
Stock prediction using a Hidden Markov Model

versus a Long Short-Term Memory

Bachelor’s Project Thesis

Bram de Wit, b.de.wit.2@student.rug.nl,

Supervisor: Prof. Dr. L.R.B. Schomaker

Abstract: This study will compare the performance of a Hidden Markov Model (HMM) and a
Long Short-Term Memory neural network (LSTM) in their ability to predict historical AAPL
stock prices. Approximately one hundred other stocks will be used as context vectors in order
to predict the following price. This problem is a typical time-series problem, where the models
will try to predict the next time step. The performance of the two models will be compared
using root mean squared error (RMSE), correlation, mean absolute percentage error (MAPE)
and a comparison of the fractal dimension of the predicted stock price sequence. Using k-fold
cross validation, for both models the best parameters were chosen. The performance of the best
performing models is compared. The results showed that the HMM had a higher performance
compared to the LSTM with a RMSE of 2.49 and a MAPE of 4.72, as well as a better fitting
fractal dimension when compared to the fractal dimension of the actual data.

1 Introduction

The stock market has always been an interesting
field due to its complexity and unpredictable be-
havior. This was already argued early in the nine-
teen hundreds in Cowles (1933) and Cowles (1944),
where it is argued that stock prices take random
walks. In Fama (1965) the efficient-market hypoth-
esis is introduced, in which it is argued that stock
prices always represented their true values. Al-
though this hypothesis never has been invalidated,
there is still research done in order to find a way
to ’beat the market’. In earlier days certain calcu-
lations resulting in ’technical indicators’ were used,
that were supposed to indicate what the future
direction of the stock price will be. Most techni-
cal indicators that are used today are described in
Welles Wilder (1978). Knowing what the price will
do in the future can be very beneficial, which is one
of the reasons why it is such a popular topic. Es-
sentially this problem can be classified as a time-
series analysis, where the goal is to predict what
will happen in the next time step or period. The
rise of neural networks methods for time series, un-
der which recurrent architectures such as the Long-
Short Term Memory (LSTM), has lead to new re-
search dedicated to stock price forecasting.

1.1 Problem description

The stock price is influenced by many factors un-
der which the current season, consumer trust, how
well a company is doing, what the crowd thinks,
the current political state and the economical state
of a country. The information needed to predict a
stock price can be thought of as a multidimensional
vector, moving in time.

To explain this using a metaphor: imagine a
comet flying in 3-dimensional space. It has a direc-
tion, given by a vector of three elements (x, y, z). A
historical set of these vectors describe the direction
of the comet, which can be used to predict where
the comet will be in a next time step. There can be
gravitational attractors in this space, for example a
planet with an gravitational force. This influences
the direction of the comet. If all the attractors in
this space were known as well as how they influence
the comet, the state of the comet can be derived.
This makes the assumption that there is no noise
in the space.

The stock price can be thought of in the same
way: it is determined not by a three-dimensional
but N-dimensional state vector. In theory, if it is
known how a space with all its attractors looks like,
and in which way they will influence the stock price,

1



one could make predictions about the state of the
stock price in the future, using a time-series of state
vectors. However, the movement of stock prices
is partly deterministic but chaotic, and partly a
stochastic process. It includes randomness which
make it hard to make accurate predictions. Further-
more, this space is extremely high dimensional, and
the stock price is influenced by such a high num-
ber of factors, that it is practically impossible to fit
these all in a model. The process of defining the n-
dimensional space of the stock price together with
the attractors is an extremely complex task. This
study will try to capture this task using two differ-
ent models, and will then compare the performance
of these models. The first model that will be used is
a Hidden Markov Model, which is based on Markov
chains. Rabiner (1989) gives a detailed description
on the workings of a Hidden Markov Model, which
will not be discussed in depth here. The second
model that will be used is a LSTM neural network
as introduced by Hochreiter (1994).

