is the class

of functions satisfying prescribed properties of smoothness and polynomial growth.

Clearly the numerical experiment that was described in the section concerning strong convergence

can be repeated, except that the objective of the calculation is now to find the difference in expected

values for each ∆t and not the expected value of differences.

Theorem Let X(t) be an n-dimensional random variable which evolves in accordance with the

stochastic differential equation

dx = a(t,x) dt+B(t,x) dW , x(t0) = X0 (7.6)
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where B(t,x) is an n × m array and dW is an m-dimensional vector of Wiener increments, not

necessarily uncorrelated. If a(t,x) and B(t,x) satisfy the conditions

||ϕ(t,x)− ϕ(t,y)|| ≤ c||x− y|| , ||ϕ(t,x)|| ≤ c(1 + ||x||)

for constant c, then the initial value problem (7.6) has a solution in the vicinity of t = t0, and this

solution is unique.

7.2 Deterministic Taylor Expansions

The Taylor series expansion of a function of a deterministic variable is well known. Since the existence

of the Taylor series is a property of the function and not the variable in which the function is

expanded, then the Taylor series of a function of a stochastic variable is possible. As a preamble to

the computation of these stochastic expansions, the procedure is first described in the context of an

expansion in a deterministic function.

Suppose xi(t) satisfies the differential equation dxi/dt = ai(t,x) and let f : R → R be a continuously

differentiable function of t and x then the chain rule gives

df

dt
=
∂f

∂t
+

n∑
k=1

∂f

∂xk

dxk
dt

=
∂f

∂t
+

n∑
k=1

ak
∂f

∂xk
−→ df

dt
= Lf (7.7)

where the linear operator L is defined in the obvious way. By construction,

f(t,xt) = f(t0,x0) +

∫ t

t0

Lf(s,xs) ds ,

xt = x0 +

∫ t

t0

a(s,xs) ds .

(7.8)

Now apply result (7.8) to a(t,xt) to obtain

a(s,xs) = a(t0,x0) +

∫ s

t0

La(u,xu) du , (7.9)

and this result, when incorporated into (7.8) gives

xt = x0 +

∫ t

t0

(
a(t0,x0) +

∫ s

t0

La(u,xu) du

)
ds

= x0 + a(t0,x0)

∫ t

t0

ds+

∫ t

t0

∫ s

t0

La(u,xu) du ds .

(7.10)

The process is now repeated with f in equation (7.8) replaced with La(u, xu). The outcome of this

operation is

xt = x0 + a(t0,x0)

∫ t

t0

ds+

∫ t

t0

∫ s

t0

La(u,xu) du ds

= x0 + a(t0,x0)

∫ t

t0

ds+

∫ t

t0

∫ s

t0

(
La(t0,x0) +

∫ u

t0

L2a(w,xw) dw

)
du ds

= x0 + a(t0,x0)

∫ t

t0

ds+ La(t0,x0)

∫ t

t0

∫ s

t0

du ds+

∫ u

t0

∫ t

t0

∫ s

t0

L2a(w,xw) dw du ds

(7.11)



78 CHAPTER 7. NUMERICAL INTEGRATION OF SDE

The procedure may be repeated provided the requisite derivatives exist. By recognising that∫ t

t0

∫ u

t0

· · ·
∫ s

t0

dw · · · du =
(t− t0)

k

k!

it follows directly from (7.11) that

xt = x0 + a(t0,x0) t+ La(t0,x0)
(t− t0)

2

2
+R3 , R3 =

∫ u

t0

∫ t

t0

∫ s

t0

L2a(w,xw) dw du ds . (7.12)

7.3 Stochastic Ito-Taylor Expansion

The idea developed in the previous section for deterministic Taylor expansions will now be applied to

the calculation of stochastic Taylor expansions. Suppose that x(t) satisfies the initial value problem

dxk = ak(t,x) dt+ bk α(t,x) dW
α
t , x(0) = x0 . (7.13)

The first task is to differentiate f(t,x) with respect to t using Ito’s Lemma. The general Ito result is

derived from the Taylor expansion

df =
∂f

∂t
dt+

n∑
k=1

∂f

∂xk
dxk +

1

2

[ ∂2f
∂t2

(dt)2 + 2

n∑
k=1

∂2f

∂t∂xk
dt dxk +

n∑
j,k=1

∂2f

∂xj∂xk
dxk dxj

]
+ · · · .

