Stochastic geometry and random matrix theory in CS

Jared Tanner

IPAM: numerical methods for continuous optimization

University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho

Compressed Sensing - Encoder/Decoder

- Data acquisition at the information rate
- When it is "costly" to acquire information use CS
- Transform workload from sensor to computing resources
- Reduced sampling possible by exploiting simplicity
- Linear Encoder: Discrete signal of length N, x
- Transform matrix under which class of signals are sparse, Φ
- "Random" matrix to mix transform coefficients, A
- Measurements through $A \Phi, n \times N$ with $n \ll N, b:=A \Phi \times$

Compressed Sensing - Encoder/Decoder

- Data acquisition at the information rate
- When it is "costly" to acquire information use CS
- Transform workload from sensor to computing resources
- Reduced sampling possible by exploiting simplicity
- Linear Encoder: Discrete signal of length N, x
- Transform matrix under which class of signals are sparse, Φ
- "Random" matrix to mix transform coefficients, A
- Measurements through $A \Phi, n \times N$ with $n \ll N, b:=A \Phi_{x}$
- Decoder: Reconstruct an approximation of x from (b, A)
- Thresholding: take large coefficients of $A^{*} b$
- Greedy Algorithms: OMP, CoSaMP, SP, IHT, StOMP, ...
- Regularization: $\min _{y}\|\Phi y\|_{1}$ subject to $\|A \Phi y-b\|_{2} \leq \eta$

Sparse Approximation Phase Transitions

- Problem characterized by three numbers: $k \leq n \leq N$
- N, Signal Length, "Nyquist" sampling rate
- n, number of inner product measurements
- k, signal complexity, sparsity

Sparse Approximation Phase Transitions

- Problem characterized by three numbers: $k \leq n \leq N$
- N, Signal Length, "Nyquist" sampling rate
- n, number of inner product measurements
- k, signal complexity, sparsity
- For what (k, n, N) does an encoder/decoder pair recover a suitable approximation of x from (b, A) ?
- $n \sim k^{2}$ sufficient for many encoder/decoder pairs
- $n=k$ is the optimal oracle rate
- $n \sim k$ possible using computationally efficient algorithms

Sparse Approximation Phase Transitions

- Problem characterized by three numbers: $k \leq n \leq N$
- N, Signal Length, "Nyquist" sampling rate
- n, number of inner product measurements
- k, signal complexity, sparsity
- For what (k, n, N) does an encoder/decoder pair recover a suitable approximation of x from (b, A) ?
- $n \sim k^{2}$ sufficient for many encoder/decoder pairs
- $n=k$ is the optimal oracle rate
- $n \sim k$ possible using computationally efficient algorithms
- Mixed under/over-sampling rates compared to naive/optimal

$$
\text { Undersampling: } \delta:=\frac{n}{N}, \quad \text { Oversampling: } \rho:=\frac{k}{n}
$$

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
- Coherence: maximum correlation of columns, $\max _{i \neq j}\left|a_{i}^{*} a_{j}\right|$
- Restricted Isometry Property (RIP): sparse near isometry

$$
\begin{aligned}
& \quad\left(1-R_{k}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+R_{k}\right)\|x\|_{2}^{2} \quad \text { for } x \text {-sparse } \\
& \ell^{1} \text {-regularization "works" if } R_{2 k}<0.45 \text { (Foucart \& Lai) }
\end{aligned}
$$

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
- Coherence: maximum correlation of columns, $\max _{i \neq j}\left|a_{i}^{*} a_{j}\right|$
- Restricted Isometry Property (RIP): sparse near isometry

$$
\begin{aligned}
& \quad\left(1-R_{k}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+R_{k}\right)\|x\|_{2}^{2} \quad \text { for } x \text { } k \text {-sparse } \\
& \ell^{1} \text {-regularization "works" if } R_{2 k}<0.45 \text { (Foucart \& Lai) }
\end{aligned}
$$

- Algorithm specific:
- Convex Polytopes (face counting): ℓ^{1}-regularization

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
- Coherence: maximum correlation of columns, $\max _{i \neq j}\left|a_{i}^{*} a_{j}\right|$
- Restricted Isometry Property (RIP): sparse near isometry

$$
\left(1-R_{k}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+R_{k}\right)\|x\|_{2}^{2} \quad \text { for } x \quad k \text {-sparse }
$$