1.2 Background

Over the years, researchers have extensively
searched for a model which captures the trend of
a market. Several studies that use different models
to predict the stock price are given below.

Hidden Markov Model

A well known method that is used for time-series
analysis is the Hidden Markov Model. This model
learns the probabilities of (hidden) state transitions
and the observation probabilities (in this case some
distribution) given a certain hidden state. This al-
lows for calculating the probability of observing a
sequence and determining which state is most likely
at the current time. Hidden Markov Models are of-
ten used for classification, since they can easily cal-
culate probabilities of observation sequences. There
is however no clear or straight forward method
how to use a Hidden Markov Model for predict-
ing time-series. Several methods can be used to
make predictions with a Hidden Markov Model.
One method introduced by Hassan (2005) is calcu-
lating the probability of an observation, searching
for a similar probability with this observation in
the past, and use the historical data at that time
in the past to make a prediction for the current

time. Nguyen (2018) experimented with a range for
the number of observations and hidden states us-
ing Hassan’s approach. Hassan (2009) also uses a
hybrid model with fuzzy logic and a HMM to pre-
dict stock prices. However, one disadvantage of us-
ing a Hidden Markov Model is that it is not able to
learn long term dependencies, since a transition be-
tween states takes into consideration only the cur-
rent time step. However, there could be an indica-
tor of what will happen next, which was present
multiple time steps in earlier.

Long Short-Term Memory

Long-term dependencies were in theory solved by
recurrent neural networks, but research has shown
that it still raised a problem for basic recurrent
neural networks Bengio (1994). It was shown that
although information is passed to the next time
step, over a longer period of time, this informa-
tion vanishes, which is called the vanishing gra-
dient problem. To solve this problem, Hochreiter
and Schmidhuber introduced a new type of recur-
rent neural network called the Long Short-Term
Memory (LSTM) network (Hochreiter (1994)). A
LSTM consists of memory cells that allow these
type of networks to learn long term dependencies.
A LSTM cell contains a cell-state, which is updated
every time-step. Due to the cell-state, there is a
constant error flow, preventing vanishing gradients.
Several variations were made to this basic architec-
ture, such as forgetting and adding peephole con-
nections, for details see Gers (2000b) Gers (2000a)
Greff (2017). Due to its state of art performance in
the field of predicting time-series, the LSTM was
applied to stock markets, which is done in Pang
(2018), Gao (2018).

1.3 Research question

The aim of this study is to compare a Hidden
Markov Model and a LSTM neural network in their
ability to capture stock movements by training on
historical data, and as a result of this their abil-
ity to predict stock prices. The reason these two
models are chosen is because of the fundamental
differences between these two models. The Hidden
Markov Model relies on statistics and distributions,
and therefore probability maximization, whereas a
LSTM searches for relations in the data set. The

2



aim of this study is to determine which of these
two models works best on stock data. This gives us
the following research question:
Is there a significant difference in the ability of
predicting stock prices between a Hidden Markov
Model and a LSTM neural network?

The following section explains the Hidden Markov
Model and LSTM network in more detail as well
as how the two models were used for stock market
prediction. Furthermore it explains how the perfor-
mance of the models was measured. In the result
section the results of both models are presented
separately and in the discussion section these re-
sults are discussed.

2 Methods

This section will describe in detail how this study
is constructed, which data is used, how the models
are implemented and which measures were used.

2.1 Data

As described in the previous section, the stock price
is determined by context vectors. This study will
use 110 stocks taken from the SP500, including the
AAPL (Apple) stock, which is the stock that the
two models have tried to predict. All the stocks in
the data set have data available from 1 January
1990 until 1 June 2019. These stocks will be used
as the context vectors for the AAPL stock that the
models try to predict. Other additions to this con-
text vector are omitted in this study, due to un-
availability of this data in a structured form. How-
ever, this study does not claim that these other
additions to the context vector do not have a sig-
nificant influence on the AAPL stock movements.
The data of a single stock contains four daily val-
ues: open price, close price, highest price of that
day and the lowest price of that day. In general
there are five trading days in a week, except for
national holidays in America. In this study, only
the close price of a stock is used when training and
predicting stock prices. All data was retrieved from
Yahoo. Historical stock prices from 1 January 1990
until 1 June 2019 results in approximately 7000
data points (trading days) per stock.