The idea is to expand this expression to order dt, ignoring all terms of order higher than dt since

these will vanish in the limiting process. The first step in the derivation of Ito’s lemma is to replace

dxk from the stochastic differential equation (7.13) in the previous equation. All terms which are

overtly o(dt) are now discarded to obtain the reduced equation

df =
∂f

∂t
dt+

n∑
k=1

∂f

∂xk

[
ak(t,x) dt+ bk α(t,x) dW

α
t

]
+

1

2

[ n∑
j,k=1

∂2f

∂xj∂xk
bk α(t,x) dW

α
t bj β(t,x) dW

β
t

]
+ · · ·

For simplicity, now suppose that dWα are uncorrelated Wiener increments so that

df =
[ ∂f
∂t

+

n∑
k=1

∂f

∂xk
ak(t,x) +

1

2

n∑
j,k=1

∂2f

∂xj∂xk
b k α(t,x) bj α(t,x)

]
dt+

n∑
k=1

∂f

∂xk
b k α(t,x) dW

α
t

which in turn leads to the integral form

f(t, xt) = f(t0, x0) +

∫ t

t0

L0 f(s,xs) ds+

∫ t

t0

Lα f(s,xs) dW
α
s (7.14)

in which the linear operators L0 and Lα are defined by the formulae

L0 f =
∂f

∂t
+

n∑
k=1

∂f

∂xk
ak(t,x) +

1

2

n∑
j,k=1

∂2f

∂xj∂xk
b k α(t,x) bj α(t,x) ,

Lα f =

n∑
k=1

∂f

∂xk
b k α(t,x) .

(7.15)
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In terms of these operators, it now follows that

f(t,xt) = f(t0,x0) +

∫ t

t0

L0 f(s,xs) ds+

∫ t

t0

Lα f(s,xs) dW
α
s (7.16)

xk(t) = xk(0) +

∫ t

t0

ak(s,xs) ds+

∫ t

t0

b k α(s,xs) dW
α
s . (7.17)

By analogy with the treatment of the deterministic case, the Ito formula (7.16) is now applied to

ak(t,x) and b k α(t,x) to obtain

ak(t,xt) = ak(t0,x0) +

∫ t

t0

L0 ak(s,xs) ds+

∫ t

t0

Lα ak(s,xs) dW
α
s

b k α(t,xt) = b k α(t0,x0) +

∫ t

t0

L0 b k α(s,xs) ds+

∫ t

t0

Lβ b k α(s,xs) dW
β
s

(7.18)

Formulae (7.18) are now applied to the right hand side of equation (7.17) to obtain initially

xk(t) = xk(0) +

∫ t

t0

(
ak(t0,x0) +

∫ s

t0

L0 ak(u,xu) du+

∫ s

t0

Lα ak(u,xu) dW
α
u

)
ds

+

∫ t

t0

(
b k α(t0,x0) +

∫ s

t0

L0 b k α(u,xu) du+

∫ s

t0

Lβ b k α(u,xu) dW
β
u

)
dWα

s

which simplifies to the stochastic Taylor expansion

xk(t) = xk(0) + ak(t0,x0)

∫ t

t0

ds+ b k α(t0,x0)

∫ t

t0

dWα
s +R

(2)
k (7.19)

where R
(2)
k denotes the remainder term

R
(2)
k =

∫ t

t0

∫ s

t0

L0 ak(u,xu) du ds+

∫ t

t0

∫ s

t0

Lα ak(u,xu) dW
α
u ds

+

∫ t

t0

∫ s

t0

L0 b k α(u,xu) du dW
α
s +

∫ t

t0

∫ s

t0

Lβ b k α(u,xu) dW
β
u dW

α
s .

(7.20)

Each term in the remainder R2 may now be expanded by applying the Ito expansion procedure (7.16)

in the appropriate way. Clearly,∫ t

t0

∫ s

t0

L0 ak(u,xu) du ds = L0 ak(t0,x0)

∫ t

t0

∫ s

t0

du ds

+

∫ t

t0

∫ s

t0

∫ u

t0

L0L0 ak(w,xw) dw du ds+

∫ t

t0

∫ s

t0

∫ u

t0

Lγ L0 ak(w,xw) dW
γ
w du ds

∫ t

t0

∫ s

t0

Lα ak(u,xu) dW
α
u ds = Lα ak(t0,x0)

∫ t

t0

∫ s

t0

dWα
u ds

+

∫ t

t0

∫ s

t0

∫ u

t0

L0 Lα ak(w,xw) dw dW
α
u ds+

∫ t

t0

∫ s

t0

∫ u

t0

Lγ Lα ak(w,xw) dW
γ
w dW

α
u ds

∫ t

t0

∫ s

t0

L0 b k α(u,xu) du dW
α
s = L0 b k α(t0,x0)

∫ t

t0

∫ s

t0

du dWα
s
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+

∫ t

t0

∫ s

t0

∫ u

t0

L0L0 b k α(w,xw) dw du dW
α
s +

∫ t

t0

∫ s

t0

∫ u

t0

Lγ L0b k α(w, xw) dW
γ
w du dW

α
s

∫ t

t0

∫ s

t0

Lβ b k α(u,xu) dW
β
u dW

α
s = Lβ b k α(t0,x0)

∫ t

t0

∫ s

t0

dW β
u dW

α
s

+

∫ t

t0

∫ s

t0

∫ u

t0

L0 Lβ b k α(w, xw) dw dW
β
u dW

α
s +

∫ t

t0

∫ s

t0

∫ u

t0

Lγ Lβ b k α(w, xw) dW
γ
w dW

β
u dW

α
s .

