Stochastic geometry and random matrix theory in CS

Jared Tanner

IPAM: numerical methods for continuous optimization

University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho

Compressed Sensing - Encoder/Decoder

- Data acquisition at the information rate
 - ▶ When it is "costly" to acquire information use CS
 - Transform workload from sensor to computing resources
 - Reduced sampling possible by exploiting simplicity
- \triangleright Linear Encoder: Discrete signal of length N, x
 - Transform matrix under which class of signals are sparse, Φ
 - "Random" matrix to mix transform coefficients, A
 - Measurements through $A\Phi$, $n \times N$ with $n \ll N$, $b := A\Phi x$

Compressed Sensing - Encoder/Decoder

- Data acquisition at the information rate
 - ▶ When it is "costly" to acquire information use CS
 - Transform workload from sensor to computing resources
 - Reduced sampling possible by exploiting simplicity
- \triangleright Linear Encoder: Discrete signal of length N, x
 - Transform matrix under which class of signals are sparse, Φ
 - "Random" matrix to mix transform coefficients, A
 - Measurements through $A\Phi$, $n \times N$ with $n \ll N$, $b := A\Phi x$
- ▶ Decoder: Reconstruct an approximation of x from (b, A)
 - Thresholding: take large coefficients of A*b
 - Greedy Algorithms: OMP, CoSaMP, SP, IHT, StOMP, ...
 - Regularization: $\min_{y} \|\Phi y\|_1$ subject to $\|A\Phi y b\|_2 \le \eta$

Sparse Approximation Phase Transitions

- ▶ Problem characterized by three numbers: $k \le n \le N$
 - N, Signal Length, "Nyquist" sampling rate
 - *n*, number of inner product measurements
 - k, signal complexity, sparsity

Sparse Approximation Phase Transitions

- ▶ Problem characterized by three numbers: $k \le n \le N$
 - N, Signal Length, "Nyquist" sampling rate
 - *n*, number of inner product measurements
 - k, signal complexity, sparsity
- ▶ For what (k, n, N) does an encoder/decoder pair recover a suitable approximation of x from (b, A)?
 - $n \sim k^2$ sufficient for many encoder/decoder pairs
 - n = k is the optimal oracle rate
 - ullet $n\sim k$ possible using computationally efficient algorithms

Sparse Approximation Phase Transitions

- ▶ Problem characterized by three numbers: $k \le n \le N$
 - N, Signal Length, "Nyquist" sampling rate
 - *n*, number of inner product measurements
 - k, signal complexity, sparsity
- For what (k, n, N) does an encoder/decoder pair recover a suitable approximation of x from (b, A)?
 - $n \sim k^2$ sufficient for many encoder/decoder pairs
 - n = k is the optimal oracle rate
 - $n \sim k$ possible using computationally efficient algorithms
- Mixed under/over-sampling rates compared to naive/optimal

Undersampling:
$$\delta := \frac{n}{N}$$
, Oversampling: $\rho := \frac{k}{n}$

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
 - Coherence: maximum correlation of columns, $\max_{i \neq j} |a_i^* a_j|$
 - Restricted Isometry Property (RIP): sparse near isometry

$$(1 - R_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + R_k) \|x\|_2^2$$
 for x k -sparse

 ℓ^1 -regularization "works" if $R_{2k} < 0.45$ (Foucart & Lai)

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
 - Coherence: maximum correlation of columns, $\max_{i \neq j} |a_i^* a_j|$
 - Restricted Isometry Property (RIP): sparse near isometry

$$(1 - R_k)||x||_2^2 \le ||Ax||_2^2 \le (1 + R_k)||x||_2^2$$
 for x k -sparse

 ℓ^1 -regularization "works" if $R_{2k} < 0.45$ (Foucart & Lai)

