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ABSTRACT

STOCHASTIC SYNCHRONY AND PHASE RESETTING CURVES:

THEORY AND APPLICATIONS

Sashi K. Marella, PhD

University of Pittsburgh, 2012

We investigate the relationship between the shape of the phase-resetting curve (PRC) and the

degree of stochastic synchronization observed between a pair of uncoupled general oscillators

receiving partially correlated Poisson inputs. Using perturbation methods, we derive an

expression relating the shape of the PRC to the probability density function (PDF) of the

phase difference between the oscillators. Using various measures of synchrony and cross-

correlation we demonstrate that the degree of stochastic synchronization is dependent on

the firing rate of the neuron and the membership of the PRC (Type I or Type II). We apply

our theory to the olfactory bulb to investigate whether the correlated output of the olfactory

bulb granule cells can synchronize uncoupled mitral cells via a positive feedback loop in

correlation. We demonstrate the emergence and temporal evolution of input correlation

in recurrent networks with feedback. We also investigate the rate of convergence to the

steady-state PDF using an analytical approach. Our investigation explores several theoretical

models ranging from spiking models to abstract analytically tractable models.

Keywords: Phase resetting curve, Stochastic synchronization, Correlation, Synchrony, Re-

current networks.
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1.0 INTRODUCTION

In this thesis we study the phenomenon of stochastic synchronization between uncoupled

oscillators using theoretical analysis and computer simulations. We then use our theoretical

results to investigate the mechanism of synchronization of principal neurons in the olfactory

bulb. In this chapter we provide a background of the various biological and theoretical

aspects of the problem.

• 1.1 In this section we provide a brief introduction to the olfactory system and the moti-

vation to study networks with mitral and granule cells where the only type of coupling

present is the mitral-granule reciprocal dendrodenritic synapse.

• 1.2 In this section we provide an overview on synchrony in the nervous system. We also

discuss some mechanisms of synchrony that are germane to our investigation.

• 1.3 In this section we introduce the phase resetting curve.

1.1 OLFACTORY BULB

Olfaction is an important mode of gathering sensory information from the environment

employed by living organisms on this planet. This is especially significant in the case of

mammals, fish and insects which have a highly developed sense of smell. Odorant molecules

can carry information about predators, prey, and reproductive opportunities which are crit-

ical environmental parameters that an organism must be aware of, in order to maximize

its survival. Olfaction begins with the entry of odorant molecules into the nostrils. These

molecules travel through the nasal canal and get embedded in a layer of mucus secreted by
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the nasal epithelium. Here, these molecules may bind to odorant receptors expressed by

olfactory receptor/sensory neurons on hair-like cilia on their dendritic membranes. Upon

binding a ligand, the receptor transduces the signal via secondary messenger pathways re-

sulting ultimately in the generation of an action potential in the receptor neuron.

Multiple axons of olfactory receptor neurons travel further up together as olfactory nerves

through a sieve-like bone called the cribiform-plate into the olfactory bulb. In the olfactory

bulb, the axons terminate in spherical structures called glomeruli. These glomeruli also har-

bor the apical dendrites of cells called mitral cells. Mitral cells are the principal excitatory

neurons of the olfactory bulb. Their apical dendrites receive incoming odor information

from the olfactory receptor neurons and their axons project to the piriform cortex, entorhi-

nal cortex and the amygdala. The major inhibitory neurons in the olfactory bulb are the

granule cells discovered by Camillo Golgi in the year 1875 [37, 85]. The existence of spines on

granule cell dendrites were proved by Ramon y Cajal [12]. Mitral cells in addition to their api-

cal/primary dendrites in the glomerulus also have basal/secondary dendrites. The existence

of reciprocal dendrodenritic connections between the basal dendrites of mitral cells and the

dendrites of granule cells was supported by experimental and theoretical studies [42, 76, 75]

before it was definitively described [73, 74].

The basal dendrites of mitral cells can extend laterally for long distances onto neighboring

glomeruli [84]. This suggests that distant mitral cells may be synaptically coupled. But,

although there have been some studies indicating the existence of direct, electrical, dendritic,

excitatory mitral cell coupling [47, 14, 81, 98] between glomerular-specific mitral cells, such

coupling between glomerular-non-specific mitral cells has not been clearly demonstrated.

On the other hand, recent experimental studies have suggested that the laterally extended

morphology of the basal dendrites of mitral cells could potentially activate granule cells

situated as far as 1 mm away. This distance was estimated by recording the distance to

which a full action potential invades the basal dendrites [107]. Viral tracer experiments

have revealed that granule cells exist in widely distributed clusters [106]. Narrow clusters

of granule cells have been observed to be centered around each glomeruli and it has been

suggested that these narrow clusters of granule cells along with mitral cells form a ’glomerular

unit column’. These properties of neurons in the olfactory bulb suggests that mitral-granule
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interactions are an important feature of the olfactory bulb.

1.2 SYNCHRONY

Synchrony is a universal concept. Although humans understand the intuitive concept of

synchrony, academic interest in synchrony might have been set in motion in the 1700′s when

Christiaan Huygens made the observation that pendulums hung on the same wall tend to syn-

chronize with each other [71]. In 1727, Jean-Jacques d’Ortous de Mairan found experimental

evidence for circadian rhythms in plants. In neuroscience, synchrony gained prominence after

recordings of electrical activity in the fish olfactory organs showed synchronous discharges of

electrical activity [4]. Similar synchronous discharges were later observed in the hedgehog [2].

More recently, it was shown that action potentials generated by cortical cells can align with

the oscillatory rhythm which results in phase-locking of neuronal firing to synchronized oscil-

lations [40, 41, 17]. It was also proposed [39] that gamma frequency synchronization between

cell assemblies can promote integration of sensory information. Synchrony can influence

transmission of activity from one group of neurons to another [94, 77]. Also, synchronous

presynaptic neurons with common postsynaptic targets can effectively depolarize the post-

synaptic neurons which leads to a more efficient mode of propagating spiking information

to downstream targets [79, 64].Synchronous oscillations are grouped into discrete frequency

ranges,beta(15-30),theta(4-8),gamma(30-80) etc. The olfactory bulb has long been known

for its robust gamma rhythms [2, 3, 10, 83, 18]. Since the olfactory bulb is our prime focus

we will discuss the mechanisms to generate gamma rhythms.

1.2.1 Mechanisms of Gamma synchrony

1.2.1.1 Interneuron Network Gamma (ING) Cortical GABAergic neurons show a

high degree of mutual connectivity [90], therefor it is not surprising that most inhibitory neu-

rons form networks. The ING mechanism was first experimentally investigated by [105, 95].

In these experiments, excitatory synaptic transmission was blocked using AMPA and NMDA
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channel blockers while simultaneously activating the metabotropic glutamate receptors.

Metabotropic glutamate receptor activation depolarizes the inhibitory neuron population.

It was observed that intracellular recordings from pyramidal cells revealed a highly syn-

chronous barrages of IPSP’s onto the pyramidal cells in the frequency range of 30-50 Hz.

The ING mechanism requires that at least a fraction of the individual interneurons have

firing frequencies higher than the frequency of the population rhythm [96, 105, 101]. If

such a network is excited, the resulting population rhythm will be governed by the time-

course of inhibition from one neuron to another [105, 96, 101] which includes the timecourse

of the IPSP and after-hyperpolarization currents if present. With slower synapses, it has

been shown that the mechanism of synchronization of a coupled neurons is by the “Escape

scenario” where the coupled neurons can all fire action potentials and undergo inhibition

together resulting in population synchrony [102].

In the Wang-Buzsaki model, manipulating the firing frequency or changing the strengths

of synapses does not prevent the generation of the highest synchrony at gamma frequen-

cies [101]. The coherence of the Wang-Buzsaki model does break down with heterogeneities

but the decrease is least when the network parameters allow the system to synchronize in

the gamma range [101]. In order to overcome heterogeneities, the conductance of the GABA

synapse should be large [99, 6]. The ING mechanism is most robust to heterogeneities when

the decay constant of the IPSP matches the period of oscillation [101]. Theoretical investiga-

tions have supported these findings by showing that homogeneous networks can synchronize

in a wider range of frequencies [100]. The proposed mechanism of synchronization is based

on mutual coupling of interconnected network of inhibitory neurons. These neurons receive

identical inputs which results in all the neurons firing together. If some fraction fires at the

wrong time, they receive inhibition from the majority of the synchronized neurons. This

inhibition delays their next spike and after a few cycles of successive spike delay allows them

to synchronize with the rest of the population.

1.2.1.2 Pyramidal Interneuron Network Gamma (PING) PING was proposed to

explain the data obtained by researchers in the mid-nineties. These workers reported ro-

bust recruitment of pyramidal cells during oscillatory activity. The first group used tetanic
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stimuli and metabotropic glutamate receptor activators [104] while the second group used

the cholinergic agonist carbachol [28]. Since pyramidal neurons are recruited in this type of

oscillatory activity, the excitatory neuron population will be able to modulate the activity

of the interneuron network via feed back excitation. This sets up an oscillation involving the

interplay between interneurons and excitatory neurons. Excitatory neuronal firing generates

EPSPs that seem to play a role in stabilizing the network oscillation. It has been shown that

drugs like diazepam and thiopental decrease the oscillation frequency to a greater extent for

ING compared to when pyramidal cells were participating in the network oscillation [103].

The importance of inhibitory neurons was highlighted recently in two experiments using

Channelrhodopsin and Halorhodopsin to optically depolarize and hyperpolarize neurons.

Depolarization of cortical inhibitory cells caused an increase in the frequency of oscillations

and hyperpolarizing them caused a decrease in the oscillation frequency [88]. When in-

hibitory cells were driven by random light pulses, the gamma peak was distinctly enhanced

compared to other frequency bands [13]. When periodic light pulses were used, it was found

that the pulses were more effective at eliciting gamma oscillations when directed toward the

interneuron population compared to the excitatory neuronal population [13]. EPSPs can

also facilitate spatially separated cortical areas to oscillate in the gamma range with a small

phase difference. This was analyzed by [26] using maps which shed light on the role of the

doublet spike in synchronizing spatially separated cortical areas. In general, interneurons in

ING networks should have sufficient drive to overcome inhibition and fire action potentials.

In this case the excitatory cell fires when the level of noise is low. Alternatively, ING net-

works may receive external drive to its excitatory neurons such that it is barely enough for

the excitatory neurons to fire once every cycle but only after the inhibitory cells fire. In an

ideal PING network, the excitability of the excitatory population should be such that the

excitatory neurons recover from inhibition faster than interneurons thus allowing them to

activate the interneuronal population to start the next cycle. It has also been shown that

active involvement of the excitatory neurons in the network [96, 101] makes it less vulnerable

to heterogeneities.
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1.2.1.3 Stochastic synchrony Stochastic synchrony was first proposed [63] as a mech-

anism to explain an observation that there were spatial correlations in the cycles of fur

returns of Canadian lynx [19]. Now, it is a frequently studied subject in neuroscience and

applied mathematics [31, 32, 33, 66, 71, 93, 16, 15, 1, 27, 61, 60]. The mechanism allows for

synchronization of uncoupled oscillators receiving partially correlated noisy inputs. In the

olfactory bulb, it recently been proposed that generation of gamma oscillations could occur

via such a stochastic process rather than via PING. We will say more about this mechanism

later.

1.3 PRC

In this section we introduce the phase resetting curve. PRC’s are an indispensable tool

that describes the response of an oscillator to an external input at a given phase during its

oscillation. Let us consider a differential equation in Rn

dX

dt
= F (X). (1.1)

If we suppose that this system has an asymptotically stable limit cycle Γ which has a period

T . Asymptotic stability implies that nearby initial conditions approach Γ as t → ∞ We can

parametrize Γ with respect to the period T and define a phase, θ ∈ [0, T ), along the limit

cycle. Let Φ(x) be the phase of the oscillator for a point x on Γ. Since the limit cycle is

asymptotically stable, it is possible to define a phase for points y in the neighborhood of

the cycle. Then we can define Φ(y) = Φ(x) where Φ(x) is the asymptotic phase of y, i.e.

∥X(t; x) − X(t; y)∥ → 0 as t → ∞. The set of points y which have the same asymptotic

phase is called the isochron of the limit cycle. An external perturbation given at phase ϕ

can move the system to a different isochron where the new phase is ϕ′. The phase resetting

curve is defined as the difference between the new phase and the old phase.

∆(ϕ) = ϕ′ − ϕ (1.2)
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1.4 MOTIVATION

1.5 OUR THEORETICAL RESULTS

Galan et al [33] showed that olfactory principal neurons can undergo partial synchronization

when driven by partially correlated synaptic inputs. There is a fundamental difference

between Class-I and Class-II excitable neurons in their response to external inputs. Class-I

neurons tend to undergo a phase advance owing to their positive PRCs. Class-II neurons on

the other hand can be advanced or delayed in phase in response to an input. In addition,

neurons in the olfactory cortex exist in recurrent networks. It is not clear whether and

how feedback affects the stochastic synchronization properties of these neurons. In order

to understand the response of principal neurons in the olfactory bulb to correlated noise

we have to investigate the case where input correlation is not fixed. In addition, the rate

of convergence to a steady-state density of phase differences for stochastic synchronization

remain unknown.

1.5.1 Thesis goals and Results

The main goals of this thesis are

• (I) To obtain a closed-form expression for the relationship between the PRC and the

steady-state density of phase differences for two uncoupled oscillators receiving partially

correlated inputs.