Data preparation

In order to create enough data for the two models to
test and train on, linear interpolation was applied
to every stock. Then, in order to prevent overfitting,
a random noise of 0.01% was added to the data
set. After this, the data was split into two distinct
groups using odd-even splitting, where one group
consisted of all the data points that had an even
index and the other group consisted of all the data
points that had an odd index. In this study data
was always trained on one of these groups and then
tested on the other group.

2.2 Hidden Markov Model

A Hidden Markov Model is a statistical model
which consists of the following the parts:

• N = the number of hidden states

• T = the number of time steps/observations in
an observation sequence

• π = initial state probabilities for each N

• A = the transition matrix, with size N ×N

• B = the emission matrix, with size N × z,
where z is the number of markets used in the
model

A Hidden Markov Model works with observation se-
quences. An observation sequence has T time steps.
Every time step t has a corresponding state for this
time step. Transitions between states are defined by
the transition matrix, which determines the chance
of moving from one state to another state in the
next time step. These states all have a probability
of emitting the possible observations. Observations
can be discrete or continuous. This study will use
continuous observations, given the nature of the
stock data. To model probabilities for continuous
observations, distributions are needed. An exam-
ple of how a Hidden Markov Model would gener-
ate or describe an observation sequence is shown in
2.1. A certain state at time t yields a distribution,
from which a sample can be generated. After this
the model moves to the next state and repeats this
process. Furthermore, four algorithms are needed
when working with a Hidden Markov Model:

3



Figure 2.1: This figure shows the process of gen-
erating a sequence with a Hidden Markov Model
with continuous observations, hence distribu-
tions.

1. The forward algorithm. This algorithm de-
termines the likelihood of an observation se-
quence. This algorithm starts at t = 1.

2. The backward algorithm. This algorithm has
the same functionality as the forward algo-
rithm, but starts at t = T , where T is the
latest time step of the observation sequence,
and then moves backwards in time.

3. The Viterbi algorithm. This algorithm finds
the state sequence that would most likely have
emitted the given observation sequence.

4. The Baum-Welch algorithm. This algorithm
maximizes the likelihood of the model, given
a set of observation sequences.

These algorithms make it possible to train a Hid-
den Markov Model given a set of observations, allow
the model to determine the probability of an obser-
vation sequence and determine the state sequence
that is most likely to have emitted the current ob-
servation sequence.

HMM for stock price forecasting

An observation sequence in this study looks like z
parallel vectors, each containing T historical daily
close prices for every z markets. Instead of a sin-
gle normal distribution (as in figure 2.1) this study
will use Gaussian Mixtures. This is done as there
is no a priori reason to assume that stock prices

per state are distributed unimodally like a Gaus-
sian. The GMM approach allows to model distribu-
tions with multiple peaks. Each state in the Hidden
Markov Model of this study will have z Gaussian
Mixture Models to describe the emission probabil-
ities, where z is the number of markets that were
used.

Training The Hidden Markov Model is trained
using a sliding window. This sliding window of
length 200 moves over the data with steps of t = 1,
generating observations. The label of each observa-
tion is the value of the stock at T+1. Thus, the first
observation will yield the values for 1 <= t <= 200
with as label the value at t = 201, the second obser-
vation will yield the values for 2 <= t <= 201 with
as label the value at t = 202, and this is repeated
for the complete data set. After the model is trained
on the first observation using the Baum-Welch algo-
rithm for 200 epochs, a prediction is made for T+1.
After this, the next observation is presented to the
model and is further trained on. Then a prediction
is made for that observation, continuing this for all
observations.

