# Stoichiometry\_

"Stoichiometry is the science of measuring the quantitative proportions or mass ratios in which chemical elements stand to one another." Jeremias Benjamin Richter, 1792

Richter introduced the word stoichiometry (Greek, stoicheion-element and metron-measure)

## emails - include course #

Relative Atomic Mass Mass Spectrometry Atoms and the Mole Composition of Compounds Determining the Formulas of Compounds CHEMICAL EQUATIONS

Balancing Stoichiometry Calculations Yields Quiz on Friday – material through M lecture

Harris text will soon be needed

**Balancing Equations** - PRACTICE





# Academic Integrity\_

As an academic community, UIC is committed to providing an environment in which research, learning, and scholarship can flourish and in which all endeavors are guided by academic and professional integrity. All members of the campus community – students, staff, faculty, and administrators – share the responsibility of insuring that these standards are upheld so that such an environment exists. Instances of academic misconduct by students will be handled pursuant to the Student Disciplinary Policy: <a href="http://www.uic.edu/depts/dos/studentconduct.html">http://www.uic.edu/depts/dos/studentconduct.html</a>

For quizzes and exams

- 1. cell phones and all other electronic devices turned off
- 2. work area free of all notes, texts, other written or printed material
- 3. work area may only contain a calculator, pens/pencils, and few BLANK pages for working on
- 4. only one window open on your computer/laptop which is accessing OWL through Blackboard
- 5. **no communication with any other person** during the assessment except with permission of the TA/instructor

5. **no communication about the quiz/exam** with anyone until after 5 pm on the day the assessment is given

## **Compounds (Metalloid Can Be Substituted for Nonmetal)**

| Ionic                                           | Covalent (Nonmetals)                 |                                      |                                            |  |  |  |  |
|-------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|--|--|--|--|
| (Cation-Anion)                                  | Nonmetal-Nonmetal                    |                                      | ntaining Hydrogen                          |  |  |  |  |
|                                                 |                                      | H-Nonmetal                           | H-Oxyanion                                 |  |  |  |  |
| Rule:                                           | Rule:                                | Rule 1:                              | Rule 1:                                    |  |  |  |  |
| Name of cation + name of                        | a) Less electronegative ele-         | (without the presence of             | (without the presence of H <sub>2</sub> O) |  |  |  |  |
| anion (word "ion" dropped).                     | ment generally first (excep-         | H <sub>2</sub> O)                    | like ionic compounds:                      |  |  |  |  |
|                                                 | tion: when one of the ele-           | hydrogen _ide                        | cation + anion                             |  |  |  |  |
| Examples:                                       | ments is hydrogen)                   |                                      | hydrogen hypo_ite                          |  |  |  |  |
| ZnSO <sub>4</sub> zinc sulfate                  | b) Greek prefixes give num-          | Examples:                            | hydrogen _ite                              |  |  |  |  |
| NaNO <sub>2</sub> sodium nitrite                | ber of atoms of each kind            | HCI hydrogen chloride                | hydrogen _ate                              |  |  |  |  |
| CaCl <sub>2</sub> calcium chloride              | c) Initial prefix mono dropped       | HF hydrogen fluoride                 | hydrogen per_ate                           |  |  |  |  |
| Fe <sub>3</sub> N <sub>2</sub> iron(II) nitride |                                      | H <sub>2</sub> S hydrogen sulfide    |                                            |  |  |  |  |
| $Li_2CO_3$ lithium carbonate                    | Prefixes:                            | H <sub>2</sub> Se hydrogen selenide  | Rule 2: HO acids                           |  |  |  |  |
| NH <sub>4</sub> I ammonium iodide               | 1=mono 6= hexa                       |                                      | (when dissolved in H <sub>2</sub> O)       |  |  |  |  |
| $Cu(IO_3)_2$ copper(II) iodate                  | 2 = di 7 = hepta                     | Rule 2: H acids                      | hypo_ous acid                              |  |  |  |  |
| BaH <sub>2</sub> barium hydride                 | 3 = tri $8 = octa$                   | (when dissolved in H <sub>2</sub> O) | _ous acid                                  |  |  |  |  |
|                                                 | 4 = tetra 9 = nona                   | hydro_ic acid                        | _ic acid                                   |  |  |  |  |
| Comment:                                        | 5 = penta 10 = deca                  |                                      | per_ic acid                                |  |  |  |  |
| The name does not indicate                      |                                      | Examples:                            |                                            |  |  |  |  |
| the numbers of cations and                      |                                      | HCI hydrochloric acid                | Examples:                                  |  |  |  |  |
| anions because there is                         |                                      |                                      | HCIO hypochlorous acid                     |  |  |  |  |
| only one possibility for the                    |                                      |                                      | HCIO <sub>2</sub> chlorous acid            |  |  |  |  |
| ions to combine to form a                       | CO carbon monoxide                   | H <sub>2</sub> Se hydroselenic acid  | HCIO <sub>3</sub> chloric acid             |  |  |  |  |
| compound.                                       | CO <sub>2</sub> carbon dioxide       |                                      | HCIO <sub>4</sub> perchloric acid          |  |  |  |  |
|                                                 | NO <sub>2</sub> nitrogen dioxide     | Comment:                             | HNO <sub>2</sub> nitrous acid              |  |  |  |  |
|                                                 | N <sub>2</sub> O dinitrogen monoxide | (a) These H-containing               |                                            |  |  |  |  |
|                                                 |                                      | compounds are named as if            |                                            |  |  |  |  |
|                                                 | Comment:                             | they were ionic. (b) Often           | - ·                                        |  |  |  |  |
|                                                 | Tetraoxide becomes tetrox-           |                                      |                                            |  |  |  |  |
|                                                 | ,                                    | the acids is omitted when it         |                                            |  |  |  |  |
|                                                 |                                      | is obvious from the context          |                                            |  |  |  |  |
|                                                 | sounds better                        | that they are acids.                 | The (aq) is usually omitted.               |  |  |  |  |