• (II) To investigate the effects of feedback on a network of neurons undergoing stochastic

synchronization.

• (III) To obtain an expression for the rate of convergence to the steady-state density of

phase differences.

Our main results are

• (I) We obtain a closed-form expression for the relationship between the PRC and the

steady-state density of phase differences.
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• (II) We show that feedback causes an amplification of correlation via a positive feedback

loop in correlation.

• (III) We obtain an expression for the rate of convergence for the system of coupled

oscillators without feedback.

1.6 CHAPTER OUTLINES

1.6.1 Chapter 2: Stochastic synchronization and the Phase resetting curve

In this chapter we analyze a system of phase oscillators receiving partially correlated inputs.

Using perturbation methods, we obtain a closed-form solution for the steady-state density

of phase differences. We then define order parameters for synchrony and cross-correlation

and use these order parameters to quantify the degree of stochastic synchronization in this

system of oscillators. We also study the effect of firing rates in a Morris-Lecar system on the

degree of stochastic synchronization. Additionally, we use the order parameters to quantify

other frequently used models like the leaky integrate-and-fire model and the Wang-Buzsaki

interneuron model.

1.6.2 Chapter 3: Amplification of stochastic synchronization in recurrent net-

works

In this chapter we investigate a spiking neuron model with feedback to qualitatively demon-

strate the emergence of self-organized synchrony. Then we use an abstract model to obtain an

expression for the averaged dynamics and compare our predicted solutions for fixed points

with those obtained using Monte-Carlo simulations. We also show that the choice of the

functional Γ in equation 3.4 affects the stability of the fixed points. Specifically, we address

the mechanism by which bistability could arise in the system.
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1.6.3 Chapter 4: Rate of convergence of stochastic synchrony

In this chapter we obtain an expression for the rate of convergence to the steady-state

density of phase differences in a two oscillators system receiving partially correlated inputs

without feedback. We use the closed-form expression obtained from chapter 2 to obtain an

approximation using the perturbation technique suited for computing large eigenvalues. Our

theoretical values show a close match to values obtained through simulation.

9



2.0 STOCHASTIC SYNCHRONIZATION AND THE PHASE RESETTING

CURVE

2.1 INTRODUCTION

There has recently been a great deal of interest in the ability of noise to synchronize limit

cycle oscillators even when they are uncoupled [72, 93, 36, 46, 108, 57, 69, 58]. Two

uncoupled limit cycle oscillators driven by partially or fully correlated noise that is not

too strong are able to synchronize in the sense that their phase difference approaches a

stationary distribution peaked around zero. Goldobin et al [36] and more recently Nakao et

al [66] derived expressions for the density of phase-differences when oscillators are driven

by partially correlated white noise. In recent experiments, Galan et al [33] showed partial

synchronization of two olfactory bulb neurons when driven by partially correlated synaptic

events. If this so-called stochastic synchronization plays a role in biological networks, then it

would be useful to quantitatively characterize the consequences of uncorrelated signals and

oscillator heterogeneity as a function of the details of the oscillators. For small noise levels,

it has been shown [36, 66, 93] (for white noise stimuli) that a general limit cycle oscillator

can be reduced to a scalar equation for the phase characterized by the phase-resetting curve

or PRC. The PRC of an oscillator describes how the timing of a brief signal changes the

phase of the oscillator. PRCs are easily measured experimentally and computed numerically

for a given model.

Neural and other biological oscillators can be classified broadly into two types based on

their intrinsic dynamics [78]. That is, as a parameter changes (e.g., the injected current in a

neuron), the system goes from a stable rest state to periodic firing through a bifurcation; two

such bifurcations characterize the majority of tonically spiking neurons. Class I excitable
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neurons undergo saddle-node on invariant circle bifurcations and can theoretically fire at

arbitrarily low finite frequencies whereas Class II excitable neurons undergo either sub- or

super-critical Andronov-Hopf bifurcations and possess a non-zero minimum frequency of

firing. Ermentrout and collaborators [23, 43], Hansel et al [44] and more recently Brown

et al [11] have demonstrated that there is a strong connection between the bifurcation class

of a neuron and the shape of its phase-resetting curve. Class I excitable neurons, at least

near the bifurcation, tend to have PRCs which are non-negative; inputs can only advance

the phase [21]. Class II excitable neurons tend to have PRCs which have both positive

and negative parts [21]. Thus for class II excitable neurons, the next spike is advanced or

delayed depending on the timing of the subthreshold input. The shape of the PRC plays

an important role in determining whether coupled neurons are able to synchronize both in

models [38, 22, 23, 43, 31] and in experimentally manipulated neurons [35, 59, 67] . Thus,

we expect that the shape of a neural PRC might also factor in the degree of stochastic

synchronization to noise. Recently, Tateno and Robinson [92, 91] used the phase resetting

curve of both model neurons and cortical neurons to study how the shape of the PRC affects

the rate that two identical neurons driven by perfectly correlated noise can synchronize.

Galan et al [32] used finite element method to contrast the stochastic synchronization of

class I and class II neurons to white noise. Interestingly, Tsubo et al [97] show that the

shape of the PRCs is different in different layers of the rat motor cortex.

In this paper, we first derive an expression for the density of phase-differences for two

identical oscillators driven by partially correlated Poisson inputs. It turns out that in the

limit of small perturbations, we obtain a result identical to Nakao’s recent calculation [66].

Secondly, we explore how the shape of the PRC impacts the relationship between the input

correlation and synchrony of driven oscillators. Finally, we explore the effects of the oscillator

frequency on stochastic synchrony as it is known ([43]) that frequency has a strong effect on

the shape of the PRC.
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2.2 DERIVATIONS

2.2.1 Reduction to a phase equation

Consider a general limit-cycle oscillator that is driven by an input:

dX

dt
= F (X(t)) +G(X(t), t)

When G = 0, we have a stable periodic solution, X0(t). As in Kuramoto [53], we can

introduce a phase variable along limit cycle, θ so that we write X(t) = X0(θ(t)) and obtain

dθ

dt
= 1 + Z(θ(t)) ·G(X0(θ(t)), t)

as long as G is small (which is the case we consider here). The vector function, Z(θ) describes

the phase-shift of the oscillator as a function of the timing (phase) of the stimulus. Now

suppose that X(t) is a neural oscillator which is driven by a series of pulsatile inputs with

amplitude am at times t1, t2, . . .. Since the drive only appears in the voltage variable, only

the voltage component of Z(θ) matters; this is the infinitesimal phase resetting curve ∆(θ)

for the neuron. Thus the phase satisfies:

dθ

dt
= 1 +

∑
m

∆(θ(t))amδ(t− tm).

Let τm = tm − tm−1 be the time between impulses. Between inputs, the phase (measured in

units of time) advances by τm, If we let θm be the phase right before the mth stimulus, then

θm+1 = θm + τm + am∆(θm). (2.1)

We note that θ lies between [0, T ) where T is the natural period of the oscillator. We now

have reduced the driven oscillator to a one-dimensional map. If the pulsatile stimuli are

not delta functions but rather some type of brief synaptic current, then the map derivation

can be valid (or certainly a good approximation) when the PRC is replaced by another

quantity called the spike-time response curve (STRC, S(θ)). For example if the inputs are

time-dependent functions, say, i(t), then the PRC is replaced by:

S(θ) =

∫ ∞

0

∆(θ − θ′)i(θ′) dθ′.
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With regular inputs, this replacement is valid as long as i(t) lasts for a short time compared

to the interstimulus interval. However, for Poisson inputs, the interstimulus interval can be

arbitrarily short, so that using an STRC may not be formally legitimate.

Experimentally, the function ∆(θ) is obtained by perturbing the oscillator with small

stimuli (say, amplitude a) and measuring the change in the spike-time:

∆̂(t, a) ≡ T − Tpert(t, a).

The function ∆(t) is defined as

∆(t) = lim
a→0

∆̂(t, a)

a
.

It is called the infinitesimal PRC. For numerically computed oscillations, ∆(t) is found by

solving the adjoint equation, a linear equation associated with the limit cycle solution [25].

2.2.2 Phase Distribution Equation

We first consider the invariant phase of a single perturbed oscillator. If τm are taken from

a distribution, Q(τ) (τ ∈ [0, T )) and am are taken from a distribution with density, f(a),

then we can readily derive an equation for the density of phases, θm, in equation (2.1) using

methods of Lasota and Mackey [56] . Let Pm(θ) be the density of θm. Then

Pm+1(θ) =

∫ ∞

−∞

∫ T

0

Pm(y)Q(θ − y − a∆(y))f(a) dy da.

A number of authors have analyzed this model when f(a) is strongly peaked near a = 0, e.g.,

stimuli are weak; or when the Poisson rate is very fast. Nakao et al [65] and Ermentrout

et al [24] show that to lowest order, the invariant density, φ(θ) ≡ P∞(θ) is very close to

uniform, φ(θ) ≈ 1/T. We will show later, that formally, we have to make a small correction

even for weak inputs, but for Poisson inputs at low rates, the results are indistinguishable

from those obtained by treating φ(θ) as uniform. For notational simplicity, we will assume

that the period, T has been scaled to 1. Consider, now, N identical uncoupled oscillators,

driven with pulsatile stimuli that are only partially shared. That is, at any given moment,

some oscillators will receive a perturbation, but others will not. Our goal is to study how

synchronous the oscillators are as a function of the degree of sharing. As the oscillators are
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uncoupled, it suffices to analyze a pair. Thus, consider two such oscillators with identical

periods:

Θn+1 = Θn + τn + ϵan∆(Θn) (2.2)

Ψn+1 = Ψn + τn + ϵbn∆(Ψn) (2.3)

where Θ and Ψ denote the phase of the oscillators at the time of the nth input. τn is the period

of stimulation, specifically it is the time between the nth and the n+1th inputs and is assumed

here to be a Poisson variable. The parameter, ϵ scales the magnitude of the perturbations.

We allow for heterogeneity in the inputs; some inputs are shared while others are not. The

easiest way to do this is to assume that an, bn are either 0 or 1: (an, bn) ∈ {(1, 1), (0, 1), (1, 0)}

with probabilities q, (1−q)/2 and (1−q)/2 respectively. Thus, q is the probability that both

oscillators receive the same input and thus is related to the correlation of the inputs. In

section2.5 we show that the correlation is, c := 2q/(q + 1). Additional heterogeneity could

come via small differences in the frequencies of the oscillators. At the end of the derivation,

we discuss this point briefly. We assume ∆ to be a periodic function with period 1. The

phase difference of the oscillators at the time of the n + 1th input, δn = Θn − Ψn can be

obtained by subtracting equation (2.3) from (2.2).

δn+1 = δn + ϵ (an∆(δn +Ψn)− bn∆(Ψn)) .

In order to analyze these equations, we will derive an equation for the density of δn using

methods for stochastic maps in [56]. We note that Ψn are random variables which are

independent of δn and furthermore, that an and Ψn are independent as well since Ψn depends

only on an−1. Thus, given the probabilities of an, bn and Ψn, we can compute the evolution

of the density for δn and thus the invariant density.

Let pn(x)dx := Pr(δn ∈ [x, x + dx)), that is, pn(x) is the density function for the phase

difference, δn. With some abuse of notation, we will suppress the dx, first on the RHS and

later on the LHS of the definition. Let

E[U(Ψ)] :=

∫ 1

0

U(Ψ)φ(Ψ) dΨ
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where U is an arbitrary function of Ψ and φ(Ψ) is the invariant density for Ψn. Henceforth,

we drop the subscript n from Ψn.

pn+1(x)dx = E[Pr(δn + ϵan∆(δn +Ψ)−

ϵbn∆(Ψ) = x)]

= qE[p11n (x,Ψ)dx]

+

(
1− q

2

)
(E[p01n (x,Ψ)dx]+

E[p10n (x,Ψ)dx])

where pabn+1(x,Ψ)dx is the probability that δn+1 = x given (a, b) and Ψ. We now compute all

the pabn (x,Ψ)dx quantities.

p01n (x,Ψ)dx = Pr(δn − ϵ∆(Ψ) = x)

= Pr(δn = ϵ∆(Ψ) + x)

= pn(ϵ∆(Ψ) + x)dx.

Before continuing, we define F (x) := x+ ϵ∆(x). For ϵ sufficiently small, F (x) is an invertible

function.

p10n (x,Ψ)dx = Pr(δn + ϵ∆(δn +Ψ) = x)

= Pr(δn +Ψ+ ϵ∆(δn +Ψ) = x+Ψ)

= Pr(F (δn +Ψ) = x+Ψ)

= Pr(δn = F−1(x+Ψ)−Ψ).

Since,

Pr(δn + ϵ∆(δn +Ψ) ≤ x) = Pr(F (δn +Ψ)−Ψ ≤ x)

= Pr(δn ≤ F−1(x+Ψ)−

Ψ).

We can write,

p10n (x,Ψ) =
d

dx

∫ x

0

p10n (s,Ψ) ds

=
d

dx

∫ F−1(x+Ψ)−Ψ

0

pn(s,Ψ) ds

= pn(F
−1(x+Ψ)−Ψ,Ψ).

d

dx
(F−1(x+Ψ)−

Ψ)

=
pn(F

−1(x+Ψ)−Ψ,Ψ)

F ′(F−1(x+Ψ))
.
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Hence, p10n (x,Ψ)dx =
pn(F

−1(x+Ψ)−Ψ,Ψ)dx

F ′(F−1(x+Ψ))
.