- Algorithm specific:
 - Convex Polytopes (face counting): ℓ^1 -regularization

Methods of Analysis: conditions on encoder

- Generic measures of used to imply algorithm success:
 - Coherence: maximum correlation of columns, $\max_{i \neq j} |a_i^* a_j|$
 - Restricted Isometry Property (RIP): sparse near isometry

$$(1 - R_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + R_k) \|x\|_2^2$$
 for x k -sparse

 ℓ^1 -regularization "works" if $R_{2k} < 0.45$ (Foucart & Lai)

- Algorithm specific:
 - Convex Polytopes (face counting): ℓ^1 -regularization
- ► Recovery guarantees:
 - Success for all k-sparse signals (coherence, RIP, polytopes)
 - Success for most signals (coherence, polytopes)

Restricted Isometry Constants (RIC)

Restricted Isometry Constants (RIC): for all k-sparse x

$$(1 - L(k, n, N; A)) ||x||_2^2 \le ||Ax||_2^2 \le (1 + U(k, n, N; A)) ||x||_2^2$$

- ▶ Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k/n \rightarrow \rho$, $n/N \rightarrow \delta$, with $\rho, \delta \in (0,1)$.
- What do we know about bounds on RICs?

Restricted Isometry Constants (RIC)

Restricted Isometry Constants (RIC): for all k-sparse x

$$(1 - L(k, n, N; A)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(k, n, N; A)) \|x\|_2^2$$

- ▶ Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k/n \rightarrow \rho$, $n/N \rightarrow \delta$, with $\rho, \delta \in (0,1)$.
- What do we know about bounds on RICs?
- ▶ No known large deterministic rect. matrices with bounded RIC
- Ensembles with concentration of measure have bounded RIC

$$P(|||Ax||_2^2 - ||x||_2^2| \ge \epsilon ||x||_2^2) \le e^{-n \cdot c(\epsilon)} \quad c(\epsilon) > 0.$$

Gaussian, uniform $\{-1,1\}$, most any with i.i.d. mean zero

Restricted Isometry Constants (RIC)

Restricted Isometry Constants (RIC): for all k-sparse x

$$(1 - L(k, n, N; A)) ||x||_2^2 \le ||Ax||_2^2 \le (1 + U(k, n, N; A)) ||x||_2^2$$

- ▶ Most sparsity algorithms have optimal recovery rate if RICs remain bounded as $k/n \rightarrow \rho$, $n/N \rightarrow \delta$, with $\rho, \delta \in (0,1)$.
- What do we know about bounds on RICs?
- No known large deterministic rect. matrices with bounded RIC
- Ensembles with concentration of measure have bounded RIC

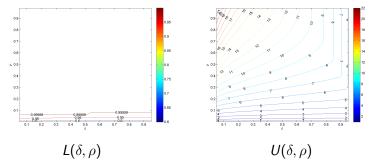
$$P(|||Ax||_2^2 - ||x||_2^2| \ge \epsilon ||x||_2^2) \le e^{-n \cdot c(\epsilon)} \quad c(\epsilon) > 0.$$

Gaussian, uniform $\{-1,1\}$, most any with i.i.d. mean zero

► How large are these RICs? When do we have guarantees for sparsity recovery? $\max(U(k, n, N; A), L(k, n, N; A)) \leq \sqrt{2} - 1$

▶ RIC bounds for Gaussian $\mathcal{N}(0, n^{-1})$ [Candés and Tao 05]

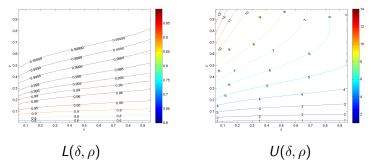
$$(1 - L(\delta, \rho)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(\delta, \rho)) \|x\|_2^2$$



- ▶ Always stated as " $\delta_k := \max(L(k, n, N; A), U(k, n, N; A))$ "
- ▶ Bound: concentration of measure $+\binom{N}{k}$ union bound

▶ RIC bounds for Gaussian $\mathcal{N}(0, n^{-1})$ [BI-Ca-Ta 09]

$$(1 - L(\delta, \rho)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(\delta, \rho)) \|x\|_2^2$$