The general principle is apparent in this expansion. One must evaluate stochastic integrals involving

combinations of deterministic (du) and stochastic (dW ) differentials. For our purposes, it is enough

to observe that

xk(t) = xk(0) + ak(t0,x0)

∫ t

t0

ds+ b k α(t0,x0)

∫ t

t0

dWα
s + L0 ak(t0,x0)

∫ t

t0

∫ s

t0

du ds

+ Lα ak(t0,x0)

∫ t

t0

∫ s

t0

dWα
u ds+ L0 b k α(t0,x0)

∫ t

t0

∫ s

t0

du dWα
s

+ Lβ b k α(t0,x0)

∫ t

t0

∫ s

t0

dW β
u dW

α
s +R

(3)
k .

(7.21)

This solution can be expressed more compactly in terms of the multiple Ito integrals

Iijk··· =

∫ ∫
· · ·

∫
dW i dW j · · · dW k

where dW k = ds if k = 0 and dW k = dWα
s if k = α > 0. Using this representation, the solution

(7.21) takes the short hand form

xk(t) = xk(0) + ak(t0,x0) I0 + b k α(t0,x0) Iα + L0 ak(t0,x0) I00 + Lα ak(t0,x0) Iα 0

+ L0 b k α(t0,x0) I0α + Lβ b k α(t0,x0) Iβ α +R
(3)
k .

(7.22)

7.4 Stochastic Stratonovich-Taylor Expansion

The analysis developed in the previous section for the Ito stochastic differential equation

dxk = ak(t,x) dt+
∑
α

bk α(t,x) dW
α
t , x(0) = x0 . (7.23)

can be repeated for the Stratonovich representation of equation (7.23), namely,

dxk = āk(t,x) dt+
∑
α

bk α(t,x) ◦ dWα
t , x(0) = x0 . (7.24)

in which

āi = ai −
1

2

∑
k,α

b k α
∂b i α
∂xk

.

The first task is to differentiate f(t,x) with respect to t using the Stratonovich form of Ito’s Lemma.

It can be demonstrated for uncorrelated Wiener increments dWα that

f(t, xt) = f(t0, x0) +

∫ t

t0

L̄0 f(s,xs) ds+

∫ t

t0

L̄α f(s,xs) ◦ dWα
s (7.25)
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in which the linear operators L̄0 and L̄α are defined by the formulae

L̄0 f =
∂f

∂t
+

∑
k

∂f

∂xk
āk(t,x) , L̄α f =

∑
k

∂f

∂xk
b k α(t,x) . (7.26)

In terms of these operators, it now follows that

f(t,xt) = f(t0,x0) +

∫ t

t0

L̄0 f(s,xs) ds+

∫ t

t0

L̄α f(s,xs) ◦ dWα
s (7.27)

xk(t) = xk(0) +

∫ t

t0

āk(s,xs) ds+

∫ t

t0

b k α(s,xs) ◦ dWα
s . (7.28)

The analysis of the previous section is now repeated to yield

xk(t) = xk(0) + āk(t0,x0)

∫ t

t0

ds+ b k α(t0,x0)

∫ t

t0

◦ dWα
s + L̄0 āk(t0,x0)

∫ t

t0

∫ s

t0

du ds

+ L̄α āk(t0,x0)

∫ t

t0

∫ s

t0

◦ dWα
u ds+ L̄0 b k α(t0,x0)

∫ t

t0

∫ s

t0

du ◦ dWα
s

+ L̄β b k α(t0,x0)

∫ t

t0

∫ s

t0

◦ dW β
u ◦ dWα

s +R
(3)
k .

(7.29)

This solution can be expressed more compactly in terms of the multiple Stratonovich integrals

Jijk··· =

∫ ∫
· · ·

∫
◦ dW i ◦ dW j · · · ◦ dW k

where dW k = ds if k = 0 and dW k = ◦ dWα
s if k = α > 0. Using this representation, the solution

(7.29) takes the short hand form

xk(t) = xk(0) + āk(t0,x0) J0 +
∑
α

b k α(t0,x0) Jα + L̄0 āk(t0,x0) J00

+
∑
α

L̄α āk(t0,x0) Jα 0L̄
0 b k α(t0,x0) J0α +

∑
α,β

L̄β b k α(t0,x0) Jβ α +R
(3)
k .