Lastly,

p11n (x,Ψ)dx = Pr(δn + ϵ(∆(δn +Ψ)−∆(Ψ)) = x)

= Pr(δn +Ψ+ ϵ∆(δn +Ψ) = x+Ψ+

ϵ∆(Ψ))

= Pr(F (δn +Ψ) = x+ F (Ψ))

= Pr(δn = F−1(x+ F (Ψ))−Ψ)

=
pn(F

−1(x+ F (Ψ))−Ψ),Ψ)dx

F ′(F−1(x+ F (Ψ)))
.

Thus, pn(x) satisfies the Frobenius-Perron equation:

pn+1(x) =

∫ 1

0

φ(Ψ)qp11n (x,Ψ)dx

+

(
1− q

2

)
[p10n (x,Ψ)dx+

p01n (x,Ψ)dx] dΨ

The invariant (steady-state) density is found by equating pn(x) and pn+1(x), thus we need

to solve

p(x) =

∫ 1

0

φ(Ψ)

[
q

(
pF−1(x+ F (Ψ)−Ψ))

F ′(F−1(x+ F (Ψ)))
dΨ

)
+

(
1− q

2

)(
p(F−1(x+Ψ)−Ψ))

F ′(F−1(x+Ψ))

+p(∆(Ψ) + x)

)] (2.4)

In order to analyze equation (2.4), we need to know the distribution of the phase, φ(Ψ).

As noted at the beginning of this section, if the stimuli are small, that is, ϵ ≪ 1, then

φ(Ψ) ≈ 1; it is very close to uniform. In this case, the integrals in equation (2.4) are simple

averages. However, as our calculations for the invariant density, p(x) require O(ϵ2) terms,

we have to compute φ(Ψ) up to order ϵ. The uniform approximation has been used in other

papers, but, strictly speaking, we need to include the next order terms. As we will see later

16



on, the higher order terms in φ(Ψ) make almost no difference for Poisson inputs at low rates.

In the section 2.6, we derive the expression for φ(Ψ) for Poisson inputs with rate r:

φ(Ψ) = 1− ϵ
(
r
1 + q

2

(
∆(Ψ)− ∆̄

) )
(2.5)

where ∆̄ is the average of ∆(Ψ).

Now, let y = F (x) = x+ ϵ∆(x) and express x approximately in terms of y.

x ≈ y + ϵy1 + ϵ2y2

⇒ F (x) = x+ ϵ∆(x)

≈ y + ϵy1 + ϵ2y2 + ϵ∆(y + ϵy1 + ϵ2y2).

By Taylor expansion of ϵ∆(y + ϵy1 + ϵ2y2) around y we get

ϵ∆(y + ϵy1 + ϵ2y2) ≈ ϵ∆(y) + ϵ2∆′(y)y1 +O(ϵ3)

⇒ F (x) ≈ y + ϵy1 + ϵ2y2 + ϵ∆(y) + ϵ2∆′(y)y1.

Equating the ϵ terms we can solve for y1 and y2 obtaining the inverse to second order:

x = F−1(y) ≈ y − ϵ∆(y) + ϵ2∆′(y)∆(y) (2.6)

We use the result in (2.6) to express terms in (2.4) in terms of their expansion in ϵ. For

example, a term like p(F ′(F−1(g))) (which does not appear in (2.4) ) can be expressed using

(2.6) as

p(F ′(F−1(g))) = p(1 + ϵ∆′(x(g − ϵ∆g) + ϵ2∆′g∆g))

leading to

p(1) + ϵp′(1)∆′(g)

+ϵ2
(
−p′(1)∆′′(g)∆(g) + 1

2
p′′(1)∆(g)2

)
+O(ϵ3).
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Using the above scheme, (2.4) can be expressed as

p(x) =

∫ 1

0

[1 + ϵφ1(Ψ)]

[
q

[
p(x) + ϵ

(
− p′(x)(−∆(Ψ) + ∆(x+Ψ))− p(x)∆′(x+Ψ)

)
+ ϵ2

(
− p′(x)∆′(x+Ψ)∆(Ψ) + p′(x)∆′(x+Ψ)∆(x+Ψ) +

1

2
p′′(x)(∆(Ψ))2

− p′′(x)∆(Ψ)∆(x+Ψ) + 1/2 p′′(x)(∆(x+Ψ))2 + p(x)∆′′(x+Ψ)(−∆(Ψ)+

∆(x+Ψ)) + (−p′(x)∆(Ψ) + p′(x)∆(x+Ψ) + p(x)∆′(x+Ψ))∆′(x+Ψ)

)
+O(ϵ3)

]

+
1− q

2

[
p(x) + ϵ

(
− p′(x)∆(x+Ψ)− p(x)∆′(x+Ψ)

)
+ ϵ2

(
p′(x)∆′(x+Ψ)∆(x+Ψ) +

1

2
p′′(x)(∆(x+Ψ))2

+ p(x)∆′′(x+Ψ)∆(x+Ψ) + (p′(x)∆(x+Ψ) + p(x)∆′(x+Ψ))∆′(x+Ψ)

)
+O(ϵ3)

]
+

1− q

2

[
p(x) + ϵp′(x)∆(Ψ) +

1

2
ϵ2p′′(x)(∆(Ψ))2 +O(ϵ3)

]]
dΨ.

To lowest order, we get

p(x) =

∫ 1

0

p(x) dΨ = p(x).

To order ϵ, we obtain

0 = qp(x)

∫ 1

0

φ1(Ψ)dΨ+
q + 1

2

∫ 1

0

p′(x)∆(Ψ)− p′(x)∆(x+Ψ)− p(x)∆′(x+Ψ) dΨ.

Since φ(Ψ) is the invariant density, by definition
∫ 1

0
φ(Ψ)dΨ = 1. Hence

∫ 1

0
φ1(Ψ)dΨ =0,

where φ1 is the 1st order ϵ term in the expansion of φ(Ψ) (see section 2.6). Hence we can

write,

0 =
q + 1

2

∫ 1

0

p′(x)∆(Ψ)− p′(x)∆(x+Ψ)

−p(x)∆′(x+Ψ) dΨ.
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Using the periodicity of ∆(Ψ), we observe that the right hand side is zero independent

of p(x). Henceforth, we denote p(x) as p for reasons of brevity. To second order we must

have :

0 =

∫ 1

0

(
− 4qp′∆′(x+Ψ)∆(Ψ) + 2qp′∆′(x+Ψ)∆(x+Ψ)

+
1

2
qp′′∆2(Ψ)− 2qp′′∆(Ψ)∆(x+Ψ)

+
1

2
qp′′∆2(x+Ψ)− 2qp∆′′(x+Ψ)∆(Ψ) + qp∆′′(x+Ψ)∆(x+Ψ)

+ qp∆′(x+Ψ)2 + 2p′∆′(x+Ψ)∆(x+Ψ) +
1

2
p′′∆2(x+Ψ)

+ p∆′′(x+Ψ)∆(x+Ψ) + p∆′(x+Ψ)2 +
1

2
p′′∆2(Ψ)

)
dΨ

−
∫ 1

0

r

(
q + 1

2

)2

[∆(Ψ)− ∆̄][ (p∆(Ψ)− p′∆(x+Ψ)− p∆′(x+Ψ)) dΨ].

(2.7)

The second integral arises as a consequence of the order ϵ terms in the density function,

φ(Ψ). Let us define

h(x) :=

∫ 1

0

∆(Ψ)∆(Ψ + x) dΨ

and observe the following: ∫ 1

0

∆(Ψ) dΨ =

∫ 1

0

∆(x+Ψ) dΨ∫ 1

0

∆′′(Ψ)∆(Ψ) dΨ = −
∫ 1

0

∆′(Ψ)2 dΨ.

With these definitions, observations, and the fact that ∆(Ψ) is periodic, we can simplify

(2.7) to

0 = −4qp′h′(x) + (1 + q)p′′h(0)− 2qp′′h(x)−

2qph′′(x) + r
(q + 1)2

4
[h′(x)p+ (h(x)− h(0))p′]

(2.8)

If G(x) = 1− 2q

(1 + q)

h(x)

h(0)
and

H(x) =
(1 + q)

4

(
1− h(x)

h(0)

)
, then (2.8) is equivalent to

[p(x)G(x)]′′ − r[p(x)H(x)]′ = 0. (2.9)

This can be integrated to yield a complex expression for the density function for the phase-

differences. However, it is much easier to first consider the low rate approximation where
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r = 0. Using boundary conditions p(0) = p(1) we can solve for constants C1 and C2 in the

solution to the second order differential equation in (2.9):

p(x)G(x) = C1x+ C2

C1 = 0 , C2 =
1∫ 1

0

1

G(x)
dx

where the condition on C1 comes from the periodicity of p(x) and the condition on C2 from

the normalization of p(x). Thus

p(x) =
C2

1− c
h(x)

h(0)

,

where we have substituted c = 2q/(1 + q), the value of the input correlation. Thus, for low

rate Poisson inputs with a small PRC we obtain exactly the same equation for the density of

phase differences as was derived by Nakao et al [66] for the white noise case. We summarize

the result as follows. For two identical oscillators with input correlation, c and slow Poisson

impulses, the density of the phase differences is given by:

p(x) =
N

1− c
h(x)

h(0)

(2.10)

where h(x) is the autocorrelation of the PRC, where N is the normalization term C2. As

c → 1, p(x) → δ(x), the Dirac delta function. Thus perfectly correlated noisy oscillators will

synchronize with zero phase lag. If c = 0, then p(x) = 1 is uniform.

The full equation (2.9) with r ̸= 0 can be solved exactly but little intuition can be gained.

In Fig. 2.2.2, we show the numerical solution to (2.9) for two different values of q and for

various values of the rate, r. At the high value, q = 0.8 corresponding to 80% shared input

(c = 8/9), the effects of the Poisson rate on the shape of the stationary density p(x) are

minimal. At lower correlation, e.g. 20% shared input (c = 1/3), the rate has a stronger effect

although it is still quite small. Heterogeneity in the actual frequencies of the two oscillators

will contribute a term of the form (−p(x)µ)′ to the left hand side of (2.9), where µ is the

difference in the frequencies of the two oscillators. Thus drift will shift the peak of p(x), but

will not significantly change the width of the peak. Thus, we will ignore heterogeneity from

now on.
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Figure 1: Steady state density p(x) for q = 0.2 and q = 0.8 with different values of the

Poisson rate, r.

In the remainder of the paper, we explore how the shape of the PRC affects the degree

of synchronization with partially correlated inputs using the small r approximation (2.10) .

Since equation (2.10) is the same as derived in Nakao et al [66], what we conclude about

shape and synchrony for Poisson inputs will also hold for white noise.

In order to quantify difference in the shapes of the density, p(x), we need to introduce

some measure of the degree of synchrony. We will analyze several different measures. The

simplest is:

z1 =

∫ 1

0

cos(2πx)p(x) dx. (2.11)

If p(x) is uniform, then z1=0 and if p(x) is a delta function, z1=1. The circular variance or

vector strength [5] of a distribution on the circle is defined as

Var(θ) = 1−R/n

where

R2 =

(
n∑

j=1

cos 2πθj

)2

+

(
n∑

j=1

sin 2πθj

)2

.
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Circular variance characterizes phase locking between oscillators. Since p(x) is symmetric

for identical oscillators, the sine average of the phases vanishes, and our order parameter is

exactly R/n. Thus, the circular variance, 1 − z1, is a good measure of the tightness of the

distribution on the circle. For sharp distributions, higher order circular moments may be a

better measure, e.g.

zj =

∫ 1

0

cos(2πjx)p(x) dx

since z1 measures how close p(x) is to a pure cosine curve. We use the first n of order

parameters, and take the limit as n → ∞, we obtain a general order parameter, p(0) − 1

(see section 2.7). A common measure that is used in neuroscience is the cross correlation.

However, for this to make sense, we need to map the phase model onto a “spike train.”

Pfeuty et al [70] consider a simple example Sj(t), defined to be 1/δ if θj(t) is within δ of

θ = 0 and Sj(t) = 0 otherwise. They show that the cross correlation of two such spike trains

is just p(x), that is:
⟨S1(t1)S2(t2)⟩
⟨S1(t)⟩ ⟨S2(t)⟩

= p(t2 − t1).

Thus, a measure of the degree of synchrony is the peak, p(0) which is related to our gen-

eralized order parameter. Like that parameter, there is no simple way to normalize this

cross-correlation.

2.3 EXAMPLES

2.3.1 Comparison with simulations

We first illustrate how well the theory works by comparing Monte-Carlo simulations with

the equation (2.10) and varying the amplitude of the PRC and the rate of the Poisson

process. Fig. 2.3.1 shows an example Monte-Carlo simulation of equations (2.2-2.3) for

different Poisson rates and for different PRC amplitudes using a sinusoidal PRC. We iterate

106 times and bin the resulting data into 100 bins between -0.5 and 0.5. Over a range of two

orders of magnitude in the Poisson rates, there is no difference in the shape of the density

function. Similarly, for small amplitudes, there are no differences in the density either.
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However, if the amplitude becomes large enough, then the approximation of uniformity for

the phase of individual oscillators breaks down and equation (2.10) becomes inaccurate. For

example, Fig. 2.3.1(d) shows the density of the oscillator phase in equation (2.2) as the

amplitude of the PRC increases. Finally, with a modest amplitude, equation (2.10) provides

a precise approximation of the Monte-Carlo histogram as shown in Fig. 2.3.1(c).