Predicting There are multiple methods how one
can use a Hidden Markov Model for stock predic-
tion. In the literature presented in the introduction,
one method that was used is given one observation,
search an observation in the past that yields the
same likelihood given the trained Hidden Markov
Model. In the past observation, calculate the differ-
ence between T and T +1 and add it to the current
value at t, yielding the prediction.

A different method that could be used is given
an observation sequence, first compute the most
likely state sequence and determine the most likely
next state that will be reached using the transition
matrix of the trained HMM. Then, the Gaussian
Mixture of this state can be used to generate the
mean, and use this mean as the prediction. How-
ever, when having a Gaussian Mixture, this mean
does not always describe the most likely value of
this distribution.

When having a mixture of Gaussians, it would
be more reasonable to select one of the Gaussians
in the mixture by chance, and output the mean of
this Gaussian as the prediction.

In this study, in order to make a prediction, the

4



observation sequence will be given to the Viterbi
algorithm. This algorithm will yield the state se-
quence that would most likely have omitted the
given observation sequence. Only the last state st
of this sequence is remembered, the state at the
current time t, and using the transition matrix A
of the trained model, the state st+1 for t + 1 will
be chosen such that A[st, st+1] is the highest prob-
ability in that row. This state contains a Gaussian
Mixture Model. In order to make a prediction, the
probability density function (PDF) is converted to
a cumulative distribution function (CDF). Then, a
random value i along the y-axis is generated. The
x-value of our the intersection of the line y = i and
the CDF is taken as the predicted value.

2.3 Long Short-Term Memory

A basic neural network only has connections that
go forward. This architecture is not ideal for time-
series problems, as this does not allow for long-
term dependencies (where certain events depend on
events in the past, with some time in between).
When trying to solve time-series problems with
neural networks, a recurrent neural network is of-
ten used. This neural network has recurrent connec-
tions, thus neurons passing on information to the
next layer, but also to themselves for the next time
step. In theory, this allows for long-term dependen-
cies. However, as time goes by, this information
vanishes for long-term dependencies. Therefore, a
LSTM, which is a modified version of a recurrent
neural network, is used for this study. A LSTM is
able to handle long-term dependencies and there-
fore is currently one of the most often used models
for time-series problems.

The following formulas are used when presenting
input to a LSTM:

ft = σ(Wf ∗ [ht−1, xt] + bf ) (2.1)

it = σ(Wi ∗ [ht−1, xt] + bi) (2.2)

Ĉt = tanh(WC ∗ [ht−1, xt] + bC) (2.3)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (2.4)

ot = σ(Wo ∗ [ht−1, xt] + bo) (2.5)

ht = ot ∗ tanh(Ct) (2.6)

The input of a LSTM model consists of a vector
with all features at the current time step t. In this

study the number of input nodes equals z, the num-
ber of markets used for predicting the AAPL stock.
This input is then fed to a LSTM-cell, which has
a cell-state with h nodes. A vanilla LSTM-cell first
concatenates the output of the LSTM-cell at t− 1
with the current input. Then it determines using
a forget weight matrix using a sigmoid activation
function which part of the current cell-state should
be forgotten 2.1. After updating the cell-state it
determines which information of the current input
should be added to the cell-state 2.2, and a tanh
layer that determines what of this can be added to
the cell-state 2.3. This yields the cell-state Ct at
time t 2.4. The output of the cell state is then de-
termined by 2.5. This yields the input for the next
layer of the network, as well as the input for the
next time step, with which the input is then con-
catenated. This architecture, using a cell-state, al-
lows for long-term dependencies, since the formulas
for calculating the new cell-state allow for a recur-
sive constant derivative. The LSTM has a constant
error flow through time. Therefore, over a long pe-
riod of time, the derivative does not go to zero.