(7.30)

7.5 Euler-Maruyama algorithm

The Euler-Maruyama algorithm is the simplest numerical scheme for the solution of SDE’s, being

the stochastic equivalent of the deterministic Euler scheme. The algorithm is

xk(t) = xk(0) + ak(t0,x0) I0 +
∑
α

b k α(t0,x0) Iα . (7.31)

It follows directly from the definitions of Iijk··· that

I0 = (t− t0) , Iα =Wα(t)−Wα(t0)

and consequently

xk(t) = xk(0) + ak(t0,x0) (t− t0) +
∑
α

b k α(t0,x0) (W
α(t)−Wα(t0)) . (7.32)
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In practice, the interval [a, b] is divided into n subintervals of length h where h = (b − a)/n. The

Euler-Maruyama scheme now becomes

xj+1
k = xjk + ak(tj ,xj)h+

∑
α

b k α(tj ,xj)∆W
α
j , ∆Wα

j ∼ N(0,
√
h) (7.33)

where xjk denotes the value of the k-th component of x at time tj = t0 + jh. It may be shown that

the Euler-Maruyama has strong order of convergence γ = 1/2 and weak order of convergence γ = 1.

7.6 Milstein scheme

The principal determinant of the accuracy of the Euler-Maruyama is the stochastic term which is in

practice
√
h accurate. Therefore, to improve the quality of the Euler-Maruyama scheme, one should

first seek to improve the accuracy of the stochastic term. Equation (7.22) indicates that the accuracy

of the Euler-Maruyama scheme can be improved by including the term∑
α,β

Lβ b k α(t0,x0) Iβ α

in the Euler-Maruyama algorithm (7.33). This now requires the computation of

Iβ α =

∫ t

t0

∫ s

t0

dW β
u dW

α
s =

∫ t

t0

(W β(s)−W β(t0)) dW
α
s .

When α = β, it has been seen in previous analysis that

Iαα =

∫ t

t0

(Wα(s)−Wα(t0)) dW
α
s

=
1

2

[
(Wα(t))2 − (Wα(t0))

2 − (t− t0)
]
−Wα(t0) (W

α(t)−Wα(t0))

=
1

2

[ (
Wα(t)−Wα(t0)

)2
− (t− t0)

]
.

When α ̸= β, however, Iαβ is not just a combination of (Wα(s)−Wα(t0)) and (W β(s)−W β(t0)). The

value must be approximated even in this apparently straightforward case. Therefore, the numerical

solution of systems of SDEs in which the evolution of the solution is characterised by more than one

independent stochastic process is likely to be numerically intensive by any procedure other than the

Euler-Maruyama algorithm. However, one exception to this working rule occurs whenever symmetry

is present in the respect that

Lβ b k α(t0,x0) = Lα b k β(t0,x0) .

In this case,

Lβ b k α(t0,x0) Iβ α =
1

2
Lβ b k α(t0,x0) ( Iβ α + Iαβ )

which can now be computed from the identity

Iβ α + Iαβ = (W β(t)−W β(t0) )(W
α(t)−Wα(t0) ) .
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For systems of SDEs governed by a single Wiener process, it is relatively easy to develop higher order

schemes. For the system

dxk = ak(t,x) dt+ bk(t,x) dWt , x(0) = x0 (7.34)

the Euler-Maruyama algorithm is

xj+1
k = xjk + ak(tj ,xj)h+ bk(tj ,xj)∆Wj , ∆Wj ∼ N(0,

√
h) (7.35)

and the Milstein improvement to this algorithm is

xj+1
k = xjk+ak(tj ,xj)h+ bk(tj ,xj)∆Wj +

1

2
L1 bk(tj ,xj) [ (∆Wj)

2−h] , ∆Wj ∼ N(0,
√
h) . (7.36)

The operator L1 is defined by the rule L1 f =
∑

k
∂f
∂xk

bk(t,x) and this in turn yields the Milstein

scheme

xj+1
k = xjk + ak(tj ,xj)h+ bk(tj ,xj)∆Wj +

1

2

∑
n

bn
∂bk(tj ,xj)

∂xn
[ (∆Wj)

2 − h] , (7.37)

where ∆Wj ∼ N(0,
√
h). For example, in one dimension, the SDE dx = a dt+ b dWt gives rise to the

Milstein scheme

xj+1 = xj + a(tj , x
j)h+ b(tj , x

j)∆Wj +
b

2

db(tj , x
j)

dx
[ (∆Wj)

2 − h] , ∆Wj ∼ N(0,
√
h) . (7.38)

7.6.1 Higher order schemes

For general systems of SDEs its already clear that higher order schemes are difficult unless the

equations possess a high degree of symmetry. Whenever the SDEs are dependent on a single stochastic

process, some progress may be possible. To improve upon the Milstein scheme, it is necessary to

incorporate all terms which behave like h3/2 into the numerical scheme. Expression (7.22) overtly

contains two such terms in

Lα ak(t0,x0) Iα 0 + L0 b k α(t0,x0) I0α

but there is one further term hidden in R
(3)
k , namely

Lγ Lβ b k α(t0, x0)

∫ t

t0

∫ s

t0

∫ u

t0

dW γ
w dW

β
u dW

α
s = Lγ Lβ b k α(t0, x0) Iγ β α .