2.3.2 Shape matters

We use the terms ‘Type I’ and ‘Type II’ to refer to the PRC’s of Class I and Class II neurons

respectively and use, 1 − cos(θ) and sin(θ) as their respective idealizations. Theoretical

predictions for the probability density functions of phase differences for classical type I

and type II PRCs can be obtained from equation (2.10). For two sample values of q, we

show that type II oscillators have a narrower distribution of phase differences around zero,

compared to type I as can be seen in Fig. 2.3.2. Note that both these oscillator types will

synchronize at identical rates if q = 1 since their Lyapunov exponents are the same [93] .

Using equation (2.11) we calculated the circular variance of the distribution obtained from

equation (2.10). Since physical systems like postsynaptic neurons have to accommodate

jitter around a zero difference in the presynaptic spike times, we calculated the probability

that the phase difference lies within a 0.2T interval around zero. i.e. Prob(δ ∈ [−0.1, 0.1]).

In Fig. 2.3.2(b) and all subsequent plots, Prob(δ ∈ [−0.1, 0.1]) is plotted after subtracting its

value at q = 0, hence the plot purely reflects the contribution of non-zero q. In Fig. 2.3.2(a),

it can be seen that the circular variance of the phase differences for type II is lower (higher

values of the order parameter z1) than that for type I oscillators for all possible values of q.

In Fig. 2.3.2(b), it can be seen that there is a higher probability for type II oscillators to

stay closer in phase than type I. We note that choice of the length of the interval is arbitrary

and the relationship between the curves is conserved at other choices of interval lengths.

Taken together, these three results show that for any given input correlation c < 1, type II

oscillators have a higher probability of undergoing stochastic synchronization compared to

type I for non-zero q. This observation supports the hypothesis that the shape of the PRC

can determine the degree to which uncoupled oscillators can synchronize under the influence
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Figure 2: Monte-Carlo simulations for ∆(x) = a sin 2πx with q = 0.75 and Poisson rate r.

106 iterations are run and binned in 100 bins on the interval [−.5, .5). (a) Independence of

the rate for r = 0.1, 1, 10 at a = 0.025 (b) Independence of the amplitude for small amplitude

s, a = 0.0125, 0.025, 0.05. at r = 1 (c) Comparison of the r = 1, a = 0.025 case for q = 0.75

with the density from equation (2.10). (d) Larger amplitudes result in more non-uniformity

in the distribution of individual oscillator phases at rate r = 1.
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of noise.

For small values of input correlation, c, we can get an approximation for the order

parameter as well as the peak of the density function. For c small,

p(x) =
N

1− ch(x)/h(0)
≈ N(1 + ch(x)/h(0))

from which we find that

N ≈ 1− c

∫ 1

0

h(x)/h(0) dx := 1− c ⟨h⟩ /h(0)

so that

p(0)− 1 ≈ c(1− ⟨h⟩ /h(0)).

Thus, the peak of the probability distribution function and the generalized order parameter

are maximized when the average value of h(x) is zero. Recalling the definition of h(x), we

obtain the concise formula for small correlations:

p(0)− 1 ≈ c

[
1− ⟨∆⟩2

⟨∆2⟩

]
. (2.12)

Holding the L2 norm of ∆ constant
√

⟨∆2⟩, we see that DC component of ∆ is what

hurts the ability to synchronize at low input correlation. Type II oscillators have a lower

DC component and thus synchronize more readily.
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Figure 3: Simulation results showing distribution of phase differences for type I and type II

PRCs, at two different input correlations (q = 0.3 and q = 0.9). Probability is plotted along

the ordinate and the phase differences on the abscissa.
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Figure 4: Comparison of the order parameter between type I and type II PRCs.
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Figure 5: Simulations showing the effect of firing rate on stochastic synchronization. PRCs

from Gutkin et al 2005 [43] were fit using xn(1− x)m where the values of n = 2,m = 1 and

n = 6,m = 1 were used to fit the high and low frequency firing respectively. Inset in (a)

shows PRC’s for both frequencies for q = 0.75.

2.3.3 Dependence on firing rate

We also investigated the influence of firing rate on stochastic synchronization. PRCs for

a model neuron obtained in low and high firing frequency regimes [43] were fit using a

polynomial function xn(x− 1)m . Both PRCs were type I, i.e. the membership of the PRC

remained type I in both the frequency regimes. Using these fits, we calculated the probability

density of the phase differences and 1 − circular variance. The results are plotted in Fig.

2.3.3. It can be seen that for higher firing rate (corresponding to n=2,m=1) there is a broader

distribution of phase difference around zero and also a higher circular variance (lower values

of the order parameter z1). These results suggest that increase in firing frequency decreases

the probability of synchronization due to stochastic input for a type I PRC.

Firing rate dependence of stochastic synchronization was investigated in another model

neuron, specifically the Morris Lecar (ML) system. The parameters for the model can be

tuned such that the model displays either a type I or type II PRC. In both these regimes

the PRC has a tendency to become more negative with an increase in the input current.
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For a ML system with a type I PRC under moderate current conditions, this translates to a

conversion from a classic type I to a type II PRC. A type II ML system on the other hand

continues to experience an increase in its negative part with an increase in input current.

Fig.2.3.3 shows a ML system with a type I PRC. It can be seen that there is narrowing of

the distribution of phase differences accompanied by lower circular variance for the system

firing at a higher frequency with a type II PRC. A similar transition can be observed for a

ML system with parameters set to a type II PRC regime (Fig. 2.3.3), but the magnitude of

change is much less, since the system has a type II PRC at the outset as can be seen in Fig.

2.3.3 and Fig. 2.3.3.

The leaky integrate and fire (LIF) model is used widely as a first approximation to

continuous and realistic neuronal models, thus, it is important to understand the behavior

of LIF neurons in a stochastic synchronization paradigm. In order to derive the order

parameter for two LIF neurons we first obtained the PRC using the adjoint method. Briefly,

if
dX

dt
= F (X)

is a differential system in Rn and X0(t) is its T-periodic limit cycle solution. Then x = X0(t)

is a point on the limit cycle at time(phase) t. The PRC is given by the function Z(ϕ) where,

Z(ϕ) = ∇X(Θ(X0(ϕ)))

and Θ(x) is the phase function that relates a point on the limit cycle to its phase ϕ and is

defined as

Θ(X0(ϕ))) = ϕ. (2.13)

Differentiating (2.13) with respect to ϕ gives a relation between the PRC and F (X)

Z(ϕ)T
dX0

dϕ
= 1.

We derived the PRC for the LIF using the above formulation. Since, we are in one dimension,

this implies

Z(ϕ) =
1

dX0

dϕ

.
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Figure 6: Transformation of the PRC for the ML system in different frequency regimes.(a)

ML system in type I regime with an injected current of 50 µA (threshold around 40 µA).

The PRC is almost completely type I (b) PRC of ML system in A after the injected current

is increased to 100 µA. The PRC is transformed to the type II regime (c) ML system in type

II regime with an injected current of 120µA (threshold around 100 µA. The PRC is type II

(d) Transformation of PRC in C upon increasing injected current to 220 µA
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Figure 7: Simulations showing the effect of firing frequency on stochastic synchrony in type

I and type II Morris-Lecar system. The different input currents were I=50,100 for type I

and I=120,220 for type II,q = 0.75 for (a) and (d)
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The LIF in its most general form is given as.

dV

dt
= −V + I. (2.14)

Solving (2.14) we get

V (t) = I − Ie−t. (2.15)

The PRC is obtained by taking the reciprocal of the derivative of (2.15) with respect to t.

Therefore,

Z(ϕ) =
eϕ

I
.

We calculated the autocorrelation function h(x) of the PRC as follows

h(x) =

∫ P−x

0

eyex+ydy +

∫ P

P−x

eyex+y−Pdy

= 1
2

[
eP−x(eP − 1) + ex(eP − 1)

]
.

For calculating the order parameter for different periods we used the following simplifications.

H(x) =
h(x)

h(0)
=

eP−x + ex

eP + 1
. (2.16)

In order to parametrize the phase x we replace it with sP where s ∈ [0, 1] and we can write

(2.16) as

H(s, P ) =
e−Ps + eP (s−1)

1 + e−P
. (2.17)

Using this we calculated the order parameter for different periods in Fig. 2.3.3. It can be

observed that the order parameter is a non-monotonic function of the period of oscillation.

We plot the order parameter as a function of period for q = 0.75 in Fig. 2.3.3. The position

of the maxima of the order parameter curves depend on the period of oscillation. We show

the order parameter obtained for a range of values for q and P in Fig. 2.3.3.

The Wang-Buzsaki model is a commonly used model for cortical interneurons [101].

It has a very wide range of frequencies and thus we investigated how this model is able

to synchronize under a stochastic synchronization paradigm at different frequencies. The

adjoint was numerically calculated at different frequencies and the slope of the generalized

order parameter with respect to input correlation was calculated as given in equation (2.12)
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Figure 8: Comparison of the order parameter obtained using an LIF neurons at different

firing frequencies. Numbers indicate the time period between two successive spikes,q ∈ [0, 1).
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Figure 9: Comparison of the order parameter obtained using LIF neurons at different periods

at q = 0.75,c = 0.85714

and plotted in Fig. 2.3.3. It can be seen that the rate of change for the generalized order

parameter has a sublinear relationship with respect to input correlation c, through almost

the entire range of the neuron’s firing frequency except possibly at the neuron’s highest firing

frequency where it reaches a value of 1, hence becoming linear. Additionally, this rate of

change of the generalized order parameter with respect to the input correlation c, has a

non-monotonic relationship with respect to the firing frequency of the neuron wherein, in

the lower frequency range it decreases from a value 0.5, close to 0 Hz to about 0.29 at around

33 Hz and then increases up to a value of 0.75 at around 400 Hz followed by a rapid increase

to a value of 1 at the neuron’s highest firing frequency around 500 Hz.
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Figure 11: Slope for the generalized order parameter and input correlation dependence from

Wang-Buzsaki model over a range of firing frequencies

2.4 DISCUSSION

In this work, we analyzed a system of identical, uncoupled limit-cycle oscillators receiving

weak, partially correlated, Poisson distributed inputs. We derived an expression (2.9) for the

probability density function of the phase difference between the two oscillators. Numerical

simulations of (2.9) suggest a relative independence of the phase distribution with respect to

the input rates at moderate to high input correlation values (Fig. 2.2.2) and weak inputs (Fig.

2.3.1). Thus we analyzed (2.9) under the assumption of low rates which makes it possible

to gain an intuitive understanding of the mechanism of PRC-shape dependent stochastic

synchrony. Our results suggest that the shape of the PRC is crucial in controlling the

magnitude of stochastic synchrony realized by the system.

By adopting circular variance as a measure of synchrony we show that Type II PRCs

tend to show higher synchrony than Type I PRCs at all values of input correlation (Fig.

2.3.2). This result is also reflected identically in another measure of synchrony where we

simply integrate the probability density between arbitrary upper and lower limits around
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zero. These results taken together suggest that the phase differences for oscillators with

Type II PRCs are more densely clustered around zero compared to systems with Type I

PRCs which show longer tails. In other words, systems with Type II PRCs spend more

time close to each other than those with Type I PRCs. We also show that the generalized

order parameter, which is simply the sum of the correlations between the phase distribution

function and all modes of cosine, is linear in the input correlation, for weak correlations.

In real neurons the shape of the PRC can be modulated by the firing frequency [43].

This modulation is mediated by slow adaptation processes, mainly slow potassium currents

which increase with an increase in firing frequency. But this increase in the slow potassium

current also decreases the fractional contribution of the transient potassium currents at the

start of the inter spike interval (ISI) which causes an otherwise skewed PRC at moderate

firing frequencies to become less skewed at higher frequencies. Our investigation suggests

that synchronization is affected by firing frequency and decreases at higher frequencies (Fig.

2.3.3). That this difference in synchronization is observed without the change in the mem-

bership of the PRC (Type I at both frequencies) only solidifies the role of subtle differences

in the shape of PRC, in this case the degree of skewness, in dictating the system’s propensity

for undergoing stochastic synchronization.

In the light of the above results, we investigated a system whose PRC undergoes sub-

stantial modulation in shape and changes membership at higher frequencies. Our results

from simulations using the Morris-Lecar model show that stochastic synchrony increases

with firing frequency as the PRC changes from a Type I to Type II. In contrast, when the

system starts out in a Type II regime, the change in the circular variance due to increase

in firing frequency is minimal. A recent study, set in a similar setting has shown that the

output correlation of spike counts between LIF neurons increases with firing frequency [15].

Our results show a non-monotonic relationship between circular variance of the phase differ-

ences and firing frequency. The circular variance of the phase difference does decrease with

increase in firing frequency but only up to a point beyond which it increases with frequency.

We also note that the LIF has a Type I PRC at all firing frequencies. At this point the

interrelationship between these different measures is unclear. A similar firing rate depen-

dence was also observed for the Wang-Buzsaki model. The relationship between the slope of
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the generalized order parameter with respect to input correlation (2.12) and the firing rate

was non-monotonic Fig. 2.3.3, hence the relative increase in the generalized order parameter

with respect to input correlation will be determined by the frequency of firing, similar to

the observations in LIF. Such a firing rate dependent spike time cross-correlation has been

reported in a recent study [52](Figure 8).