- \blacktriangleright First asymmetric bounds, dramatic improvement for $L(\delta, \rho)$
- lacktriangle Bound: Large deviation of Wishart PDFs $+inom{N}{k}$ union bound

Some facts on $n \times k$ Wishart matrices

$$A \in W^{n \times k} \colon \mathcal{E}[\lambda^{\max/\min}(A^*A)] = (1 \pm \sqrt{k/n})^2.$$

Some facts on $n \times k$ Wishart matrices

- $A \in W^{n \times k} \colon \mathcal{E}[\lambda^{\max/\min}(A^*A)] = (1 \pm \sqrt{k/n})^2.$
- ▶ P.D.F.s for $\lambda^{max/min}(A^*A)$: Exact formulae of the form $\pi(n,\lambda) \exp(n \cdot \psi_{max/min}(\lambda,\rho))$

$$\begin{split} \psi_{\max}(\lambda,\rho) &:= \tfrac{1}{2} \left[(1+\rho) \log \lambda + 1 + \rho - \rho \log \rho - \lambda \right]. \\ \psi_{\min}(\lambda,\rho) &:= H(\rho) + \tfrac{1}{2} \left[(1-\rho) \log \lambda + 1 - \rho + \rho \log \rho - \lambda \right]. \\ \text{where } H(\rho) &= -\rho \log \rho - (1-\rho) \log (1-\rho). \end{split}$$

▶ Largest eig-value has rapid decay as $\lambda \uparrow$ due to $-\lambda$ Smallest eig-value has rapid decay as $\lambda \downarrow$ due to $\log \lambda$

Some facts on $n \times k$ Wishart matrices

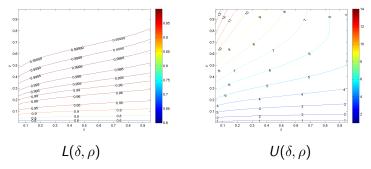
- $A \in W^{n \times k} \colon \mathcal{E}[\lambda^{\max/\min}(A^*A)] = (1 \pm \sqrt{k/n})^2.$
- ▶ P.D.F.s for $\lambda^{max/min}(A^*A)$: Exact formulae of the form $\pi(n,\lambda) \exp(n \cdot \psi_{max/min}(\lambda,\rho))$

$$\begin{split} \psi_{\max}(\lambda,\rho) &:= \tfrac{1}{2} \left[(1+\rho) \log \lambda + 1 + \rho - \rho \log \rho - \lambda \right]. \\ \psi_{\min}(\lambda,\rho) &:= H(\rho) + \tfrac{1}{2} \left[(1-\rho) \log \lambda + 1 - \rho + \rho \log \rho - \lambda \right]. \\ \text{where } H(p) &= -p \log p - (1-p) \log (1-p). \end{split}$$

- ▶ Largest eig-value has rapid decay as $\lambda \uparrow$ due to $-\lambda$ Smallest eig-value has rapid decay as $\lambda \downarrow$ due to $\log \lambda$
- ▶ Bound RICs with union bound, $\binom{N}{k} \leq \pi(\delta, \rho) \exp(n \cdot \delta^{-1} H(\rho \delta))$, solving for λ level curve of $\delta^{-1} H(\rho \delta) + \psi_{\max/\min}(\lambda, \rho) = 0$.

▶ RIC bounds for Gaussian $\mathcal{N}(0, n^{-1})$ [BI-Ca-Ta 09]

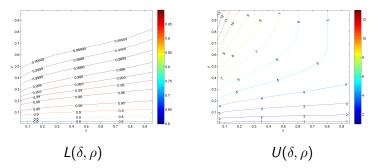
$$(1 - L(\delta, \rho)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(\delta, \rho)) \|x\|_2^2$$



- \blacktriangleright First asymmetric bounds, dramatic improvement for $L(\delta, \rho)$
- ▶ Bound: Large deviation of Wishart PDFs $+ \binom{N}{k}$ union bound