ℓ^{1}-regularization "works" if $R_{2 k}<0.45$ (Foucart \& Lai)

- Algorithm specific:
- Convex Polytopes (face counting): ℓ^{1}-regularization
- Recovery guarantees:
- Success for all k-sparse signals (coherence, RIP, polytopes)
- Success for most signals (coherence, polytopes)

Restricted Isometry Constants (RIC)

- Restricted Isometry Constants (RIC): for all k-sparse x

$$
(1-L(k, n, N ; A))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(k, n, N ; A))\|x\|_{2}^{2}
$$

- Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k / n \rightarrow \rho, n / N \rightarrow \delta$, with $\rho, \delta \in(0,1)$.
- What do we know about bounds on RICs?

Restricted Isometry Constants (RIC)

- Restricted Isometry Constants (RIC): for all k-sparse x

$$
(1-L(k, n, N ; A))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(k, n, N ; A))\|x\|_{2}^{2}
$$

- Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k / n \rightarrow \rho, n / N \rightarrow \delta$, with $\rho, \delta \in(0,1)$.
- What do we know about bounds on RICs?
- No known large deterministic rect. matrices with bounded RIC
- Ensembles with concentration of measure have bounded RIC

$$
P\left(\left|\|A x\|_{2}^{2}-\|x\|_{2}^{2}\right| \geq \epsilon\|x\|_{2}^{2}\right) \leq e^{-n \cdot c(\epsilon)} \quad c(\epsilon)>0 .
$$

Gaussian, uniform $\{-1,1\}$, most any with i.i.d. mean zero

Restricted Isometry Constants (RIC)

- Restricted Isometry Constants (RIC): for all k-sparse x

$$
(1-L(k, n, N ; A))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(k, n, N ; A))\|x\|_{2}^{2}
$$

- Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k / n \rightarrow \rho, n / N \rightarrow \delta$, with $\rho, \delta \in(0,1)$.
- What do we know about bounds on RICs?
- No known large deterministic rect. matrices with bounded RIC
- Ensembles with concentration of measure have bounded RIC

$$
P\left(\left|\|A x\|_{2}^{2}-\|x\|_{2}^{2}\right| \geq \epsilon\|x\|_{2}^{2}\right) \leq e^{-n \cdot c(\epsilon)} \quad c(\epsilon)>0 .
$$

Gaussian, uniform $\{-1,1\}$, most any with i.i.d. mean zero

- How large are these RICs? When do we have guarantees for sparsity recovery? $\max (U(k, n, N ; A), L(k, n, N ; A)) \leq \sqrt{2}-1$

Random Matrix Theory and the RIC

- RIC bounds for Gaussian $\mathcal{N}\left(0, n^{-1}\right)$ [Candés and Tao 05]

$$
(1-L(\delta, \rho))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(\delta, \rho))\|x\|_{2}^{2}
$$

$$
L(\delta, \rho)
$$

$$
U(\delta, \rho)
$$

- Always stated as " $\delta_{k}:=\max (L(k, n, N ; A), U(k, n, N ; A)) "$
- Bound: concentration of measure $+\binom{N}{k}$ union bound

Random Matrix Theory and the RIC

- RIC bounds for Gaussian $\mathcal{N}\left(0, n^{-1}\right)$ [BI-Ca-Ta 09]

$$
(1-L(\delta, \rho))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(\delta, \rho))\|x\|_{2}^{2}
$$

$L(\delta, \rho)$

$U(\delta, \rho)$

- First asymmetric bounds, dramatic improvement for $L(\delta, \rho)$
- Bound: Large deviation of Wishart PDFs + $\binom{N}{k}$ union bound

Some facts on $n \times k$ Wishart matrices

- $A \in W^{n \times k}: \mathcal{E}\left[\lambda^{\max / \min }\left(A^{*} A\right)\right]=(1 \pm \sqrt{k / n})^{2}$.