Restricting ourselves immediately to the situation of a single Wiener process, the additional terms

to be added to Milstein’s scheme to improve the accuracy to a strong Taylor scheme of order 3/2 are

L1 ak(t0,x0) I10 + L0 bk(t0,x0) I01 + L1 L1 bk(t0, x0) I111 (7.39)

in which the operators L0 and L1 are defined by

L0 f =
∂f

∂t
+

∑
k

∂f

∂xk
ak(t,x) +

1

2

∑
j,k

∂2f

∂xj∂xk
bk(t,x) bj(t,x) , L1 f =

∑
k

∂f

∂xk
bk(t,x) . (7.40)
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The values of I01, I10 and I111 have been computed previously in the exercises of Chapter 4 for the

interval [a, b]. The relevant results with respect to the interval [t0, t] are

I10 + I01 = (t− t0)(Wt −W0) ,

I111 =
(Wt −W0)

6

[
(Wt −W0)

2 − 3(t− t0)
]
.

(7.41)

Formulae (7.41) determine the coefficients of the new terms to be added to Milstein’s algorithm to

generate a strong Taylor approximation of order 3/2. Of course, the Riemann integral I10 must still

be determined. This calculation is included as a problem in Chapter 4, but its outcome is that I10

is a Gaussian process with a mean value of zero, variance (t− t0)
3/3 and has correlation (t− t0)

2/2

with (Wt −W0). Thus ∆Zj = I10 may be simulated as a Gaussian deviate with mean zero, variance

h3/3 and such that it has correlation h2/2 with ∆Wj . The extra terms are

∑
m

bm ak ,m∆Zj +
[ ∂bk
∂t

+
∑
m

am
∂bk
∂xm

+
1

2

∑
m,r

bm br
∂2bk

∂xm∂xr

]
(h∆Wj −∆Zj)

+
1

6

∑
r,m

br
∂

∂xr

(
bm

∂bk
∂xm

)
(∆Wj)[ (∆Wj)

2 − 3h ]
(7.42)

where all derivatives are understood to be evaluated at time tj and state xj . Consider, for example,

the simplest scenario of a single equation. In this case, the extra terms (7.42) become

b a′∆Zj +
[
bt + a b′ +

1

2
b2 b′′ ] (h∆Wj −∆Zj) +

1

6
b ( b b′)′ (∆Wj)[ (∆Wj)

2 − 3h ]

= b a′∆Zj +
[
bt + a b′ +

1

2
b2 b′′ ] (h∆Wj −∆Zj) +

b

2
[ (b′)2 + b′′ ] [

(∆Wj)
2

3
− h ]∆Wj .

(7.43)



Chapter 8

Exercises on SDE

Exercises on Chapter 2

Q 1. LetW1(t) andW2(t) be two Wiener processes with correlated increments ∆W1 and ∆W2 such

that E [∆W1∆W2] = ρ∆t. Prove that E [W1(t)W2(t)] = ρ t. What is the value of E [W1(t)W2(s)]?

Q 2. Let W (t) be a Wiener process and let λ be a positive constant. Show that λ−1W (λ2t) and

tW (1/t) are each Wiener processes.

Q 3. Suppose that (ε1 , ε2) is a pair of uncorrelated N (0, 1) deviates.

(a) By recognising that ξx = σx ε1 has mean value zero and variance σ2x, construct a second deviate

ξy with mean value zero such that the Gaussian deviate X = [ ξx , ξy ]
T has mean value zero

and correlation tensor

Ω =

 σ2x ρ σxσy

ρ σxσy σ2y


where σx > 0, σy > 0 and | ρ | < 1.

(b) Another possible way to approach this problem is to recognise that every correlation tensor is

similar to a diagonal matrix with positive entries. Let

α =
σ2x − σ2y

2
, β =

1

2

√
(σ2x + σ2y)

2 − 4(1− ρ2)σ2xσ
2
y =

√
α2 − ρ2σ2xσ

2
y .

Show that

Q =
1√
2β

 √
β + α −

√
β − α√

β − α
√
β + α


is an orthogonal matrix which diagonalises Ω, and hence show how this idea may be used to

find X = [ ξx , ξy ]
T with the correlation tensor Ω.

85
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(c) Suppose that (ε1, . . . , εn) is a vector of n uncorrelated Gaussian deviates drawn from the dis-

tribution N (0, 1). Use the previous idea to construct an n-dimensional random column vector

X with correlation structure Ω where Ω is a positive definite n× n array.