Our results suggest a strong effect of the shape of PRC on the synchronization properties

of the cell. The shape of the PRC is determined by the variety of ion-channels that define

the dynamical behavior of a neuron. The relative contribution to membrane voltage of these

ion-channels depends on the firing rate of the neuron. We have described a mechanism by

which these interactions might occur and finally be reflected in the spike time correlation of

general oscillator systems.

2.5 INPUT CORRELATION

Consider a Poisson process with rate r For each spike let c be the probability that an oscillator

receives that particular spike. The effective rate of the Poisson process for the neuron is just

cr. Consider a pair of neurons. The probability that they both receive the given spike is c2

and the probability that one receives a spike and the other does not is c(1− c). Thus, c2 is

the fraction of shared inputs and c is the correlation of the inputs. (1− c)2 is the probability

that neither receives an input. For our problem, as the oscillators are identical, if neither

receives input, then their phase difference remains the same until the next input comes in.

Thus, the only cases in which an event occurs that changes the phases are those in which at

least one oscillator receives an input. The fraction of relevant events (those in which at least

one oscillator gets an input) with shared inputs is c2/(1 − (1 − c)2) = c/(2 − c). Recalling

that q is the fraction of shared inputs, we see that q = c/(2 − c) or, c = 2q/(1 + q). Thus,

the quantity, 2q/(1 + q) is the input correlation.
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2.6 INVARIANT DENSITY

The invariant density, φ(x) satisfies:

φ(x) =
1− q

2

∫ 1

0

Q(x− y)φ(y) dy

+
1 + q

2

∫ 1

0

Q(x− y − ϵ∆(y))φ(y) dy.

Here Q(x) is the inter-spike interval or the waiting time density for a Poisson distribution

with rate r modulo 1,

Q(x) =
re−rx

1− e−r
.

For ϵ = 0, φ(x) = 1, so we expand in terms of ϵ to get the next order: φ(x) = 1+ϵφ1(x)+. . . .

The next order equation is

φ1(x) =

∫ 1

0

Q(x− y)φ1(y)−
1 + q

2

∫ 1

0

Q(x− y)∆′(y) dy

along with the condition that the mean value of φ1(x) is zero (since the integral φ(x) must be

one for normalization). For general Q(x) we can solve for φ1(x) by using a Fourier expansion.

Specifically, write

φ1(x) =
∑
n

bne
2πinx

Q(x) =
∑
n

qne
2πinx

∆(x) =
∑
n

dne
2πinx.

We must then have

bn = −1 + q

2

2πinqn
1− qn

dn.

For a Poisson process with rate r

qn =
r

r + 2πin

so that

bn = −r
1 + q

2
dn

as long as n ̸= 0. (For n = 0, b0 = 0 since the next order terms must have zero mean. Thus,

φ1(x) = −r
1 + q

2
(∆(x)−

∫ 1

0

∆(x) dx).
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2.7 ORDER PARAMETERS

Consider the order parameters,

zj =

∫ 1

0

p(y) cos 2πjy dy, j ≥ 1.

If p(x) is uniform, then each of these vanishes and if p(x) is a delta function, then zj = 1.

Consider the sum of these order parameters as a measure of the synchrony in all modes:

Z = lim
N→∞

N∑
j=0

zj − 1.

We have included z0 in the sum and subtracted 1 from the total to compensate. Now, we

formally rearrange the sum

Z =

∫ 1

0

p(x)

[
lim

N→∞

N∑
j=1

cos 2πjx

]
dx− 1.

The sum in the brackets forms a “delta-sequence” (that is, in the limit, this sum goes to a

Dirac delta function) (c.f. [51]). Thus, Z = p(0) − 1, exactly as derived above. For this

reason, we treat p(0)−1, a generalized order parameter, as a measure of the local synchrony

and correlation.
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2.8 MODEL EQUATIONS

2.8.1 Morris Lecar Model

Cm
dV

dt
= gL(VL − V ) + gKw(VK − V ) + gCam∞(vCa − V ) + I

dw

dt
= λw(w∞ − w)

m∞(V ) = 0.5(1 + tanh((V − V1)/V2))

w∞(V ) = 0.5(1 + tanh((V − V3)/V4))

λw(ϕ, V ) = ϕ cosh(0.5(V − V3)/(V4))

For a Type II model, VK = −84, VL = −60, VCa = 120, gK = 8, gL = 2, gCa = 4,

Cm = 20, V1 = −1.2, V2 = 18, V3 = 2, V4 = 30, ϕ = 0.04, for a Type I model we changed

the following parameters V3 = 12, V4 = 17, ϕ = 0.0667.

2.8.2 Wang Buzsaki Model

Cm
dV

dt
= gL(VL − V ) + gNam

3
∞h(VNa − V ) + gK(n

4)(VK − V ) + I

m∞ = am/(am + bm)

am(V ) = −0.1(V + 35)/(exp(−0.1(V + 35))− 1)

bm(V ) = 4 exp(−(V + 60)/18)

dh

dt
= ϕ(ah(V )(1− h)− bh(V )h)

ah(V ) = 0.07 exp(−(V + 58)/20)

bh(V ) = 1/(exp(−0.1(V + 28)) + 1)

dn

dt
= ϕ(an(V )(1− n)− bn(V )n)

an(V ) = −0.01(V + 34)/(exp(−0.1(V + 34))− 1)

bn(V ) = 0.125 exp(−(V + 44)/80)

Cm = 1, gL = 0.1, VL = −65, gNa = 35, VNa = 55, ϕ = 5, gK = 9, VK = −90
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3.0 AMPLIFICATION OF STOCHASTIC SYNCHRONIZATION IN

RECURRENT NETWORKS

The topics treated in this chapter can be somewhat obscure. For humanitarian considera-

tions, the chapter will be subdivided [82]

3.1 INTRODUCTION

The topic treated here, given its complexity, merits an additional subdivision.

Synchronization of neural activity has been suggested to facilitate coding [20, 86, 87] and

propagation of activity [79, 77, 94]. Synchronous stimulus-induced oscillatory activity has

long been known to occur in the olfactory system of mammals [2, 3, 10, 83, 18]. Synchronous,

rhythmic activity has been proposed to play a role in odor discrimination tasks [50]. In in-

sects, disruption of synchronous oscillations can impair discrimination of chemically similar

odorants [89]. In mice, enhancement of synchronous oscillations in the olfactory bulb using

genetic modifications improves performance in fine discrimination tasks [68]. In the mam-

malian olfactory system, mitral cell synchrony contributes to the generation of the gamma

oscillations in the local field potential; for example, in the cat olfactory system, increases

in the synchrony between mitral cells are accompanied by a concomitant increase in the

power of the gamma band in the local field potential [29]. Mitral cells have been shown to

undergo synchronization during odor-evoked responses [49] or during olfactory nerve stim-

ulation [82]. Although, previous experimental and modeling studies have highlighted the

role of granule cells [55] and lateral inhibition [7] in the production of gamma oscillations in

the olfactory bulb, the exact mechanism by which such mitral cell synchronization occurs
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in the mitral-granule cell network connected by reciprocal recurrent and lateral connections

remains largely unknown.

A possible mechanism of synchronization of mitral cells in the olfactory bulb is suggested

by recent experimental evidence. In paired recordings from mitral cells, activation of a mitral

cell elicits fast unitary inhibitory post-synaptic potentials (IPSC’s) in a second mitral cell [98,

33, 82]. These IPSC’s are due to the synaptic activation of the shared granule cells via the

mitral-granule cell dendrodendritic synapses. Although the individual IPSC’s are fast , they

arrive randomly (asynchronously), i.e. the output of the granule cells is not time locked to the

stimulus. The temporally prolonged barrage of these unitary IPSC’s produced in response to

the spiking in the first mitral cell results in a slow rising and long lasting hyperpolarization in

the second mitral cell [80, 98, 33, 48]. There is a variable delay between the evoked IPSC’s in

the second mitral cell and the spike times in the first mitral cell [98]. Thus, the evoked IPSC’s

occur asynchronously [80, 98, 33], aperiodically [33] and the kinetics of hyperpolarization in

an ensemble average of the evoked IPSC’s show a slow rise time (≈ 100 − 150 ms) and a

slow decay constant (≈ 350 − 600 ms) [98, 33, 80]. In addition, the peak amplitudes of

the ensemble average are small, (≈ 0.4 mV) [98]. The prolonged, asynchronous barrages of

IPSC’s have been shown to be a result of long latency, asynchronous and long lasting mitral

cell recruitment of granule cells [48]. Furthermore, recent experimental studies into the

origin of synchrony between mitral cells suggests that recovery from shared IPSC inputs from

common granule cells is the primary driving mechanism for mitral cell synchrony [82, 33].

These physiologically measured properties of mitral-granule cell interactions suggest a novel

mechanism of synchronization of mitral cells in the olfactory bulb.

Previous studies have proposed that noise can synchronize oscillators [93]. For neurons

to undergo such noise-induced synchronization they should be periodically firing and should

have some shared fast fluctuations in their inputs. Recent studies on the mechanism of gen-

eration of synchronized oscillatory activity by long lasting asynchronous, aperiodic inhibition

in the olfactory bulb have revealed exactly such a novel role for noise [33]. It was shown

that two mitral cells firing in the gamma frequency range can undergo synchronization upon

receiving common inhibitory input from granule cells. The degree of synchronization was

shown to depend on the degree of correlation in the noisy input shared by the two neu-
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rons. Although spiking was synchronized, the shared noise itself was aperiodic. In all of

the experimental and theoretical studies of stochastic synchronization to date, the degree of

correlation is imposed and held fixed . In our study the degree of input correlation emerges

intrinsically from within the network and is amplified over time due to the dynamics of

the network. In addition, our study utilizes theoretically derived probability distribution of

phase difference for uncoupled oscillators receiving shared noise to investigate the conditions

necessary for the existence of bistability in the magnitude of input correlation. Here we con-

sider the case in which correlated fluctuations from granule cells arise naturally from granule

cells that connect to many mitral cells. The input correlation to any pair of mitral cells could

increase if the shared pool of presynaptic granule cells increased their stochastic firing rate

thus providing a greater amount of common noise. In the olfactory bulb, synapses between

mitral and granule cells are dendrodendritic, and almost always reciprocal [45]. Thus, if a

granule cell synapses on a pair of mitral cells, those mitral cells also synapse on that granule

cell. We hypothesize that, since a pair of mitral cells with correlated input is more likely to

fire synchronously, this pair is also more likely to provide correlated input to their common

granule cell. In turn the common granule cell could then increases its release of transmitter

increasing the correlation to the mitral cells. The result of this is that the feedback provides

an amplification of correlation. The goal of this paper is to use computational and ana-

lytic techniques to show that such feedback will increase correlation and as a consequence,

synchrony between oscillating mitral cells.

We describe three models for feedback induced correlation and stochastic sychronization.

We first study one pair of mitral cells and one common granule cell. The mitral cells are

modeled as simple phase oscillators which are perturbed through their phase-resetting curves

(PRCs). The granule cell is modeled as a noisy leaky integrate and fire (LIF) neuron receiv-

ing synaptic input from the mitral cell oscillators. The second model replaces each phase

oscillator with the conductance-based Morris-Lecar oscillator. Finally, to allow for analytic

approaches, we reduce the first two models to a discrete time map which we study using an

averaging technique.
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Figure 12: Self-organized synchronization in a stochastic feedback network of two mitral

cells and one granule cell. (A) Probability density of the phase-difference ϕ = θ2 − θ1 for

different strengths of input to the granule cell. (B) Distribution of the values of r, the shared

Poisson rate of the granule cell. (C) Plots of r(t) for g = 1 and g = 2. (D) Phase difference

histograms for the 3 + 3 network.

3.2 RESULTS

3.2.1 “Spiking” Models

During odor inputs or stimulation, mitral cells fire in a narrow frequency range, so that we

can regard them as limit cycle oscillators [62]. Any oscillator can be represented by a single

phase variable [54], so we first consider a such pair of mitral cells as phase oscillators:

dθi
dt

= ωi
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where ωi is the natural frequency of the oscillator. These oscillators receive input from a

shared granule cell which is modeled here as a noisy leaky integrate-and fire (LIF) neuron:

τ
dV

dt
= −V + g(s1 + s2) + σξ(t).

ξ(t) is a white-noise process and si(t) are the synaptic inputs from the two mitral cells:

dsi
dt

= −si/τs.

Each time θi crosses 2π, the synaptic input, si is incremented by 1. To model the long-lasting

synaptic bombardment by the granule cell, we introduce a variable, r which satisfies

dr

dt
= −ϵ(r − r0).

Each time the granule cell fires (V crosses its threshold, here set to 1), r is incremented

by µ(rmax − r) and V is reset to 0. r represents the rate of the shared Poisson process.