Some facts on $n \times k$ Wishart matrices

- $A \in W^{n \times k}: \mathcal{E}\left[\lambda^{\max / \min }\left(A^{*} A\right)\right]=(1 \pm \sqrt{k / n})^{2}$.
- P.D.F.s for $\lambda^{\max / \min }\left(A^{*} A\right)$:

Exact formulae of the form $\pi(n, \lambda) \exp \left(n \cdot \psi_{\max / \min }(\lambda, \rho)\right)$
$\psi_{\max }(\lambda, \rho):=\frac{1}{2}[(1+\rho) \log \lambda+1+\rho-\rho \log \rho-\lambda]$.
$\psi_{\text {min }}(\lambda, \rho):=H(\rho)+\frac{1}{2}[(1-\rho) \log \lambda+1-\rho+\rho \log \rho-\lambda]$. where $H(p)=-p \log p-(1-p) \log (1-p)$.

- Largest eig-value has rapid decay as $\lambda \uparrow$ due to $-\lambda$ Smallest eig-value has rapid decay as $\lambda \downarrow$ due to $\log \lambda$

Some facts on $n \times k$ Wishart matrices

- $A \in W^{n \times k}: \mathcal{E}\left[\lambda^{\max / \min }\left(A^{*} A\right)\right]=(1 \pm \sqrt{k / n})^{2}$.
- P.D.F.s for $\lambda^{\max / \min }\left(A^{*} A\right)$:

Exact formulae of the form $\pi(n, \lambda) \exp \left(n \cdot \psi_{\max / \min }(\lambda, \rho)\right)$
$\psi_{\max }(\lambda, \rho):=\frac{1}{2}[(1+\rho) \log \lambda+1+\rho-\rho \log \rho-\lambda]$.
$\psi_{\text {min }}(\lambda, \rho):=H(\rho)+\frac{1}{2}[(1-\rho) \log \lambda+1-\rho+\rho \log \rho-\lambda]$. where $H(p)=-p \log p-(1-p) \log (1-p)$.

- Largest eig-value has rapid decay as $\lambda \uparrow$ due to $-\lambda$ Smallest eig-value has rapid decay as $\lambda \downarrow$ due to $\log \lambda$
- Bound RICs with union bound, $\binom{N}{k} \leq \pi(\delta, \rho) \exp \left(n \cdot \delta^{-1} H(\rho \delta)\right)$, solving for λ level curve of $\delta^{-1} H(\rho \delta)+\psi_{\max / \min }(\lambda, \rho)=0$.

Random Matrix Theory and the RIC

- RIC bounds for Gaussian $\mathcal{N}\left(0, n^{-1}\right)$ [BI-Ca-Ta 09]

$$
(1-L(\delta, \rho))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(\delta, \rho))\|x\|_{2}^{2}
$$

$L(\delta, \rho)$

$U(\delta, \rho)$

- First asymmetric bounds, dramatic improvement for $L(\delta, \rho)$
- Bound: Large deviation of Wishart PDFs + $\binom{N}{k}$ union bound

Random Matrix Theory and the RIC

- RIC bounds for Gaussian $\mathcal{N}\left(0, n^{-1}\right)$ [Bah-Ta 10]

$$
(1-L(\delta, \rho))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(\delta, \rho))\|x\|_{2}^{2}
$$

$L(\delta, \rho)$

$U(\delta, \rho)$

- Exploit eigenvalue "smoothness" for overlapping submatrices
- No more than 1.57 times empirically observations values

Random Matrix Theory and the RIC

- Observed RIC for Gaussian $\mathcal{N}\left(0, n^{-1}\right)$ [Bah-Ta 09]

$$
(1-L(k, n, N))\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq(1+U(k, n, N))\|x\|_{2}^{2}
$$

$L(k, n, N)$

$U(k, n, N)$

- Observed lower bounds for $n=400$ and various (k, N)
- What do these RICs tell us for sparsity algorithms?