▶ RIC bounds for Gaussian $\mathcal{N}(0, n^{-1})$ [Bah-Ta 10]

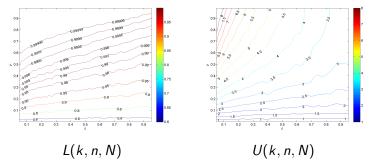
$$(1 - L(\delta, \rho)) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + U(\delta, \rho)) \|x\|_2^2$$



- ► Exploit eigenvalue "smoothness" for overlapping submatrices
- ▶ No more than 1.57 times empirically observations values

▶ Observed RIC for Gaussian $\mathcal{N}(0, n^{-1})$ [Bah-Ta 09]

$$(1 - L(k, n, N)) ||x||_2^2 \le ||Ax||_2^2 \le (1 + U(k, n, N)) ||x||_2^2$$



- ▶ Observed lower bounds for n = 400 and various (k, N)
- What do these RICs tell us for sparsity algorithms?

Algorithms for Sparse Approximation

Input: A, b, and possibly tuning parameters

 \triangleright ℓ^1 -regularization:

$$\min_{x} \|x\|_1$$
 subject to $\|Ax - b\|_2 \le \tau$

Simple Iterated Thresholding:

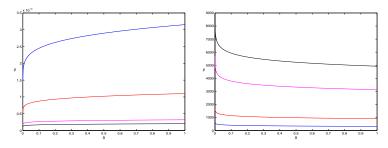
$$x^{t+1} = H_k(x^t + \kappa A^T(b - Ax^t))$$

Two-Stage Thresholding (Subspace Pursuit, CoSaMP):

$$v^{t+1} = x^{t+1} = H_{\alpha k}(x^t + \kappa A^T(b - Ax^t))$$
 $I_t = supp(v^t) \cup supp(x^t)$ Join supp. sets
 $w_{I_t} = (A_{I_t}^T A_{I_t})^{-1} A_{I_t}^T b$ Least squares fit
 $x^{t+1} = H_{\beta k}(w^t)$ Second threshold

When does RIP guarantee they work?

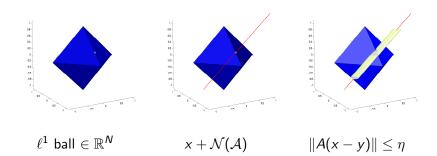
Best known bounds implied by RIP



- ▶ Lower bounds on the Strong exact recovery phase transition for Gaussian random matrices for the algorithms ℓ¹-regularization, IHT, SP, and CoSaMP (black).
 - Unfortunately recovery thresholds are impractically low. n > 317k, n > 907k, n > 3124k, n > 4925k
- ► Larger phase transitions appear only possible by using algorithm specific techniques of analysis.

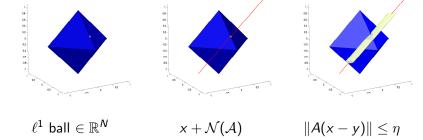
Geometry of ℓ^1 -regularization, \mathbb{R}^N

- ▶ Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- ▶ Null space of A intersects C^N at only x, or pierces C^N



Geometry of ℓ^1 -regularization, \mathbb{R}^N

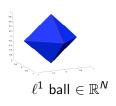
- ▶ Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- ▶ Null space of A intersects C^N at only x, or pierces C^N

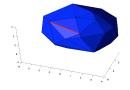


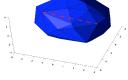
- ▶ If $\{x + \mathcal{N}(A)\} \cap C^N = x$, ℓ^1 minimization recovers x
- ▶ Faces pierced by $x + \mathcal{N}(A)$ do not recover k sparse x

Geometry of ℓ^1 -regularization, \mathbb{R}^n

- ▶ Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- ▶ Matrix A projects face of ℓ^1 ball either onto or into $conv(\pm A)$.