This shared Poisson process represents the feedback via dendrodendritic synapses from the

population of granule cells to the mitral cells, the rate of which is dependent on the spik-

ing activity of the granule cells. In addition, there are two independent Poisson processes

(independent sources of noise) with fixed rates, r1, r2. Each of these three Poisson processes

generates events which we regard as the brief random inhibitory post synaptic potentials

seen in patch clamped mitral cells [82]. We suppose that the effect of these inputs on the

mitral cell oscillator is to shift the timing of the next mitral cell spike by an amount that

depends on its current phase. The function that determines this shift is called the phase

resetting curve, denoted, ∆(θ) which has been computed for many types of neural oscillators,

including mitral cells [30]. If oscillator j receives an input, then its subsequent phase (and

thus timing) is given by, θnew = θold + α∆(θ), where α is the magnitude of the kick. If the

input is generated by the shared process with rate r, both θ1,2 are incremented while if the

event is generated by the process with rate ri, only oscillator i is incremented. In our simula-

tions, we choose ωi = 2π/25, τ = 1, τs = 4,rmax = 0.5, µ = .05, σ = 0.2, r0,1,2 = 0.01, ϵ = .02,

∆(θ) = − sin θ and α = 0.5. We vary the coupling, g to the granule cells from the mitral

cells between 0 and 2. We will refer to the above network construction (2 mitral cells and

1 granule cell) as the 2 + 1 network. We also made a network consisting of three oscillators
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(mitral cells) and three granule cells (LIF). Oscillators 1,2 drove LIF 1, 1,3 drove LIF 2, and

2,3 drove LIF 3. Oscillator 1 received Poisson input from LIF 1,2; 2 from 1,3; and 3 from

2,3. All other parameters are the same. This network will be referred to as the 3+3 network

as depicted in Figure 3.2.1.

Figure 13: Schematic depicting the network architecture The generalized (3 + 3)

network with 3 mitral cells and 3 granule cells is shown here. The simplified (2+1) network

lacks mitral cells (MC3).

There are several ways to quantify synchrony in oscillator networks. For phase models in

which the phase is explicit, it is convenient to look at the histogram of the phase-differences,

θ2 − θ1; the more peaked is this histogram, the closer to perfect synchrony (θ1 = θ2) are the

two oscillators. Figure 3.1 depicts simulations of the 2 + 1 network. Figure 3.1A shows a

histogram of the phase-differences, θ2− θ1 as a function of the coupling from the mitral cells
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to the granule cells. When the LIF granule cell is uncoupled from the mitral cells, g = 0, the

histogram is nearly flat as the rate of shared input is the same as the unshared input and both

are quite low. There is a small peak due to the small degree of correlation. As the coupling

to the granule cell increases, the peak of the histogram becomes much sharper since the firing

of the granule cell is now dependent on the spiking of the mitral cells. As a consequence

of this sharpening, the rate of the shared input, r increases as shown in the histograms of

Figure 3.1B for identical values of g. It is important to understand that the firing rate

of the shared granule cell population, r indicates the input correlation in the mitral cells

that share these granule cells, which in turn represents the magnitude of synchronization of

these mitral cell activities. Hence we use r as a stand-in for synchronization in the mitral

cells. The probability distribution of r can also depict the stability of the input correlation

(and hence synchronization) in the system. If the distribution is bimodal it indicates the

existence of bistability in the input correlation in the mitral cells (and their synchronization).

Thus in Figure 3.1B, g = 1 is interesting since it appears to be slightly bimodal, i.e. the

distribution of r has two peaks for g = 1. Figure 3.1C shows a segment of the temporal

dynamics of r for g = 2 and g = 1. Figure 3.1D shows a simulation of the 3 mitral

and 3 granule cell network. The peaks are not as sharp as in Figure 3.1A for similar input

strengths. This is because oscillator 1 gets two strong inputs from granule cell 1 and granule

cell 2 and thus shares correlations with the two other mitral cells putting a limit on the

maximum correlation from a single cell.

In Figure 3.1, we modeled the “mitral” cells as a pair of simple phase models. There

is similar behavior when we replace the phase oscillators with conductance-based models

such as the Morris-Lecar model but with very pronounced bistability. Figure 3.2.1 shows a

sample simulation with the same set up as in Figure 3.1, but the phase models are replaced

by the Morris-Lecar oscillator. Since phase is difficult to obtain, we instead look at the

correlation between the voltages over a moving time window (see methods). There appears

to be two “attractors”; one where the oscillators are completely uncorrelated and r is low and

the other when they are tightly correlated and r is high. This is suggestive of the possibility

of bistability. Figure 3.1C (g = 1) shows a similar bistability between the synchronized and

desynchronized state. We suspect that intrinsic noise in the system effects the switch from
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Figure 14: Self-induced stochastic synchrony between a pair of Morris-Lecar model neurons

and a leaky integrate-and-fire model neuron. (A) Rate of release of the LIF, “granule cell”

showing switches between synchrony and asynchrony. (B-E) Sample voltages at four different

time points corresponding to time in A, showing synchrony when r(t) is high and asynchrony

when r(t) is low. (F) Correlation coefficient calculated for the voltage data between the two

mitral cells
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one to the other and the positive feedback maintains the states for a long period of time.

We can begin to understand the mechanism of amplification of synchronization by con-

sidering the dynamics of r. We suppose that ϵ, µ are small so that we can average r and see

that its value depends on the firing rate, F of the LIF:

dr

dt
= −ϵ(r − r0) + µF (rmax − r) (3.1)

Figure 3.2.1 shows how the LIF firing rate, F , depends on the phase difference between the

two oscillators, ϕ. Here we count the number of spikes in a time window of 10 seconds to

determine F . The shape of this function depends on g, the time constant of the synapse,

τs (as well as other parameters such as τ and σ.) In general, this is a decreasing function of

ϕ. As the strength of the synapse, g increases or as the decay of the synapse, τs increases,

the spike count is larger and depends less on the phase-difference between the oscillators.

For small g and short-lasting synapses, the LIF is a coincidence detector and depends very

strongly on the timing difference of the inputs. Thus, for g = 1, τs = 2, if the phase difference

between the two oscillators is more than about 0.75 radians (corresponding to about 3 msec

for oscillators running at 40 Hz) then there will be almost no firing of the LIF. Similarly, for

g = 2, τs = 1, (green), the timing difference should be less than 6 msec. For larger g and

longer synapses, the LIF always fires and the ratio of the minimum to the maximum rates

is only modestly small.

We can now see the basic principles underlying the amplification of stochastic synchro-

nization. Initially, r is low and the shared granule cell fires at a very low frequency. The

phase difference between the two oscillators drifts, and thus, on occasion the two mitral cells

fire nearly synchronously. This increases r transiently and thus increases the correlation of

the inputs to the oscillators. This in turn increases the rate at which the shared granule

cell fires, further increasing r resulting in a positive feedback loop and finally mitral cell

synchronization. In the next section we derive a more abstract model which we are able to

analyze.
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Figure 15: Dependence of the total spike count of the granule cell on the phase-difference of

the two oscillators for different input strengths (g) and integration times of the synapse (τs).

50



3.2.2 Reduced Model

We start with exactly the same model as above for the mitral cells: a pair of phase oscillators.

However, instead of explicitly modeling the LIF and its synaptic excitation we consider only

the r equation (3.1) which will be incremented according to the degree of synchronization of

the two mitral cells. That is, we replace F by an explicit functional of the phase-difference

between the two oscillators. As above r sets the rate of a Poisson process that produces events

which excite both mitral cell oscillators. Similarly, there are two independent processes with

fixed rates r1,2 which provide background unshared noise to the two mitral cell oscillators.

Let Tn be the time interval between events for these three Poisson processes. We choose Tn

from an exponential distribution with rate r + r1 + r2 and then choose which of the three

events has occurred according to the relative sizes of r, r1, r2 (as per the Gillespie algorithm

[34]). We can then reduce the behavior of the randomly perturbed oscillators to a map

and thus use the theory developed in [61] to determine the density of the phase-differences.

Specifically, let Θ
(n)
j denote the phase of oscillator j after the nth kick from a population of

granule cells (common and independent projections). Then

Θn+1
1 = Θn

1 + T nω + c1∆(Θn
1 ) (3.2)

Θn+1
2 = Θn

2 + T nω + c2∆(Θn
2 ). (3.3)

cj = α if oscillator j is kicked and is zero otherwise. Thus, if the event was generated by

the common process with rate r, c1 = c2 = α, while if it was generated by the independent

process, say, r1 then c1 = α and c2 = 0. These equations simply say that the phase of

each oscillator at the n + 1th granule cell spike is equal to the phase at nth granule cell

spike advanced by the phase traversed by the oscillator given its angular frequency ω in

the nth inter-spike interval Tn. If the oscillator receives the nth granule cell spike (c = 1),

an additional phase advance/delay dictated by the phase resetting curve, ∆(Θn) is added

to obtain the actual phase of the oscillator at the n + 1th granule cell spike, Θn+1
j . The

probability of both oscillators receiving granule cell input simultaneously (c1 = 1,c2 = 1)

is p = r/(r + r1 + r2). The probability of either one of the oscillators receiving granule

cell input (c1 = 0, c2 = 1) and (c1 = 1, c2 = 0) is thus (1−p)
2

. To simulate this process, we
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generate two random variables, one to determine the interval between inputs, Tn drawn from

an exponential distribution and the other drawn from a uniform distribution to determine

which of the three pairs, (c1, c2) ∈ {(1, 1), (1, 0), (0, 1)} occurs.

In a previous study [61], p was assumed to be constant. Here, since p is proportional

to the rate of the common granule cell which is, in turn, proportional to the degree of

synchronization of the mitral cells, we allow p to evolve on a slow scale similar to equation

(3.1):

pn+1 = pn + ϵ[(Pmin − pn) + Γ(Φn)(Pmax − pn)] (3.4)

The functional Γ could depend on the instantaneous phase-difference between the mitral cell

oscillators Φn = Θn
1 −Θn

2 or some time averaged version of it. We discuss several choices in

the next section. However, we assume that Γ gets larger when the two oscillators are more

synchronous (Φn near zero) and small when they are not synchronous. Thus, when Γ is large

(Γ ≫ 1), pn will slowly evolve toward Pmax while when Γ is small (Γ ≪ 1), it will decay toward

Pmin. In terms of the original models with the LIF, Pmin,max = rmin,max/(rmin,max + r1 + r2).

3.2.3 Choice of Γ(Φ):

There are at least two plausible ways to choose Γ a direct and indirect way. In the direct

way, we assume that Γ is a function of Φn, while in the indirect version, Γ is a function of

some time averaged version of the phase-difference, such as an order parameter. We will

discuss the direct choice first.

3.2.3.1 Single stable fixed point Figure 3.2.1 shows how the firing rate of the “granule

cell” depends on the phase-difference Φ. The probability of shared input is proportional to

this rate, so a natural choice for Γ is proportional to the firing rate F (Φ) depicted in the figure,

for example, Γ(Φ) = K[F (Φ)/Fmax]
M . If M is large, this creates a highly peaked function of

the phase difference with a maximum at zero. We use the following approximation of such

a function:

Γ(Φ) = Ke−M(1−cos(Φ)))
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With this choice for Γ, equations (3.2, 3.3, 3.4) constitute a simplified discrete dynamical

system to represent the models from Figures 3.1 and 3.2.1. Figure 3.2.3.1A shows the

evolution of pn over time with ϵ = 0.0005, K = 6, Pmin = 0.1, Pmax = 1,M = 15,∆(x) =

−0.25 sin(x). After a long transient, the stochastic variable, pn tends to a fairly sharp

density function centered around p = 0.7 (see Figure 3.2.3.1B). At the same time, the phase-

difference, Φn evolves on a fast scale to a highly peaked distribution centered at Φ = 0 as

shown in Figure 3.2.3.1D. Here, we let the oscillators evolve according to equations (3.2, 3.3)

for T iterations. We see that in the early stages, the density of phase difference is flat

but becomes peaked as the simulation evolves in time. We can vary the magnitude of the

function Γ, α and examine the steady-state value of pn. This is shown in Figure 3.2.3.1C. In

order to analyze this equation, we exploit the assumption that ϵ is small. Since ϵ is small, we

can apply averaging and approximate the dynamics of pn by the dynamics of the averaged

equation, qn satisfying:

qn+1 = qn + ϵ[(Pmin − qn) + ⟨Γ(Φn)⟩(Pmax − qn)], (3.5)

where ⟨Γ(Φn)⟩ is the average value of Γ(Φn). In order to calculate ⟨Γ(Φn)⟩, we require

P (Φn, qn), which is the probability density of phase difference Φn given qn. Since qn evolves

slowly, we can treat it as constant allow the oscillators to evolve until they reach a stationary

density. In [61], we obtain an analytic formula for the steady state density, P (Φ, p), the

density of phase-differences, Φ given a probability, p of common input. From this, we obtain:

⟨Γ(Φn)⟩ =
∫ 2π

0

P (Φ, qn)Γ(Φ)dΦ ≡ γ(qn). (3.6)

Hence, we can analyze this case by finding the stable fixed points for the averaged dynamics:

qn+1 = qn + ϵ[(Pmin − qn) + γ(qn)(Pmax − qn)].

The fixed points satisfy:

γ(q) =
q − Pmin

Pmax − q

γ(q) is typically a bounded non-negative increasing function of q. The right-hand side less

than or equal to zero at q = 0 and has a vertical asymptote at q = Pmax < 1, so that there

53



is always at least one stable fixed point between 0 and 1. For our simple choice of Γ there

is exactly one stable fixed point for qn. In Fig 3.2.3.1A, the model was allowed to evolve

from random, uniformly distributed initial phase difference between the two oscillators and

various uniformly distributed initial values for qn. It is seen that irrespective of the initial

conditions, the system evolves towards a single stable fixed point for qn. The theoretically

predicted value of the stable fixed point agrees well with the median of the distribution of

the steady state qn values from many trials, as seen in Figure 3.2.3.1B. The green curve

shows the function,

f(q) = Pmin − q + γ(q)(Pmax − q). (3.7)

The position of the stable fixed point for qn depends on the magnitude of α. At small

values of α, the steady state lies close to Pmin. For larger values of α, the steady state qn

increases monotonically towards Pmax. The predicted steady state values match well with

Monte-Carlo simulations as can be seen in Figure 3.2.3.1C. In Figure 3.2.3.1D, it can be

seen that the evolution of synchrony evolves over time over a time scale of 100 ms, as can be

observed from the distribution of phase difference at different points during the simulation.