Algorithms for Sparse Approximation

Input: A, b, and possibly tuning parameters

- ℓ^{1}-regularization:

$$
\min _{x}\|x\|_{1} \quad \text { subject to } \quad\|A x-b\|_{2} \leq \tau
$$

- Simple Iterated Thresholding:

$$
x^{t+1}=H_{k}\left(x^{t}+\kappa A^{T}\left(b-A x^{t}\right)\right)
$$

- Two-Stage Thresholding (Subspace Pursuit, CoSaMP):

$$
\begin{gathered}
v^{t+1}=x^{t+1}=H_{\alpha k}\left(x^{t}+\kappa A^{T}\left(b-A x^{t}\right)\right) \\
I_{t}=\operatorname{supp}\left(v^{t}\right) \cup \operatorname{supp}\left(x^{t}\right) \quad \text { Join supp. sets } \\
w_{l_{t}}=\left(A_{l_{t}}^{T} A_{l_{t}}\right)^{-1} A_{l_{t}}^{T} b \quad \text { Least squares fit } \\
x^{t+1}=H_{\beta k}\left(w^{t}\right) \quad \text { Second threshold }
\end{gathered}
$$

When does RIP guarantee they work?

Best known bounds implied by RIP

- Lower bounds on the Strong exact recovery phase transition for Gaussian random matrices for the algorithms ℓ^{1}-regularization, IHT, SP, and CoSaMP (black).
- Unfortunately recovery thresholds are impractically low. $n>317 k, n>907 k, n>3124 k, n>4925 k$
- Larger phase transitions appear only possible by using algorithm specific techniques of analysis.

Geometry of ℓ^{1}-regularization, \mathbb{R}^{N}

- Sparsity: $x \in \mathbb{R}^{N}$ with $k<n$ nonzeros on $k-1$ face of ℓ^{1} ball.
- Null space of A intersects C^{N} at only x, or pierces C^{N}

ℓ^{1} ball $\in \mathbb{R}^{N}$

$x+\mathcal{N}(\mathcal{A})$

$$
\|A(x-y)\| \leq \eta
$$

Geometry of ℓ^{1}-regularization, \mathbb{R}^{N}

- Sparsity: $x \in \mathbb{R}^{N}$ with $k<n$ nonzeros on $k-1$ face of ℓ^{1} ball.
- Null space of A intersects C^{N} at only x, or pierces C^{N}

ℓ^{1} ball $\in \mathbb{R}^{N}$

$x+\mathcal{N}(\mathcal{A})$

$$
\|A(x-y)\| \leq \eta
$$

- If $\{x+\mathcal{N}(\mathrm{A})\} \cap \mathcal{C}^{N}=x, \ell^{1}$ minimization recovers x
- Faces pierced by $x+\mathcal{N}(\mathcal{A})$ do not recover k sparse x

Geometry of ℓ^{1}-regularization, \mathbb{R}^{n}

- Sparsity: $x \in \mathbb{R}^{N}$ with $k<n$ nonzeros on $k-1$ face of ℓ^{1} ball.
- Matrix A projects face of ℓ^{1} ball either onto or into $\operatorname{conv}(\pm A)$.

edge onto $\operatorname{conv}(\pm A) \quad$ edge into $\operatorname{conv}(\pm A)$

Geometry of ℓ^{1}-regularization, \mathbb{R}^{n}

- Sparsity: $x \in \mathbb{R}^{N}$ with $k<n$ nonzeros on $k-1$ face of ℓ^{1} ball.
- Matrix A projects face of ℓ^{1} ball either onto or into $\operatorname{conv}(\pm A)$.

edge onto $\operatorname{conv}(\pm A) \quad$ edge into $\operatorname{conv}(\pm A)$
- Survived faces are sparsity patterns in x where $\ell^{1} \rightarrow \ell^{0}$
- Faces which fall inside $\operatorname{conv}(\pm A)$ are not solutions to ℓ^{1}

Geometry of ℓ^{1}-regularization, \mathbb{R}^{n}

- Sparsity: $x \in \mathbb{R}^{N}$ with $k<n$ nonzeros on $k-1$ face of ℓ^{1} ball.
- Matrix A projects face of ℓ^{1} ball either onto or into $\operatorname{conv}(\pm A)$.