LSTM for stock price forecasting

The LSTM can be used for stock price forecast-
ing by presenting a vector containing all daily close
prices for all z markets. This is then passed to
the first LSTM-cell. The output of this cell will
go through a dimension reduction layer. A com-
mon problem with LSTM networks when predict-
ing time-series is that they learn to output the cur-
rent value as the prediction for t+1. Although this
often reduces error quite efficiently, it is often not
the preferred solution, as the model does not learn
the underlying relationships in the data. In order to
prevent this, a dimension reduction layer is added
so that the LSTM network is forced to compress the
information it has. When the information is com-
pressed, the LSTM will not output the same value.
Then, the dimension-reduction layer passes its out-
put to the last layer of size z. The output then
yields a vector which is a prediction at t+ 1 for all
z markets. An example of such an architecture is
shown in figure 2.2.

Training When training the LSTM, batches of
size 200 are used. The batches are created with a
100 point/day interval. In order to prevent overfit-

5



Figure 2.2: This figure shows a LSTM architecture with a dimension reduction layer (layer 2). z
represents the number of markets used for prediction.

ting in the network, a dropout of 20% per layer is
used. As error measurement to train the network,
the mean squared error is used, and ADAM opti-
mizer is used for the weight updates. When train-
ing, the network was trained for 200 epochs, where
one epoch looped over all batches once.

Predicting For every input vector that is pre-
sented, an vector of the same length will be the
output. This output vector will be the prediction
for the next time step. The relevant AAPL predic-
tion can be extracted from this vector as well.

2.4 Performance measures

In order to evaluate the performance of the model,
this study will look at multiple measures.

Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is a
measure which expresses the prediction accuracy of
a model. The measure is represents the (averaged)
expected percentage error when making a predic-
tion. The formula used when calculating the MAPE

is:

MAPE =
100

n

n∑
t=1

|Rt − Pt

Pt
| (2.7)

In 2.7, Rt is the real value at time t, Pt is the
predicted value at time t and n is the number of
predictions.

Root Mean Squared Error

The Root Mean Squared Error (RMSE) is a similar
measure for comparing the difference between pre-
dicted values by a model and the actual values of
the data that is frequently used in machine learn-
ing. The RMSE is calculated using the following
formula:

RMSE =

√∑n
t=1(Rt − Pt)2

n
(2.8)

In 2.8, Rt is the real value at time t, Pt is the
predicted value at time t and n is the number of
predictions.

Correlation

A different measure that can be used to measure
the quality of the prediction is to determine the

6



correlation between the predicted time-series and
the actual time-series. The correlation in this study
is calculated with the following formula:

covx =

√√√√ n∑
t=1

(xt − µx)2 (2.9)

CORR =

∑n
t=1((Pt − µP ) ∗ (RT − µR))

(n− 1) ∗ covP ∗ covR
(2.10)

In 2.10, n is the number of predictions, covx is the
covariance of time-series x, P is the predicted time-
series and R is the real time-series. The correlation
gives insight about how well the model is able to
capture the trend of the data, even if the predicted
values have a certain error.

Fractal dimension

The fractal dimension of a signal can be calculated
in order to determine its complexity. In order to
see if a model is able to capture the process of the
AAPL stock, the fractal dimension of the predicted
time-series should be as close as possible to the real
time-series. Therefore, the fractal dimension is cal-
culated for both time-series, and compared with
each other. There are multiple methods how one
could calculate the fractal dimension. This study
will use the fractal dimension that is developed for
stock prices specifically and is calculated as follows:

HL1 =
max(X[0...n/2])−min(X[0...n/2])

n/2
(2.11)

HL2 =
max(X[n/2...n])−min(X[n/2...n])

n/2
(2.12)

HL =
max(X)−min(X)

n
(2.13)

D =
log(HL1 +HL2)− log(HL)

log(2)
(2.14)

This formula can be used to create a moving frac-
tal dimension of a sequence. In 2.14, X is a cer-
tain time-series and n is the length of the sliding
window used to create a moving fractal dimension.
This function yields a line describing the fractal
dimension over time. The quality of the predicted
time-series can be described by the similarity be-
tween the fractal dimension line of the predicted

time-series and the fractal dimension line of the real
data.