Before moving to the next section, we can ask whether or not there is more than one

stable fixed point to the averaged dynamics. We conjecture that there will not be. The

reason for this is that in [61], we show that the probability density, P (Φ, q) has the form:

P (Φ, q) =
N

1− 2q
1+q

h(Φ)
h(0)

where h(Φ) depends on the shape of the PRC, ∆(θ). Integrating P against Γ(Φ) yields a

function of q which for small q depends linearly on q and saturates to Γ(0) as q → 1 (since

P approaches a delta function). Thus, γ(q) is roughly like

γ(q) ≈ A+Bq

C +Dq

with A,B,C,D positive no matter how we choose Γ(Φ). For this approximation, it is easy

to show that f(q) has at most one positive root. Thus, we expect no bistability between

a synchronous and an asynchronous state. In order to get bistability, there should be an

inflection point γ(q), for example by having γ(q) depend sublinearly on q for q small, e.g.,

γ(q) = Aq2 for small q. We will study a choice of Γ that produces bistability in the next

section.
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Figure 16: Evolution of p in the presence of a single stable fixed point. (A)The temporal

evolution of p from various initial states. All initial states are attracted by the single stable

fixed point. (B) Histogram of the final values of p in different trials from (A). The green

curve depicts the numerically calculated values of equation 3.7 (C) The dependence of the

median steady state probability on the amplitude of α. (D) Sharpening of the probability

distribution of the phase difference between mitral cells in time. The time points represent

number of iterations as in (A)

55



3.2.3.2 Bistability When Γ is an instantaneous function of Φ, then there appears to be

no bistability between asynchrony and synchrony. To produce a model which exhibits the

kind of bistability shown in the full model (e.g. Figure 3.2.1A,B), we will assume that Γ is

a function of some temporal average of the phase difference. That is, instead of averaging

over a nonlinear function of the phase, we apply a nonlinear function after performing some

averaging. Before discussing how such a rule could be biologically implemented, we consider

a simple choice for this rule. A common measure of synchrony [54, 61] is the circular variance

(or “order parameter”):

Z :=
√

⟨cosΦn⟩2 + ⟨sinΦn⟩2

We can write this order parameter as a function of the of the density, P (Φ, p):

Z(p) =

∫ 2π

0

cosΦP (Φ, p) dΦ

since P is an even function of Φ and in our previous work [61], we showed that Z(p) ≈ bp

for p small; that is, it is linear. The results in the previous section show we need nonlinear

dependence on p, so we take

Γ = Z2

which will give us p2 dependence for p small.

This choice of Γ produces a fundamental change in the system’s dynamics. The system

with, ϵ = 0.01, α = 10, pmin = 0, pmax = 1,∆(x) = sin(x), now displays two distinct stable

states as seen in Fig 3.2.3.2(a), where the system with random uniformly distributed initial

phase difference and qn evolves either to a zero or a non-zero steady state qn. The steady

state distribution of qn values reveals the two stable fixed points as seen in Fig 3.2.3.2b,

both of which are predicted accurately by theory. The position of the non-zero stable state

depends on the choice of α. Fig 3.2.3.2(c) shows the agreement between the theoretically

predicted value, the mean of the distribution of all final states higher than the unstable fixed

point and the position of the peak in the distribution of the non-zero steady states. Finally,

the two stable states differ in their synchronization. The zero stable state is characterized

by oscillators with low synchrony whereas the non-zero stable state has oscillators with

significantly higher synchrony as can be seen in Fig 3.2.3.2(d).
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Figure 17: Evolution of p in the bistable regime. (A) The temporal evolution of p from

various initial states. The initial states move randomly to either one of the stable fixed

points. (B) Histogram of the final values of p in different trials from (A). The green curve

depicts the numerically calculated values of equation 3.7 for the indirect choice of Γ. (C)

The dependence of the steady state probability on the amplitude of α. The taller peak of

the bimodal distribution is depicted by the green curve. (D) Probability distribution of the

phase difference between mitral cells for the two fixed points.
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This choice of Γ produces a fundamental change in the system’s dynamics. The system

with, ϵ = 0.01, α = 10, pmin = 0, pmax = 1,∆(x) = sin(x), now displays two distinct stable

states as seen in Fig 3.2.3.2(a), where the system with random uniformly distributed initial

phase difference and qn evolves either to a zero or a non-zero steady state qn. The steady

state distribution of qn values reveals the two stable fixed points as seen in Fig 3.2.3.2b,

both of which are predicted accurately by theory. The position of the non-zero stable state

depends on the choice of α. Fig 3.2.3.2(c) shows the agreement between the theoretically

predicted value, the mean of the distribution of all final states higher than the unstable fixed

point and the position of the peak in the distribution of the non-zero steady states. Finally,

the two stable states differ in their synchronization. The zero stable state is characterized

by oscillators with low synchrony whereas the non-zero stable state has oscillators with

significantly higher synchrony as can be seen in Fig 3.2.3.2(d).

3.3 DISCUSSION

We have described a new mechanism for the amplification of oscillatory synchrony through

feedback. Unlike previous models that depend on phasic oscillatory inhibition [9], our feed-

back is long-lasting (nearly tonic) and highly stochastic. Specifically, we study stochastic

synchronization in a generalized network of mitral cells by inhibitory granule cell inputs

which themselves receive dendrodendritic mitral cell feedback. The mitral cells are not

directly (monosynaptically) coupled but are coupled disynaptically via the shared granule

cells. Thus, the granule cells provide both the recurrent and lateral connectivity, as has

been described in the mammalian olfactory bulb. We use spiking models with LIF neu-

rons to demonstrate the feasibility of stochastic synchronization in the olfactory bulb with

feedback from granule cells. We then use abstract models to analyze the mechanism of the

self-organization as a result of the feedback-induced stochastic synchronization. Our models

are based on experimentally observed kinetics of the mitral-granule cell interaction’s. The

key assumptions of our model, borne out in experimental studies are that the granule cell

output consists of asynchronous, aperiodic, prolonged barrages of IPSC’s with small average
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amplitudes and long ensemble decay constants. Such mitral-granule cell interactions have

been observed experimentally using extracellular stimulation in the glomerular layers as well

as intracellular stimulation of mitral cells [80, 98, 33, 48, 82].

Fast synchronized inhibition has been shown to play a central role in producing synchro-

nization in a sparse, randomly connected network of excitatory and inhibitory cells where the

PING (pyramidal interneuronal network gamma) mechanism is observed [9]. However, in the

olfactory bulb, mitral cells receive inhibitory postsynaptic potential (IPSC’s) from granule

cells in the form of asynchronous barrages with small average amplitudes [98]. In addition,

the decay time constant of the probability envelope of these IPSC’s is too long [98, 82, 33],

for a PING-like mechanism to produce synchrony [101]. PING is based on fast inhibitory

feedback which produces a “window of opportunity” for the excitatory cells to fire and thus

requires strong inhibition. The synchrony induced by stochastic synchrony is not locked to

the inhibitory events, but instead relies on the correlations in the “noisy” granule cell inputs

shared by mitral cells. Here, we study the role of feedback in this system. Specifically, we

propose that more synchronous mitral cell activity could produce activity of shared granule

cells which would result in higher correlations in the input to the mitral cells. In other words,

we propose a positive feedback loop in which the stochastic synchronization of mitral cells is

enhanced by the correlated inhibitory output from granule cells, which in turn is enhanced

by the correlated mitral cell spiking. As the synchrony is dependent on correlation of input

from shared granule cells rather than fast transient inhibition, it is a distinct and separate

mechanism from PING.

Olfactory bulb circuitry is unique in the central nervous system. The principle output

cells, mitral cells, make synapses with the inhibitory granule cells through their dendrites

rather than their axons. Activity of the granule cells produces long lasting recurrent and

lateral inhibition which has two components: a long lasting slow component and a fast

random component. The slow component acts to keep the spike frequency of the mitral

cells in a limited range i.e. the firing rate of the mitral cells does not vary much with odor

concentration [62], thus the slow asynchronous inhibition acts to balance the excitatory drive

to the mitral cells. The fast component serves as “correlated noise” to synchronize mitral

cell oscillations. Granule cells do not need to spike to produce inhibition , thus, with weak
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stimulation, effects of inhibition remain local and provide little correlation between mitral

cells. However, if several mitral cells fire together, then this may be enough to cause the

shared granule cell to fire spikes resulting in the widespread calcium release into granule cell

dendrites and thus, all the mitral cells that are connected to that particular granule cell will

receive fast correlated random inhibitory input [82] which results in lateral inhibition.

In the spiking model, we use a slow variable r(t) to describe a shared Poisson process

whose rate is modulated by the spiking of the single common granule cell in the 2+1 model.

This process is used to mimic a population of common granule cells whose firing rates are

modulated by synchronized firing of the mitral cells. This simplification is used in order

to obtain a probability envelope of an ensemble average of shared granule cell inputs where

individual granule cells are assumed to be Poisson processes. We show in the spiking model

that stochastic synchronization can indeed be induced by the feedback loop between the

mitral and granule cells.

We show that in the abstract model using general oscillators that a feedback loop be-

tween mitral and granule cell input can indeed synchronize mitral cell activity which is

otherwise uncorrelated. The abstract model also provides important insight into the na-

ture of dependence of the evolution of p on the phase difference, Φ between the oscillators.

Dependence of Φ on a centrally peaked Γ, produces a system with only one stable steady

state. On the other hand, if Γ is an order parameter, then bistability between synchrony

and asynchrony is possible in some parameter regimes. The spiking network also displays

similar dependence on granule cell activity. Both the abstract and spiking models show a

gradual temporal evolution of synchrony which is similar to observed evolution of synchrony

in the olfactory bulb(see figure 2A in [82]). The Morris-Lecar model suggests the existence of

bistability, even though the granule cell rate is dependent on the instantaneous (as opposed

to time averaged) timing difference between the two mitral cells. This could be a conse-

quence of the fact that the synapses to the mitral cell oscillators have temporal dynamics

rather than being instantaneous. Interestingly experimental observations of desynchronized

to synchronized shifts of mitral cell activity and vice versa [82] (see figure 2C) seem to sug-

gest the possibility of bistability in the input correlation (and synchrony of mitral cells) in

the olfactory bulb. We conjecture that in the olfactory system, the mitral-granule network
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is monostable. But, if bistability should indeed exist, it would most probably be mediated

by a slow process that accumulates coincident activity of mitral cells over time. Bistability

might be common place in other cortical networks where such memory forming slow cellular

processes might have evolved. In such networks, a transient increase in correlated inputs can

push the system from one state to another, hence allowing for a transient correlation-induced

dynamic switching behavior. Evoked IPSC’s in a lateral mitral cell are known to occur with

a variable latency [98]. Granule cell activity is also known to develop with a variable long-

latency [48]. In addition, synchrony between mitral cells is known to develop with a variable

delay (50-150ms) [82]. These latencies are thought to be a function of the stereotypical

fashion in which mitral cells recruit granule cell activity and in turn experience a shaping of

their own activities. Our models did not include detailed cell type specific morphologies but

could reproduce the time dependent evolution of synchrony between mitral cells (see Figure

3.2.3.1D).

Both the simple and generalized network models have a notable dependence of their

synchronization on the rate of decay of p. Finally, it can be seen that the phase difference of

two mitral cells is highly dependent on the firing rate of the granule cell. These results taken

together suggest that stochastic synchronization does play a major part in determining the

activity of a network of mitral and granule cells in a closed loop with feedback connectivity.

Although this investigation focuses on specific details of the olfactory circuit, the proposed

mechanism is generally applicable to cortical circuits that include a subpopulation of neurons

that provide long lasting, small amplitude, asynchronous outputs.

3.4 METHODS

3.4.1 Morris Lecar Model

We used the general Morris-Lecar model with the following equations.

C
dVi

dt
= I − gcam∞,i(Vi − VCa)− gkwi(V1 − VK)− gl(Vi − Vl)− gsynsi(V1 − Er))
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τw,i
dwi

dt
= ϕ(w∞,i − wi)

m∞,i(V ) =
1

2
(1 + tanh((V − Va)/Vb))

w∞(V ) =
1

2
(1 + tanh((V − Vc)/Vd))

τw,i(V ) =
1

cosh((V − Vc)/(2Vd))

τs
dsi
dt

= −si

with parameters, gCa = 4.4, gk = 8, gl = 2, gsyn = .1, Er = −70, Vk = −84, Vl =

−60, VCa = 120, Va = −1.2, Vb = 18, Vc = 2, Vd = 30, ϕ = .04, τs = 5, C = 20 .

To compute the correlations shown in Figure 3.2.1, we compute

xij(t)
1

T

∫ t

t−T

(Vi(s)− V )(Vj(s)− V ) ds

and plot x12(t)/
√
x11(t)x22(t).
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4.0 RATE OF CONVERGENCE OF STOCHASTIC SYNCHRONY

4.1 INTRODUCTION

The closed-form solution obtained in equation 2.9 in chapter 2 was used to the steady-

state probability density of phase differences. This was instructive in understanding the

dependency of the output correlation on PRC-type membership. But in addition to the

steady-state, the temporal evolution of the system i.e. the speed with which the system

relaxes to the steady-state density is also of interest. Since the operator in equation 2.9 has

an eigenvalue of 1 corresponding to the steady-state solution, the second largest eigenvalue

determines the rate of convergence to the steady-state solution. The theoretical question of

interest is the relationship between the eigenvalues and the PRC-type. We aim to to derive

an expression for the eigenvalues as a function of the PRC.