- Survived faces are sparsity patterns in x where $\ell^{1} \rightarrow \ell^{0}$
- Faces which fall inside $\operatorname{conv}(\pm A)$ are not solutions to ℓ^{1}
- Neighborliness of random polytopes [Affentranger \& Schneider]
- Exact recoverability of k sparse signals by "counting faces"

Phase Transition: ℓ^{1} ball, C^{N}

- With overwhelming probability on measurements $A_{n, N}$: for any $\epsilon>0$, as $(k, n, N) \rightarrow \infty$
- All k-sparse signals if $k / n \leq \rho_{S}(n / N, C)(1-\epsilon)$
- Most k-sparse signals if $k / n \leq \rho_{W}(n / N, C)(1-\epsilon)$
- Failure typical if $k / n \geq \rho_{W}(n / N, C)(1+\epsilon)$

- Asymptotic behavior $\delta \rightarrow 0: \rho(n / N) \sim[2(e) \log (N / n)]^{-1}$

Phase Transition: Simplex, $T^{N-1}, x \geq 0$

- With overwhelming probability on measurements $A_{n, N}$: for any $\epsilon>0, x \geq 0$, as $(k, n, N) \rightarrow \infty$
- All k-sparse signals if $k / n \leq \rho_{S}(n / N, T)(1-\epsilon)$
- Most k-sparse signals if $k / n \leq \rho_{W}(n / N, T)(1-\epsilon)$
- Failure typical if $k / n \geq \rho_{W}(n / N, T)(1+\epsilon)$

- Asymptotic behavior $\delta \rightarrow 0: \rho(n / N) \sim[2(e) \log (N / n)]^{-1}$

Weak Phase Transitions: Visual agreement

- Black: Weak phase transition: $x \geq 0$ (top), x signed (bot.)
- Overlaid empirical evidence of 50% success rate:

- Gaussian, Bernoulli, Fourier, Hadamard, Rademacher
- Ternary $(p): P(0)=1-p$ and $P(\pm 1)=p / 2$
- Expander $(p):\lceil p \cdot n\rceil$ ones per column, otherwise zeros
- Rigorous statistical comparison shows $N^{-1 / 2}$ convergence

Bulk Z-scores

(a) Bernoulli

(c) Ternary (1/3)

(b) Fourier

(d) Rademacher

- $N=200, N=400$ and $N=1600$
- Linear trend with $\delta=n / N$, decays at rate $N^{-1 / 2}$

Phase Transition: Hypercube, H^{N}

- Let $0 \leq x \leq 1$ have k entries $\neq 0,1$ and form $b=A x$.
- Are there other $y \in H^{N}[0,1]$ such that $A y=b, y \neq x$?
- As $n, N \rightarrow \infty$, Typically No provided $k / n<\rho_{W}(\delta ; H)$

- Unlike T and C : no strong phase transition
- Universal: A need only be in general position
- Simplicity beyond sparsity: Hypercube k-faces correspond to vectors with only k entries away from the bounds (not 0 or 1).

Sketch of Hypercube proof

- A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" $N-n$ dimensional space

Sketch of Hypercube proof

- A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" $N-n$ dimensional space
- Fix a k set Λ. There are 2^{N-k} faces of $H^{N}[0,1]$ with $x_{i} \in(0,1)$ for $i \in \Lambda$ and $x_{i} \in 0,1$ for $i \in \Lambda^{c}$. Cones pointing from these $2^{N-k} k$-face into H^{N} cover \mathbb{R}^{N}. There are $\binom{N}{k}$ of these sets Λ.

Sketch of Hypercube proof

- A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" $N-n$ dimensional space
- Fix a k set Λ. There are 2^{N-k} faces of $H^{N}[0,1]$ with $x_{i} \in(0,1)$ for $i \in \Lambda$ and $x_{i} \in 0,1$ for $i \in \Lambda^{c}$.
Cones pointing from these $2^{N-k} k$-face into H^{N} cover \mathbb{R}^{N}. There are $\binom{N}{k}$ of these sets Λ.
- For a fixed k consider all k-faces of $H^{N}[0,1]$.

The coordinate axes separating coverings partition $\mathcal{N}(A)$ Theorem[Winder, Cover] M hyperplanes in general position in \mathbb{R}^{m}, all passing through some common point, divides the space into $2 \sum_{\ell=0}^{m-1}\binom{M-1}{\ell}$ regions.

Sketch of Hypercube proof

- A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" $N-n$ dimensional space
- Fix a k set Λ. There are 2^{N-k} faces of $H^{N}[0,1]$ with $x_{i} \in(0,1)$ for $i \in \Lambda$ and $x_{i} \in 0,1$ for $i \in \Lambda^{c}$.
Cones pointing from these $2^{N-k} k$-face into H^{N} cover \mathbb{R}^{N}. There are $\binom{N}{k}$ of these sets Λ.
- For a fixed k consider all k-faces of $H^{N}[0,1]$.