2.5 Hyperparameter determination

Both models have several hyperparameters that in-
fluence the performance of the model. This study
will look at a range for the number of hidden states
used in the Hidden Markov Model. For the LSTM,
this study will look at a range for the number of
dimensions the cell reduction layer. Before compar-
ing the models, the optimal hyper parameters are
determined for both models. This is done by ap-
plying k-fold cross validation. The mean across all
runs is calculated, as well as the standard error of
the mean (SEM). The standard error of the mean
gives a measure if a certain value of a parameter
yields a significant better performance compared
to other parameters. Using the results of the k-fold
cross validation, the best parameters for each model
are selected using the ’elbow method’, which is the
point in the graph where a further change in pa-
rameters does not yield a significant better perfor-
mance. Then both of the best performing models
are trained on the same data set and tested on the
same data set, after which the performance is com-
pared.

3 Results

In the following section, first the results of the k-
fold cross validation are presented for both models
separately. After this, the results of the best per-
forming models trained on the same data set are
presented.

3.1 K-fold cross validation

HMM

In figures 3.1, 3.2 and 3.3 the results of the k-fold
cross validation for the Hidden Markov Model are
presented. From the figures it can be observed that
the performance increases as the number of hid-
den states increases. However, this increase stag-
nates when the number of hidden states is greater
or equal to six. In all three figures it can be seen
that the increase in performance decreases as more
hidden states are added to the model. Figure 3.2

7



shows that seven hidden states results in an in-
crease of the MAPE on average, which suggests an
’elbow’ at six hidden states. Therefore, this study
will use six hidden states in the final HMM model.

Figure 3.1: Graph showing the error bars (stan-
dard error of the mean) for the correlation of
the prediction of the Hidden Markov Model and
the actual data, where the squares represent the
means. The y-axis represents the correlation (a
value between -1 and 1) and the x-axis repre-
sents the number of hidden states that were
used in the model.

LSTM

The results for k-fold cross validation in order to
determine which number of dimensions to use in
the reduction layer of the LSTM network showed
that there was no difference in correlation, MAPE
and RMSE for the different number of dimensions.
K-fold cross validation was tested for a range of
five dimensions up until ninety dimensions. In or-
der to reduce visual noise, the figures are not pre-
sented here. Due to the fact that there was no best
performing number of dimensions in the reduction
layer, this study will continue using the number of
dimensions that yielded the lowest average MAPE,
RMSE and the highest correlation, which means
that 45 dimensions will be used in the reduction
layer.

Figure 3.2: Graphs showing the error bars (stan-
dard error of the mean) for the Mean Absolute
Percentage Error of the prediction of the Hid-
den Markov Model, where the squares represent
the means. The y-axis represents the value of
the Mean Absolute Percentage Error and the x-
axis represents the number of hidden states that
were used in the model.

Figure 3.3: Graphs showing the error bars (stan-
dard error of the mean) for the Root Mean
Squared Error of the prediction of the Hidden
Markov Model, where the squares represent the
means. The y-axis represents the value of the
Root Mean Squared Error and the x-axis rep-
resents the number of hidden states that were
used in the model.

8



3.2 Prediction results

The results presented in the following subsection
will show measures for the predictions of both
models using the hyperparameters that were de-
termined above. In table 3.1 the values of the mea-
sures of both models are presented. The predictions
of the HMM are presented in 3.4. Figure 3.5 shows
the same predictions, but only for the most recent
time steps. In figure 3.6 the fractal dimension over
time of the predictions of the Hidden Markov Model
are shown for the same period as in 3.5. The pre-
dictions themselves are presented in 3.7. Figure 3.8
shows the same predictions, but only for the most
recent time steps. In figure 3.9 the fractal dimen-
sion over time of the predictions of the LSTM are
shown, for the same period as in 3.8.