4.2 SIMPLIFYING THE PROBLEM

In order to obtain the eigenvalues we will utilize our repertoire of perturbation methods.

Our choice of the perturbation technique depends crucially on the fact that we are only

interested in the eigenvalues that are large. Specifically we will use the WKB (Wentzel-

Kramers-Brillouin) method named after the physicists Gregor Wentzel, Hendrik Anthony

Hans Kramers and Leon Nicolas Brillouin who developed the method. In general, the method

is used for approximating the solution of a differential equation whose highest derivative is

multiplied by a small parameter [8].
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In order to obtain the eigenvalues of the system,

∂p(x, t)

∂t
=

∂2

∂x2
[p(x, t)G(x)] (4.1)

we employ a common technique of solving partial differential equations assuming sepa-

rability of the solution into two functions that are dependent only on one of the variables. If

we now assume that p(x, t) = Φ(x)T (t), i.e. it is separable, then equation 4.1 can be written

as,

ΦTt = ΦxxTG+ 2ΦxTGx + ΦTGxx (4.2)

which can then be separated as,

Tt

T
=

ΦxxG

Φ
+

2ΦxGx

Φ
+Gxx = −λ (4.3)

where −λ is the separation constant and the negative sign is chosen for convenience. Thus

we obtain two differential equations,

Tt + λT = 0 (4.4)

and

ΦxxG+ 2ΦxGx + ΦGxx + λΦ = 0. (4.5)

Eq: 4.5 can be written as,

(ΦG)′′ + λΦ = 0 (4.6)

If we let, y(x) = Φ(x)G(x), we can transform equation 4.5 to

y′′(x) +
λ

G(x)
y(x) = 0. (4.7)

Assuming G(x) to be a purely positive function (G(x) ≥ 0), we expect oscillatory solutions

for equation 4.7. Then, denoting K(x) =
√

1
G(x)

and ϵ = 1√
λ
, equation 4.7 can be written as,

ϵ2y′′ +K(x)2y = 0 (4.8)
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4.3 DERIVING THE WKB APPROXIMATION

Since we are interested in large eigenvalues of the operator in equation 4.1, we can reasonably

make the assumption that (λ ≫ 0) or (0 < ϵ << 1). Now we can use the WKB approxi-

mation. This method is particularly suited for approximating large eigenvalues but works

sufficiently well even if this condition is relaxed. Since K(x) is positive we expect oscillatory

solutions for equation 4.8 as. If K(x) was just a purely positive constant (K0 > 0), the

solution for equation 4.8 is of the form y(x) = e
(iK0x)

ϵ . Since K(x) is not a constant in our

case, we can guess a solution of the form y(x) = e
iu(x)

ϵ . This is similar to the technique

of variation of parameters for finding solutions to general linear second-order differential

equations. Then substituting this candidate solution into equation 4.8 we get,

i2y(x)u′(x)2 + iϵy(x)u′′(x) +K(x)2y(x) (4.9)

Dividing equation 4.9 by y(x) and using the identity, i2 = −1, we can simplify equation

4.9 to,

iϵv′ − v2 +K(x)2 (4.10)

where v = u′. Then we can perform a regular perturbation expansion by expanding v(x)

in powers of ϵ by expressing v(x) as,

v(x) = v0(x) + ϵv1(x) + ϵ2v2(x) +O(ϵ2). (4.11)

We can now substitute equation:4.11 into equation4.10 as follows,

ϵ
[
v′0(x) + ϵv′1(x) +O(ϵ2)

]
−
[
v0(x)

2 + ϵ2v1(x) + 2ϵv0(x)v1(x)
]
+K(x)2 (4.12)

In order to perform the expansion, we rearrange equation 4.12, and collect the ϵ terms

which gives us,

−v0(x)
2 +K(x)2 + ϵ

[
iv0(x)

′ − 2v0(x)v1(x)
]
+O(ϵ2). (4.13)
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Thus we can solve for vo, v1 by observing that, at O(1), v0(x)
2 = K(x)2 and hence

v0(x) = ±K(x). At O(ϵ) we get −2v0(x)v1(x) = −iv0(x)
′, therefore v1(x) =

iv0(x)′

2v0(x)
= iK′(x)

2K(x)
.

Substituting these equalities in equation 4.11 the expansion for v(x) can be written as,

v(x) = K(x) + i
ϵK(x)′

2K(x)
+O(ϵ2). (4.14)

Since we denoted v(x) = u(x)′, we integrate equation 4.14 once to get,

u(x) =

∫ x

a

K(ξ)dξ + iϵ

∫ x

a

K(ξ)′

2K(ξ)dξ
+O(ϵ2). (4.15)

where a is an arbitrary constant and the other constants are incorporated into the indefinite

integral. Using this expression for u(x), we can obtain the expansion for y(x) as,

y(x) = e

[ i
ϵ

(∫ x

a

K(ξ)dξ + iϵ

∫ x

a

K ′(ξ)

2K(ξ)
dξ
)]

= e

[ i
ϵ

∫ x

a

K(ξ)dξ
]
e

[i2
2

∫ x

a

K ′(ξ)

K(ξ)
dξ
]

= e

[ i
ϵ

∫ x

a

K(ξ)dξ
]
e
ln
( 1

k(x)
1
2

)

=
1√
K(x)

e

[ i
ϵ

∫ x

a

K(ξ)dξ
]

(4.16)

Using the expression in equation 4.16, we can obtain the WKB approximation to the equation

4.8 in terms of sines and cosines as,

ywkb(x) =
1√
K(x)

(
c1 sin

(
√
λ

∫ x

0

K(ξ)dξ

)
+ c2 cos

(
√
λ

∫ x

0

K(ξ)dξ

))
. (4.17)

where ϵ = 1√
λ
as previously noted.
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4.4 OBTAINING THE EIGENVALUES

We can now try to solve for the eigenvalues of equation 4.17 with appropriate boundary

conditions.

Specifically, Φ(0) = Φ(2π) and Φ′(0) = Φ′(2π) are the required boundary conditions.

Since y(x) = Φ(x)G(x), and K(x) =
√

1
G(x)

we get,

Φ(x) = K(x)
3
2

(
c1 sin

(
√
λ

∫ x

0

K(ξ)dξ

)
+ c2 cos

(
√
λ

∫ x

0

K(ξ)dξ

))
. (4.18)

The boundary conditions suggest that,

Φ(0) = K(0)
3
2

(
c1 sin

(
√
λ

∫ 0

0

K(ξ)dξ

)
+ c2 cos

(
√
λ

∫ 0

0

K(ξ)dξ

))
= c2K(0)

3
2

(4.19)

Since, G(x) = 1− ch(x)
h(0)

is a periodic function and given the boundary conditions Φ(0) =

Φ(2π), we can write,

Φ(2π) = K(2π)
3
2

(
c1 sin

(
√
λ

∫ 2π

0

K(ξ)dξ

)
+ c2 cos

(
√
λ

∫ 2π

0

K(ξ)dξ

))
= c2K(0)

3
2 .

(4.20)

Dividing both sides by c2K(2π)
3
2 , we get the following equality,

c1
c2

=

1− cos

(
√
λ

∫ 2π

0

K(ξ)dξ

)

sin

(
√
λ

∫ 2π

0

K(ξ)dξ

) (4.21)

The boundary conditions Φ′(0) = Φ′(2π) require differentiating under the integral sign with

variable limits of integration using the Leibniz integral rule,
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d

dα

∫ b(α)

a(α)

f(x, α)dx =
db(α)

dα
f(bα, α)− da(α)

dα
f(a(α), α) +

∫ b(α)

a(α)

∂

∂α
f(x, α)dx.

Using this rule, we can differentiate equation 4.18 to obtain,

Φ′(x) = K(x)
3
2

(
c1 cos

(
√
λ

∫ x

0

K(ξ)dξ

)[
√
λ

(
K(x) +

∫ x

0

K ′(ξ)dξ

)]

− c2 sin

(
√
λ

∫ x

0

K(ξ)dξ

)[
√
λ

(
K(x) +

∫ x

0

K ′(ξ)dξ

)])
.

(4.22)

Using the boundary conditions Φ′(0) = Φ′(2π) in equation 4.22 we get,

K(0)
3
2

(
c1
√
λK(0)

)
= K(2π)

3
2

(
c1 cos

(
√
λ

∫ 2π

0

K(ξ)dξ

)[
√
λ

(
K(2π) +

∫ 2π

0

K ′(ξ)dξ

)]

− c2 sin

(
√
λ

∫ 2π

0

K(ξ)dξ

)[
√
λ

(
K(2π) +

∫ 2π

0

K ′(ξ)dξ

)])
(4.23)

c1
√
λK(0) = c1 cos

(
√
λ

∫ 2π

0

K(ξ)dξ

)[
√
λ

(
K(2π) +

∫ 2π

0

K ′(ξ)dξ

)]

− c2 sin

(
√
λ

∫ 2π

0

K(ξ)dξ

)[
√
λ

(
K(2π) +

∫ 2π

0

K ′(ξ)dξ

)] (4.24)

Denoting J = K(2π) +

∫ 2π

0

K ′(ξ)dξ, we can get the following equality,

c1
c2

=

sin

(
√
λ

∫ 2π

0

K(ξ)dξ

)

cos

(
√
λ

∫ 2π

0

K(ξ)dξ

)
− K(0)

J

(4.25)
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Denoting H =

∫ 2π

0

√
λK(ξ)dξ, we can use the equalities in equation 4.21 and 4.25 to obtain

the following expression,

sin2(
√
λH) = cos(

√
λH)− cos2(

√
λH) +

K(0)

J
cos(

√
λH)− K(0)

J
. (4.26)

Using the trigonometric identity sin2(x) + cos2(x) = 1, we get,

1 = cos(
√
λH)

[
1 +

K(0)

J

]
− K(0)

J
(4.27)

which simplifies to,

cos(
√
λH) = 1. (4.28)

We can solve for λ in equation 4.28 as

λ =
(nπ)2

H2
(4.29)

where n ∈ N .

Thus we have successfully derived an expression for the eigenvalues.
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Figure 18: Second largest Eigenvalue for c ∈ (0, 1)

4.5 RESULTS

We plot the theoretically obtained eigenvalue corresponding to n = 2, to that obtained by

numerical simulation in XPP [25] in figure 4.5 obtained at different values of input corre-

lation. As can be observed the agreement between theory and simulation is good for large

eigenvalues. But even for small values the agreement holds as a first approximation. An-

other observation is that lower the input correlation values, larger the eigenvalue. This can

be accounted by the fact that at low input correlation values, the steady-state distribution

can be well approximated by a uniform distribution. This means that if the systems with

low input correlation starts with a uniform distribution, it is very close to its steady-state

hence the convergence rates become almost instantaneous.

Interestingly, the rate of convergence depends on the PRC-type as shown in Figure 4.5.

The plot shows simulation data using a parametrized PRC. Although, the absolute difference

is not very significant, there is a definite minimum for the rate of convergence when the PRC

is purely Type I. Hence Type II PRC’s allow for faster rates of convergence than Type I.

Since both PING and stochastic synchrony mechanisms utilize the same inhibitory synapses,

usual experimental manipulations involving inhibitory synaptic blockers do not provide a

feasible experimental designs that could unequivocally eliminate one of the mechanisms.If
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Figure 19: Second largest eigenvalue as a function of PRC-type at a fixed c.

the convergence rate for a single model incorporating both PING and stochastic synchrony

are obtainable, it may be of use in comparing the two mechanisms experimentally since it

introduces a measurable quantity that could be compared against predicted values which

may assist in experimentally resolving the mechanism of synchrony in the olfactory bulb.

A possibly simpler method would be investigate if there exists compounds that might be

able shorten the mean latency of recruitment of the granule cell and sharpen the latency

distribution. Even if the compound seat of action is not at the root cause of variable latency,

it may be possible to discern specific changes in the function of the circuit from control to

drug condition.
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5.0 CONCLUSIONS

Here we list the main conclusions of this thesis.

1. We used perturbation methods to derive an expression relating the shape of the PRC

to the probability density function of the phase difference between the oscillators. Our

theory suggests that a Type-II PRC display a higher degree of synchronization using

this mechanism compared to Type-I. We advise the reader that new results from our

group suggest that on longer time-scales Type-I PRC’s give a higher spike-count corre-

lation.(Aushra Abouzeid, manuscript in preparation).

2. The degree of stochastic synchronization is controlled both by the firing rate of the neuron

and the membership of the PRC (Type I or Type II).

3. The circular variance for the Leaky integrate-and-fire neuron and the generalized order

parameter for a hippocampal interneuron model have a nonlinear relationship to the

input correlation.

4. Increased synchrony in the mitral cells could produce an increase in granule cell activity

for those granule cells that share a synchronous group of mitral cells. Common granule

cell input increases the input correlation to the mitral cells and hence their synchrony

by providing a positive feedback loop in correlation.

5. We demonstrate the emergence and temporal evolution of input correlation in recurrent

networks with feedback. model.

6. We have obtained an expression that relates the rate of convergence of stochastic syn-

chrony to the phase resetting curve.
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