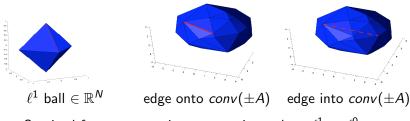


edge onto $conv(\pm A)$

edge into $conv(\pm A)$

Geometry of ℓ^1 -regularization, \mathbb{R}^n

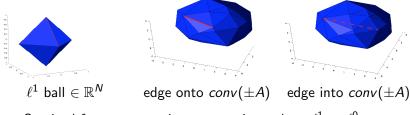
- ▶ Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- ▶ Matrix A projects face of ℓ^1 ball either onto or into $conv(\pm A)$.



- ▶ Survived faces are sparsity patterns in x where $\ell^1 \to \ell^0$
- ▶ Faces which fall inside $conv(\pm A)$ are not solutions to ℓ^1

Geometry of ℓ^1 -regularization, \mathbb{R}^n

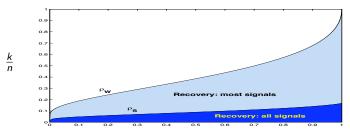
- ▶ Sparsity: $x \in \mathbb{R}^N$ with k < n nonzeros on k-1 face of ℓ^1 ball.
- ▶ Matrix A projects face of ℓ^1 ball either onto or into $conv(\pm A)$.



- ▶ Survived faces are sparsity patterns in x where $\ell^1 \to \ell^0$
- ▶ Faces which fall inside $conv(\pm A)$ are not solutions to ℓ^1
- ▶ Neighborliness of random polytopes [Affentranger & Schneider]
- ▶ Exact recoverability of *k* sparse signals by "counting faces"

Phase Transition: ℓ^1 ball, C^N

- ▶ With overwhelming probability on measurements $A_{n,N}$: for any $\epsilon > 0$, as $(k, n, N) \rightarrow \infty$
 - All k-sparse signals if $k/n \le \rho_S(n/N, C)(1-\epsilon)$
 - Most k-sparse signals if $k/n \le \rho_W(n/N, C)(1 \epsilon)$
 - Failure typical if $k/n \ge \rho_W(n/N, C)(1+\epsilon)$

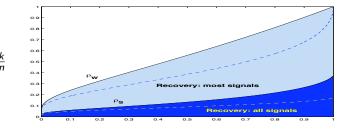


$$\delta = n/N$$

▶ Asymptotic behavior $\delta \to 0$: $\rho(n/N) \sim [2(e) \log(N/n)]^{-1}$

Phase Transition: Simplex, T^{N-1} , $x \ge 0$

- ▶ With overwhelming probability on measurements $A_{n,N}$: for any $\epsilon > 0$, $x \ge 0$, as $(k, n, N) \to \infty$
 - All k-sparse signals if $k/n \le \rho_S(n/N, T)(1 \epsilon)$
 - Most k-sparse signals if $k/n \le \rho_W(n/N, T)(1 \epsilon)$
 - Failure typical if $k/n \ge \rho_W(n/N, T)(1+\epsilon)$

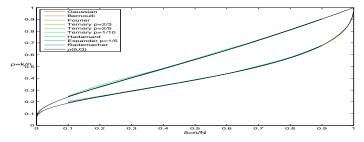


$$\delta = n/N$$

• Asymptotic behavior $\delta o 0$: $ho(n/N) \sim [2(e)\log(N/n)]^{-1}$

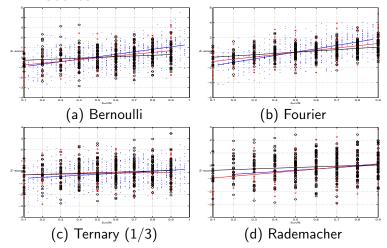
Weak Phase Transitions: Visual agreement

- ▶ Black: Weak phase transition: $x \ge 0$ (top), x signed (bot.)
- ▶ Overlaid empirical evidence of 50% success rate:



- Gaussian, Bernoulli, Fourier, Hadamard, Rademacher
- ▶ Ternary (p): P(0) = 1 p and $P(\pm 1) = p/2$
- ▶ Expander (p): $\lceil p \cdot n \rceil$ ones per column, otherwise zeros
- ightharpoonup Rigorous statistical comparison shows $N^{-1/2}$ convergence