Q 4. Let X be normally distributed with mean zero and unit standard deviation, then Y = X2 is

said to be χ2 distributed with one degree of freedom.

(a) Show that Y is Gamma distribution with λ = ρ = 1/2.

(b) What is now the distribution of Z = aX2 if a > 0 and X ∼ N(0, σ2).

(b) If X1, · · · , Xn are n independent Gaussian distributed random variables with mean zero and

unit standard deviation, what is the distribution of Y = XTX where X is the n dimensional

column vector whose k-th entry is Xk.

Exercises on Chapter 3

Q 5. Calculate the bounded variation (when it exists) for the functions

(a) f(x) = |x| x ∈ [−1, 2] (b) g(x) = log x x ∈ (0, 1]

(c) h(x) = 2x3 + 3x2 − 12x+ 5 x ∈ [−3, 2] (d) k(x) = 2 sin 2x x ∈ [π/12, 5π/4]

(e) n(x) = H(x)−H(x− 1) x ∈ R (f) m(x) = (sin 3x)/x x ∈ [−π/3, π/3] .

Q 6. Use the definition of the Riemann integral to demonstrate that

(a)

∫ 1

0
x dx =

1

2
, (b)

∫ 1

0
x2 dx =

1

3
.

You will find useful the formulae
∑n

k=1 k = n(n+ 1)/2 and
∑n

k=1 k
2 = n(n+ 1)(2n+ 1)/6.

Q 7. The functions f , g and h are defined on [0, 1] by the formulae

(a) f(x) =

 x sin(π/x) x > 0

0 x = 0

(b) g(x) =

 x2 sin(π/x) x > 0

0 x = 0

(c) h(x) =

 (x/ log x) sin(π/x) x > 0

0 x = 0, 1

Determine which functions have bounded variation on the interval [0, 1].
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Exercises on Chapter 4

Q 8. Prove that ∫ b

a
(dWt)

2G(t) =

∫ b

a
G(t) dt

Q 9. Prove that ∫ b

a
Wn dWt =

1

n+ 1

[
W (b)n+1 −W (a)n+1

]
− n

2

∫ b

a
Wn−1 dt .

Q 10. The connection between the Stratonovich and Ito integrals relied on the claim that

lim
n→∞

E
[ n∑
k=1

∂f(tk−1Wk−1)

∂W

(
(Wk−1/2 −Wk−1)(Wk −Wk−1)−

tk − tk−1

2

) ]2
= 0

provided E [ |∂f(t,W )/∂W |2 ] is integrable over the interval [a, b]. Verify this unsubstantiated claim.

Q 11. Compute the value of

Φ =

∫ b

a
Wt dWt

where the definition of the integral is based on the choice ξk = (1− λ)tk−1 + λtk and λ ∈ [0, 1].

Q 12. Solve the stochastic differential equation

dxt = a(t) dt+ b(t) dWt , x0 = X0

where X0 is constant. Show that the solution xt is a Gaussian deviate and find its mean and variance.

Q 13. The stochastic integrals I01 and I10 defined by

I10 =

∫ b

a

∫ s

0
dWu ds , I01 =

∫ b

a

∫ s

0
du dWs .

occur frequently in the numerical solution of stochastic differential equations. Show that

I10 + I01 = (b− a)(Wb −Wa) .

Q 14. The stochastic integrals I111 defined by

I111 =

∫ t

a

∫ s

a

∫ u

a
dWw dWu dWs

occurs frequently in the numerical solution of stochastic differential equations. Show that

I111 =
(Wb −Wa)

6

[
(Wb −Wa)

2 − 3(b− a)
]
.

Q 15. Show that the value of the Riemann integral

I10 =

∫ b

a

∫ s

0
dWu ds

may be simulated as a Gaussian deviate with mean value zero, variance (b− a)3/3 and such that its

correlation with (Wb −Wa) is (b− a)2/2.
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Exercises on Chapter 5

Q 16. Solve the degenerate Ornstein-Uhlenbeck stochastic initial value problem

dx = −αx+ σ dW , x(0) = x0

in which α and σ are positive constants and x0 is a random variable. Deduce that

E [X ] = E [x0 ] e
−α t , V [X ] = V [x0 ] e

−2αt +
σ2

2α
[ 1− e−2αt) ] .

Q 17. It is given that the instantaneous rate of interest satisfies the equation

dr = µ(t, r) dt+
√
g(t, r) dW . (8.1)

Let B(t, R) be the value of a zero-coupon bond at time t paying one dollar at maturity T . Show that

B(t, R) is the solution of the partial differential equation

∂B

∂t
+ µ(t, r)

∂B

∂r
+
g(t, r)

2

∂2B

∂r2
= rB (8.2)

with terminal boundary condition B(T, r) = 1.