Table 3.1: This table shows the values for all the
measures for the prediction of both models.

MAPE RMSE Corr % Direction
HMM 4.72 2.49 0.99 0.50
LSTM 12.72 5.35 0.99 0.51

4 Discussion

When looking at the results that were found in this
study, it can be observed that the HMM had a
better performance compared to the LSTM. The
MAPE and the RMSE for the prediction of the
HMM was lower than the MAPE and RMSE of
the prediction of the LSTM. However, it only pre-
dicted the correct direction of the price 50% of the
time, which is not better than random guess. This
also goes for the LSTM, which predicts the price
direction correct 51% of the time. The correlation
of both predictions were the same.

When looking more closely at the predictions of
the HMM and its fractal dimension, it can be con-
cluded that the HMM is able to capture the chaotic
characteristics of the time-series. It can be seen
that it follows the movements of the stock price
closely and that it is able to follow different trends
in the stock price. However, it also raises the ques-
tion whether the HMM simply learned to predict
a value close to previous value. If this is the case,
it would also explain the high similarity between
the fractal dimension of the actual data and the

fractal dimension of the prediction. If the HMM
used this ’copy trick’, this means that the HMM
did not actually capture the underlying processes
that determine the stock prices. The fact that the
HMM did only predict the right direction of the
price movement 51% of the time supports this. This
’copy trick’ can occur when using a HMM when the
observation used is too short.

When looking at the performance of the LSTM
model, previous studies have shown better perfor-
mance. It can be observed from the prediction plot
that although the prediction does seem to follow
the general trend of the actual data, it is unable to
predict the high volatile movements of the stock.
This can be explained by the number of dimen-
sions in the reduction layer, since this number of
dimensions is small, a smoothing takes place. This
clearly can be seen in the prediction. Furthermore,
the model is trained to predict the stock price when
it was worth 1$, as well as when it was worth 170$
at the end. This means the model tries to pre-
dict the small stock movements as well as the big
stock movements. What can be observed is that
when the stock is worth the least, it predicts rela-
tively too volatile movements, whereas if the stock
is worth the most, it predicts relatively too small
movements. It can be expected that it trains in this
way, since on average this will yield the lowest error.
It can be concluded that this model did not capture
the underlying model that determines stock move-
ments. This can also can be seen the plot showing
the comparison between the fractal dimension of
the prediction of the LSTM model and the fractal
dimension of the actual data (figure 3.9). Although
it has periods in which it follows the actual frac-
tal dimension, it also shows periods in which the
fractal dimension of the prediction is far off.

The conclusion of this study is therefore that
given the results, the HMM is the better perform-
ing model when predicting stock prices when com-
paring it with the LSTM. The MAPE and RMSE
of the HMM prediction were more than twice as
low as the MAPE and RMSE of the LSTM pre-
diction. Furthermore, the fractal dimension of the
prediction of the HMM model has a better fit when
comparing it to the fractal dimension of the actual
data when comparing it with the fit of the pre-
diction of the LSTM. However, as stated above, it
might be the case that the HMM used the ’copy
trick’ in order to make predictions. If this would

9



Figure 3.4: This figure shows the predictions made by the HMM versus the actual data. The
reader is referred to the discussion section for further details.

Figure 3.5: This figure shows the predictions made by the HMM versus the actual data, zoomed
in on the latest predictions. The reader is referred to the discussion section for further details.

10



Figure 3.6: This figure shows the fractal dimension over time of the prediction made by the HMM
versus the fractal dimension over time of the actual data. It shows only the fractal dimension
of the latest time steps in order to reduce visual noise. The reader is referred to the discussion
section for further details.

Figure 3.7: This figure shows the predictions made by the LSTM versus the actual data. The
reader is referred to the discussion section for further details.