The coordinate axes separating coverings partition $\mathcal{N}(A)$ Theorem[Winder, Cover] M hyperplanes in general position in \mathbb{R}^{m}, all passing through some common point, divides the space into $2 \sum_{\ell=0}^{m-1}\binom{M-1}{\ell}$ regions.

- $2\binom{N}{k} \sum_{\ell=0}^{N-n-1}\binom{N-k-1}{\ell}$ faces do not have unique solution.

Phase Transition: Hypercube, H^{N}

- Let $0 \leq x \leq 1$ have k entries $\neq 0,1$ and form $b=A x$.
- Are there other $y \in H^{N}[0,1]$ such that $A y=b, y \neq x$?
- As $n, N \rightarrow \infty$, Typically No provided $k / n<\rho_{W}(\delta ; H)$

- Unlike T and C : no strong phase transition
- Universal: A need only be in general position
- Simplicity beyond sparsity: Hypercube k-faces correspond to vectors with only k entries away from the bounds (not 0 or 1).

Phase Transition: Orthant, \mathbb{R}_{+}^{N}

- Let $x \geq 0$ be k-sparse and form $b=A x$.
- Are there other $y \in \mathbb{R}_{+}^{N}$ such that $A y=b, y \geq 0, y \neq x$?
- As $n, N \rightarrow \infty$, Typically No provided $k / n<\rho_{W}\left(\delta ; \mathbb{R}_{+}\right)$

- Universal: A columns centrally symmetric and exchangeable Not universal to all A in general position-design possible.
- For $k / n<\rho_{W}\left(\delta, \mathbb{R}_{+}\right):=[2-1 / \delta]_{+}$and $x \geq 0$, any "feasible" method will work, e.g. WCP (Cartis \& Gould)

Phase Transition: Orthant, \mathbb{R}_{+}^{N}, matrix design

- Let $x \geq 0$ be k-sparse and form $b=A x$.
- Are there other $y \in \mathbb{R}_{+}^{N}$ such that $A y=b, y \geq 0, y \neq x$?
- As $n, N \rightarrow \infty$, Typically No provided $k / n<\rho_{W}\left(\delta ; \mathbb{R}_{+}\right)$

- Gaussian and measuring the mean (row of ones): $\rho_{W}\left(n / N ; \mathbb{R}_{+}\right) \rightarrow \rho_{W}(n / N ; T)$
- Simple modification of A makes profound difference Unique even for $n / N \rightarrow 0$ with $n>2(e) k \log (N / n)$

Orthant matrix design, it's really true

- Let $x \geq 0$ be k-sparse and form $b=A x$.
- Not ℓ^{1}, but: $\max _{y}\|x-y\|$ subject to $A y=A x$ and $y \geq 0$
- Good empirical agreement for $N=200$.

Rademacher

Orthant matrix design, it's really true

- Let $x \geq 0$ be k-sparse and form $b=A x$.
- Not ℓ^{1}, but: $\max _{y}\|x-y\|$ subject to $A y=A x$ and $y \geq 0$
- Good empirical agreement for $N=200$.

Rademacher

SUMMARY	Simplex	ℓ^{1} ball	Hypercube	Orthant
Matrix class	Gaussian	Gaussian	gen. pos.	sym. exch.
Design	Vandermonde	unknown	not possible	row ones

References

- Donoho (2005) High-Dimensional Centrosymmetric Polytopes with Neighborliness Proportional to Dimension. DCG.
- Donoho and Tanner
- Counting faces of randomly-projected polytopes when projection radically lowers dimension (2006), J. AMS.
- Counting the faces of randomly projected hypercubes and orthants, with applications (2008), DCG.
- Precise Undersampling Theorems (2009), Proc. IEEE.
- Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing (2009) Phil. Trans. Roy. Soc. A.
- Blanchard, Cartis, Tanner, Thompson (2009) Compressed Sensing: How sharp is the RIP?
- Bah, Tanner (2010) Improved RIC bounds for Gaussian Matrices.

Thanks for your time