Q 18. It is given that the solution of the initial value problem

dx = −αx+ σ x dW , x(0) = x0

in which α and σ are positive constants is

x(t) = x(0) exp
[
− (α+ σ2/2)t+ σW (t)

]
Show that

E [X ] = x0 e
−α t , V [X ] = e−2α t(eσ

2 t − 1)x20 .

Q 19. Benjamin Gompertz (1840) proposed a well-known law of mortality that had the important

property that financial products based on male and female mortality could be priced from a single

mortality table with an age decrement in the case of females. Cell populations are also well-know to

obey Gompertzian kinetics in which N(t), the population of cells at time t, evolves according to the

ordinary differential equation
dN

dt
= αN log

(M
N

)
,

where M and α are constants in which M represents the maximum resource-limited population of

cells. Write down the stochastic form of this equation and deduce that ψ = logN satisfies an OU

process. Further deduce that mean reversion takes place about a cell population that is smaller than

M , and find this population.
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Q 20. A two-factor model of the instantaneous rate of interest, r(t), proposes that r(t) = r1(t)+r2(t)

where r1(t) and r2(t) satisfy the square-root processes

dr1 = α1(θ1 − r1) dt+ σ1
√
r1 dW1 ,

dr2 = α2(θ2 − r2) dt+ σ2
√
r2 dW2 ,

(8.3)

in which dW1 and dW2 are independent increments in the Wiener processes W1 and W2. Let

B(t, R1, R2) be the value of a zero-coupon bond at time t paying one dollar at maturity T .

Construct the partial differential equation satisfied by B(t, R1, R2) and write down the terminal

boundary condition for this equation.

Q 21. Solve the stochastic differential equation

dxt = a(t) dt+ b(t) dWt , x0 = X0

where X0 is constant. Show that the solution xt is a Gaussian deviate and find its mean and variance.

Q 22. Solve the stochastic differential equation

dxt = − xt dt

1 + t
+
dWt

1 + t
, x0 = 0 .

Q 23. Solve the stochastic differential equation

dxt = −xt dt
2

+
√
1− x2t dWt , x0 = a ∈ [−1, 1] .

Q 24. Solve the stochastic differential equation

dxt = dt+ 2
√
xt dWt , x(0) = x0 .

Q 25. Solve the stochastic differential equation

dx = [ a(t) + b(t)x ] dt+ [ c(t) + d(t)x ] dWt

by making the change of variable y(t) = x(t)ϕ(t) where ϕ(t) is to be chosen appropriately.

Q 26. In an Ornstein-Uhlenbeck process, x(t), the state of a system at time t, satisfies the stochastic

differential equation

dx = −α(x−X) dt+ σ dWt

where α and σ are positive constants and X is the equilibrium state of the system in the absence of

system noise. Solve this SDE. Use the solution to explain why x(t) is a Gaussian process, and deduce

its mean and variance.
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Q 27. Let x = (x1, . . . , xn) be the solution of the system of Ito stochastic differential equations

dxk = ak dt+ bk α dWα

where the repeated Greek index indicates summation from α = 1 to α = m. Show that x =

(x1, . . . , xn) is the solution of the Stratonovich system

dxk =
[
ak −

1

2
bj αbk α,j

]
dt+ bk α ◦ dWα .

Let ϕ = ϕ(t,x) be a suitably differentiable function of t and x. Show that ϕ is the solution of the

stochastic differential equation

dϕ =
[ ∂ϕ
∂t

+ āk
∂ϕ

∂xk

]
dt+

∂ϕ

∂xk
bk α ◦ dWα

where āk = ak − bk α,j bj α/2.

Q 28. The displacement x(t) of the harmonic oscillator of angular frequency ω satisfies ẍ = −ω2x.

Let z = ẋ+ iωx. Show that the equation for the oscillator may be rewritten

dz

dt
= iωz .

The frequency of the oscillator is randomized by the addition of white noise of standard deviation

σ to give random frequency ω + σξ(t) where ξ ∼ N(0, 1). Determine now the stochastic differential

equation satisfied by z.

Solve this SDE under the assumption that it should be interpreted as a Stratonovich equation, and

use the solution to construct expressions for

(a) E [ z(t) ] (b) E [ z(t) z(s) ] (c) E [ z(t) z̄(s) ] .

Exercises on Chapter 6

Q 29. It has been established in a previous example that the price B(t, R) of a zero-coupon bond

at time t and spot rate R paying one dollar at maturity T satisfies the Bond Equation

∂B

∂t
+ µ(t, r)

∂B

∂r
+
g(t, r)

2

∂2B

∂r2
= rB

with terminal condition B(T, r) = 1 when the instantaneous rate of interest evolves in accordance

with the stochastic differential equation dr = µ(t, r) dt+
√
g(t, r) dW .

