Stoichiometry

Chapter 12

the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers.

Origin

From Greek:

- "stoicheion" (= element)
- "metron" (= measure)

Warmup – Mole Conversions

- 1. What is the molar mass of sulfur dioxide (SO_2) ?
- 2. How many moles of SO_2 are in 256 g of SO_2 ?
- 3. How many grams SO₂ are in 2.50 mol SO₂?
- 4. How many SO_2 molecules are in 2.50 mol SO_2 ?
- 5. How many moles SO_2 are in 1.82 x 10^{22} SO_2 molecules?

Stoichiometry Conversion Factors

1. <u>mass</u>

Molar mass of an element or compound, in grams

2. # particles

1 mol of any type of particle (element, molecule, etc.) = 6.02×10^{23} particles

3. Volume

1 mol of a gas at STP (standard temperature and pressure) = 22.4 L

4. <u>ΔH</u>

Pathways From Known to Unknown

Stoichiometry Conversion Factors

• mass \rightarrow volume (mass \rightarrow mol \rightarrow mol \rightarrow L)

volume → volume (L → mol → mol → L)
 (gases @ STP)

particle → mass (particle → mol → mol → mass)

Stoichiometry

Moles meet chemical equations

Another variation on conversion factors

- 1. Add the use of **mole ratios** as conversion factors
- 2. Instead of converting single compounds/elements

from moles \rightarrow mass \rightarrow # particles,

use information about one compound/element

in a chemical reaction to determine the

mass/moles/#particles/volume of another compound/element involved in that chemical reaction.

Stoichiometry Steps

1. Write balanced chemical equation.

Then, get to moles ASAP.

- 2. Determine moles of known.
- 3. Use **mole ratio** to switch from moles of known to moles of unknown.
- 4. Convert from moles of unknown to desired units of unknown.

Mole Ratio

= ratio of coefficients in chemical equation
 can be used with any two compounds present in the equation – two reactants, two products, or a reactant and a product

Identify the mole ratios in the following equations:

$$N_{2(g)} + 3 H_{2(g)} \rightarrow 2 NH_{3(g)}$$

$$4 Zn_{(s)} + 10 HNO_{3(aq)} \rightarrow 4 Zn(NO_3)_{2(aq)} + N_2O_{(g)} + 5 H_2O_{(l)}$$

Stoichiometry

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 SO_2(g) + 2 H_2O(g)$$
particles:

moles:

Volume (if gas)

44.8 L 67.2 L 44.8 L

44.8 L

Mass is conserved:

 $2 \text{ mol x } 34.08 \text{ g/mol} + 3 \text{ mol x } 32.00 \text{ g/mol} \rightarrow 2 \text{ mol x } 64.06 \text{ g/mol} + 2 \text{ mol x } 18.01 \text{ g/mol}$

$$68.16g + 96.00g = 128.12g + 36.02g$$

Pathways From Known to Unknown

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 SO_2(g) + 2 H_2O(g)$$

- 1. How many moles of SO₂ will be produced if we started with 15.0 mol O₂?
- 2.How many liters of SO₂ will be produced if we start with 15.0 mol O₂? (at STP)
- 3. How many grams of SO₂ will be produced if we started with 15.0 mol O₂?
- 4. How many moles of SO₂ will be produced if we start with 16.5 L O₃? (at STP)

$$_{2}H_{_{2}}S(g) + _{3}O_{_{2}}(g) \rightarrow _{2}SO_{_{2}}(g) + _{2}H_{_{2}}O(g)$$

5. How many mol SO_2 will be produced if we start with 16.5 g O_2 ?

6. How many L SO_2 will be produced if we start with 16.5 L O_2 ? (at STP)

7. How many grams of SO_2 will be produced if we start with 16.5 g O_2 ?

Thermochemical Stoichiometry

- The amount of energy (in kJ) can be incorporated into mole ratios.
- $^{\bullet}$ C₆H₁₂O_{6(aq)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H₂O_(l) + 2870 kJ
- \bullet $\Delta H = -2870 \text{ kJ/mol glucose}$
- Mole Ratios Examples

$$\underline{1 \text{ mol } C_6 H_{12} O_6}$$
 6 mol O_2 6 mol O_2 6 mol O_2 6 mol O_2

$$\underline{2870 \text{ kJ}}$$
 $\underline{6 \text{ mol H}_2 \text{O}} = 1 \text{ mol C}_6 \text{H}_{12} \text{O}_6$ $\underline{2870 \text{ kJ}}$

Thermochemical Stoichiometry Problems

$$C_6H_{12}O_{6(aq)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(l)} + 2870 \text{ kJ}$$

1. How much energy (in kJ) will be released when 675 g of glucose is burned?

A: 10,800 kJ

Thermochemical Stoichiometry Problems

$$C_6H_{12}O_{6(aq)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(l)} + 2870 \text{ kJ}$$

2. If 398 kJ is released when a certain amount of glucose is burned, how many grams of oxygen are consumed?

A: 26.6 g

Thermochemical Stoichiometry Problems

$$C_6H_{12}O_{6(aq)} + 6O_{2(g)} \rightarrow 6CO_{2(g)} + 6H_2O_{(l)} + 2870 \text{ kJ}$$

3. If 5782 kJ is released when a certain amount of glucose is burned, how many liters of carbon dioxide are released, assuming the reaction takes place at STP?

Warmup – acids and bases

• What is the pH of a solution of nitric acid (strong acid) that has a concentration of 10⁻⁴ M?

4

• What is its pOH?

10

Concentration of OH-?

10⁻¹⁰ M

- Compare strong acids with weak acids. Use concentration, extent of ionization, and pH in your answer.
- Strong acids ionize completely in water, so the concentration of H⁺ is the same as the compound itself. A weak acid of equal concentration (molarity) will have a lower concentration of H⁺, and thus a higher pH.