11



Figure 3.8: This figure shows the predictions made by the LSTM versus the actual data zoomed
in on the latest predictions. The reader is referred to the discussion section for further details.

Figure 3.9: This figure shows the fractal dimension over time of the prediction made by the LSTM
versus the fractal dimension over time of the actual data. It shows only the fractal dimension
of the latest time steps in order to reduce visual noise. The reader is referred to the discussion
section for further details.

12



be the case, it would mean that the HMM did not
actually capture the underlying chaotic processes
present in the data. Furthermore, it might be that
the LSTM performance presented in this study is
not the best performance that can be achieved us-
ing such a model.

4.1 Further research

It might be necessary to take a closer look at the
HMM and how it makes the predictions in order
to make sure that the HMM will not be able to
apply the copy trick. One method could be to com-
press the input before it is used as input of the
HMM. This would be similar to the approach used
in the LSTM in this study, where the number of
dimensions is reduced in the middle layer. The two
models might be compared to accomplish this .One
example of a different architecture where this can
be achieved could be where the LSTM reduces the
number of dimensions by processing the input, af-
ter which it feeds the compressed information to a
HMM, which then works on the compressed infor-
mation, gives an output, which is then translated
back by the LSTM.

This study has omitted several factors that could
be included in the context vectors used to make a
prediction. Further research might be dedicated to
finding which factors have the biggest influences,
as well as how they interact with each other. Fur-
thermore, one could try to exploit the models used
in this study in order to improve performance. This
could be done by adding more data, trying different
architectures or a wider variety of hyper parame-
ters.

References

Simard P. Frasconi P. Bengio, Y. Learning long-
term dependencies with gradient descent is dif-
ficult. Transactions on Neural Networks, 5(2):
157–166, 1994.

A. Cowles. Stock market forecasting. Economet-
rica: Journal of the Econometric Society, pages
206–214, 1944.

A. 3rd Cowles. Can stock market forecasters fore-
cast? Econometrica: Journal of the Econometric
Society, pages 309–324, 1933.

E. F. Fama. The behavior of stock-market prices.
The journal of Business, 38(1):34–105, 1965.

Chai Y. Gao, T. Improving stock closing price pre-
diction using recurrent neural network and tech-
nical indicators. Neural Computation, 30:2833–
2854, 2018.

Schmidhuber J. Gers, F. Recurrent nets that
time and count. Neural Computation, 3:189–194,
2000a.

Schmidhuber J. Cummins F. Gers, F. Learning to
forget: Continual prediction with lstm. Neural
Computation, 12:2451–2471, 2000b.

Srivastava R.K. Koutnik J. Steunebrink B. R.
Schmidhuber J. Greff, K. Lstm: A search space
odyssey. Neural and Evolutionary Computing,
27(10):2222–2232, 2017.

M.R. Hassan. A combination of hidden markov
model and fuzzy model for stock market fore-
casting. Neurocomputing, 72:3439–3446, 2009.

Nath B. Hassan, M.R. Stock market forecasting
using hidden markov model: a new approach.
5th International Conference on Intelligent Sys-
tems Design and Applications (ISDA’05), War-
saw, pages 192–196, 2005.

Schmidhuber Hochreiter, S. Long short-term mem-
ory. Neural Computation, 9(8):1735–1780, 1994.

N. Nguyen. Hidden markov model for stock trad-
ing. International Journal of Financial Studies,
6(36), 2018.

Zhou Y. Wang P. Weiwei L. Chang V. Pang, X.
Stock market prediction based on deep long short
term memory neural network. Proceedings of
the 3rd International Conference on Complex-
ity, Future Information Systems and Risk (COM-
PLEXIS 2018), pages 102–108, 2018.

L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), 1989.

J. Welles Wilder. New Concepts In Technical Trad-
ing Systems. Trend Research, 1978.

13