The popular square-root process proposed by Cox, Ingersol and Ross, commonly called the CIR

process, corresponds to the choices µ(t, r) = α(θ − r) and g(t, r) = σ2r. It is given that the anzatz

B(t, r) = exp[β0(T − r) + β1(T − t)r] is a solution of the Bond Equation in this case provided the

coefficient functions β0(T−t) and β1(T−t) satisfy a pair of ordinary differential equations. Determine

these equations with their boundary conditions.
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Solve these ordinary differential equations and deduce the value of B(t, R) where R is the spot rate

of interest.

Q 30. In a previous exercise it has been shown that the price B(t, R1, R2) of a zero-coupon bond

at time t paying one dollar at maturity T satisfies the partial differential equation

∂B

∂t
+ α1(θ1 − r1)

∂B

∂r1
+ α2(θ2 − r2)

∂B

∂r2
+
σ21r1
2

∂2B

∂r21
+
σ22r2
2

∂2B

∂r22
= (r1 + r2)B ,

when the instantaneous rate of interest, r(t), is driven by a two-factor model in which r(t) = r1(t) +

r2(t) in which r1(t) and r2(t) evolve stochastically in accordance with the equations

dr1 = α1(θ1 − r1) dt+ σ1
√
r1 dW1 ,

dr2 = α2(θ2 − r2) dt+ σ2
√
r2 dW2 ,

(8.4)

where dW1 and dW2 are independent increments in the Wiener processes W1 and W2.

Given that the required solution has generic solution B(t, r1, r2) = exp[β0(T − r) + β1(T − t)r1 +

β2(T − t)r2], construct the ordinary differential equations satisfied by the coefficient functions β0, β1

and β2. What are the appropriate initial conditions for these equations?

Q 31. The position x(t) of a particle executing a uniform random walk is the solution of the

stochastic differential equation

dxt = µdt+ σ dWt , x(0) = X ,

where µ and σ are constants. Find the density of x at time t > 0.

Q 32. The position x(t) of a particle executing a uniform random walk is the solution of the

stochastic differential equation

dxt = µ(t) dt+ σ(t) dWt , x(0) = X ,

where µ and σ are now prescribed functions of time. Find the density of x at time t > 0.

Q 33. The state x(t) of a particle satisfies the stochastic differential equation

dxt = a dt+ b dWt , x(0) = X ,

where a is a constant vector of dimension n, b is a constant n ×m matrix and dW is a vector of

Wiener increments with m×m covariance matrix Q. Find the density of x at time t > 0.

Q 34. The state x(t) of a system evolves in accordance with the stochastic differential equation

dxt = µx dt+ σ x dWt , x(0) = X ,

where µ and σ are constants. Find the density of x at time t > 0.
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Q 35. The state x(t) of a system evolves in accordance with the Ornstein-Uhlenbeck process

dx = −α (x− β) dt+ σ dWt , x(0) = X ,

where α, β and σ are constants. Find the density of x at time t > 0.

Q 36. If the state of a system satisfies the stochastic differential equation

dx = a(x, t) dt+ b(x, t) dW , x(0) = X ,

write down the initial value problem satisfied by f(x, t), the probability density function of x at time

t > 0. Determine the initial value problem satisfied by the cumulative density function of x.

Q 37. Cox, Ingersoll and Ross proposed that the instantaneous interest rate r(t) should follow the

stochastic differential equation

dr = α(θ − r)dt+ σ
√
r dW , r(0) = r0 ,

where dW is the increment of a Wiener process and α, θ and σ are constant parameters. Show that

this equation has associated transitional probability density function

f(t, r) = c
(v
u

)q/2
e−(

√
u−

√
v)2 e−2

√
uv Iq(2

√
uv) ,

where Iq(x) is the modified Bessel function of the first kind of order q and the functions c, u, v and

the parameter q are defined by

c =
2α

σ2(1− e−α(t−t0))
, u = cr0 e

−α(t−t0) , v = cr , q =
2αθ

σ2
− 1 .

Exercises on Chapter 7

Q 38. Consider the problem of numerically integrating the stochastic differential equation

dx = a(t, x) dt+ b(t, x) dW , x(0) = X0 .

Develop an iterative scheme to integrate this equation over the interval [0, T ] using the Euler-

Maruyama algorithm.

It is well-know that the Euler-Maruyama algorithm has strong order of convergence one half and

weak order of convergence one. Explain what programming strategy one would use to demonstrate

these claims.

Q 39. Compute the stationary densities for the stochastic differential equations

(a) dX = (β − αX) dt+ σ
√
X dW
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(b) dX = −α tanX dt+ σ dW

(c) dX = [(θ1 − θ2) cosh(X/2)− (θ1 + θ2) sinh(X/2)] cosh(X/2) dt+ 2 cosh(X/2) dW

(d) dX =
α

X
dt+ dW

(e) dX =
( α
X

−X
)
dt+ dW