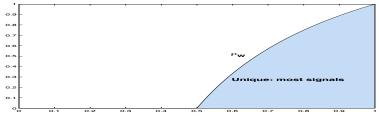
Bulk Z-scores



- N = 200, N = 400 and N = 1600
- ▶ Linear trend with $\delta = n/N$, decays at rate $N^{-1/2}$

Phase Transition: Hypercube, H^N

- ▶ Let $0 \le x \le 1$ have k entries $\ne 0, 1$ and form b = Ax.
- ▶ Are there other $y \in H^N[0,1]$ such that Ay = b, $y \neq x$?
- ▶ As $n, N \to \infty$, Typically No provided $k/n < \rho_W(\delta; H)$



- ▶ Unlike T and C: no strong phase transition
- ▶ Universal: A need only be in general position
- ▶ Simplicity beyond sparsity: Hypercube *k*-faces correspond to vectors with only *k* entries away from the bounds (not 0 or 1).

▶ A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" N-n dimensional space

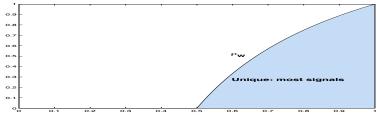
- ▶ A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" N-n dimensional space
- Fix a k set Λ . There are 2^{N-k} faces of $H^N[0,1]$ with $x_i \in (0,1)$ for $i \in \Lambda$ and $x_i \in 0,1$ for $i \in \Lambda^c$. Cones pointing from these 2^{N-k} k-face into H^N cover \mathbb{R}^N . There are $\binom{N}{k}$ of these sets Λ .

- ▶ A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" N-n dimensional space
- Fix a k set Λ . There are 2^{N-k} faces of $H^N[0,1]$ with $x_i \in (0,1)$ for $i \in \Lambda$ and $x_i \in 0,1$ for $i \in \Lambda^c$. Cones pointing from these 2^{N-k} k-face into H^N cover \mathbb{R}^N . There are $\binom{N}{k}$ of these sets Λ .
- For a fixed k consider all k-faces of $H^N[0,1]$. The coordinate axes separating coverings partition $\mathcal{N}(A)$ Theorem[Winder, Cover] M hyperplanes in general position in \mathbb{R}^m , all passing through some common point, divides the space into $2\sum_{\ell=0}^{m-1} \binom{M-1}{\ell}$ regions.

- ▶ A in general position implied $\mathcal{N}(A)$ not aligned with axes $\mathcal{N}(A)$ is "generic" N-n dimensional space
- Fix a k set Λ . There are 2^{N-k} faces of $H^N[0,1]$ with $x_i \in (0,1)$ for $i \in \Lambda$ and $x_i \in 0,1$ for $i \in \Lambda^c$. Cones pointing from these 2^{N-k} k-face into H^N cover \mathbb{R}^N . There are $\binom{N}{k}$ of these sets Λ .
- For a fixed k consider all k-faces of $H^N[0,1]$. The coordinate axes separating coverings partition $\mathcal{N}(A)$ Theorem[Winder, Cover] M hyperplanes in general position in \mathbb{R}^m , all passing through some common point, divides the space into $2\sum_{\ell=0}^{m-1}\binom{M-1}{\ell}$ regions.
- ▶ $2\binom{N}{k}\sum_{\ell=0}^{N-n-1}\binom{N-k-1}{\ell}$ faces do not have unique solution.

Phase Transition: Hypercube, H^N

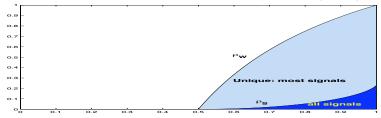
- ▶ Let $0 \le x \le 1$ have k entries $\ne 0, 1$ and form b = Ax.
- ▶ Are there other $y \in H^N[0,1]$ such that Ay = b, $y \neq x$?
- ▶ As $n, N \to \infty$, Typically No provided $k/n < \rho_W(\delta; H)$



- ▶ Unlike T and C: no strong phase transition
- ▶ Universal: A need only be in general position
- ▶ Simplicity beyond sparsity: Hypercube *k*-faces correspond to vectors with only *k* entries away from the bounds (not 0 or 1).

Phase Transition: Orthant, \mathbb{R}_+^N

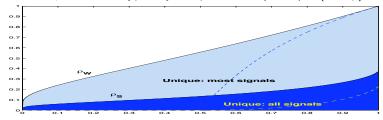
- ▶ Let $x \ge 0$ be k-sparse and form b = Ax.
- ▶ Are there other $y \in \mathbb{R}_+^N$ such that Ay = b, $y \ge 0$, $y \ne x$?
- ▶ As $n, N \to \infty$, Typically No provided $k/n < \rho_W(\delta; \mathbb{R}_+)$



- ► Universal: A columns centrally symmetric and exchangeable Not universal to all A in general position—design possible.
- ▶ For $k/n < \rho_W(\delta, \mathbb{R}_+) := [2 1/\delta]_+$ and $x \ge 0$, any "feasible" method will work, e.g. WCP (Cartis & Gould)

Phase Transition: Orthant, \mathbb{R}_{+}^{N} , matrix design

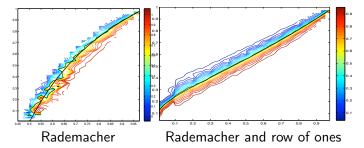
- ▶ Let $x \ge 0$ be k-sparse and form b = Ax.
- ▶ Are there other $y \in \mathbb{R}_+^N$ such that Ay = b, $y \ge 0$, $y \ne x$?
- ▶ As $n, N \to \infty$, Typically No provided $k/n < \rho_W(\delta; \mathbb{R}_+)$



- ► Gaussian and measuring the mean (row of ones): $\rho_W(n/N; \mathbb{R}_+) \rightarrow \rho_W(n/N; T)$
- ▶ Simple modification of A makes profound difference Unique even for $n/N \rightarrow 0$ with $n > 2(e)k \log(N/n)$

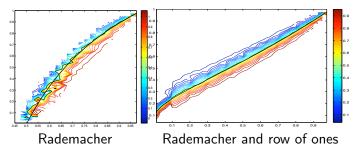
Orthant matrix design, it's really true

- ▶ Let $x \ge 0$ be k-sparse and form b = Ax.
- ▶ Not ℓ^1 , but: $\max_y ||x y||$ subject to Ay = Ax and $y \ge 0$
- ▶ Good empirical agreement for N = 200.



Orthant matrix design, it's really true

- ▶ Let $x \ge 0$ be k-sparse and form b = Ax.
- ▶ Not ℓ^1 , but: $\max_y ||x y||$ subject to Ay = Ax and $y \ge 0$
- ▶ Good empirical agreement for N = 200.



SUMMARY	Simplex	ℓ^1 ball	Hypercube	Orthant
Matrix class	Gaussian	Gaussian	gen. pos.	sym. exch.
Design	Vandermonde	unknown	not possible	row ones

References

- ▶ Donoho (2005) High-Dimensional Centrosymmetric Polytopes with Neighborliness Proportional to Dimension. DCG.
- Donoho and Tanner
 - Counting faces of randomly-projected polytopes when projection radically lowers dimension (2006), J. AMS.
 - Counting the faces of randomly projected hypercubes and orthants, with applications (2008), DCG.
 - ▶ Precise Undersampling Theorems (2009), Proc. IEEE.
 - ▶ Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing (2009) *Phil. Trans. Roy. Soc. A.*
- Blanchard, Cartis, Tanner, Thompson (2009) Compressed Sensing: How sharp is the RIP?
- ▶ Bah, Tanner (2010) Improved RIC bounds for Gaussian Matrices.

Thanks for your time