# H Set Ti V Cr Mn Fe Co Ni Cu Zn Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br K Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Lu Hf Db Sg Bh Hs Mt <t

ordering of elements in formula of binary molecular compounds: order according to Group number, bottom to top; for any pair, element furthest right behaves as the "anion" (H, O need to be memorized):

H<sub>2</sub>SO<sub>4</sub> hydrogen sulfate!

FOR LATER

### **REVIEW FROM MONDAY**

# **Ordering Elements in Binary Molecular Compounds**

Ordering of elements in formula of binary molecular compounds: order according to Group number, bottom to top; for any pair, element furthest right behaves as the "anion" (H, O need to be memorized):

semimetals (metalloids) and nonmetals

|          | В  | Ge Si C | Sb As P N | Н | Te Se S | I Br Cl | 0 | F |
|----------|----|---------|-----------|---|---------|---------|---|---|
| Group #: | ЗA | 4A      | 5A        |   | 6A      | 7A      |   |   |

| H         B         C         N         O         F         Ne           Li         Be           B         C         N         O         F         Ne           Na         Mg           Si         P         S         Cl         Ar           K         Ca         Sc         Ti         V         Cr         Mn         Fe         Co         Ni         Cu         Zn         Ga         Ge         As         Se         Br         Kr           Rb         Sr         Y         Zr         Nb         Mo         Tc         Ru         Rh         Pd         Ag         Cd         In         Sn         Sb         Te         I         Xe           Cs         Ba         Lu         Hf         Ta         W         Re         Os         Ir         Pt         Au         Hg         Tl         Pb         Bi         Po         At         Rn           Cs         Ba         Lu         Hf         Ta         W         Re         Os         Ir         Pt         Au         Hg         Tl         Pb         Bi         Do         At |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Na         Mg           K         Ca         Sc         Ti         V         Cr         Mn         Fe         Co         Ni         Cu         Zn         Ga         Ge         As         Se         Br         Kr           Rb         Sr         Y         Zr         Nb         Mo         Tc         Ru         Rh         Pd         Ag         Cd         In         Sn         Sb         Te         I         Xe           Cs         Ba         Lu         Hf         Ta         W         Re         Os         Ir         Pt         Au         Hg         Tl         Pb         Bi         Po         At         Rn                                                                                                                                                                                                                                                                                                                                                                                                                    | н  |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | He |
| KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKrRbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXeCsBaLuHfTaWReOsIrPtAuHgTIPbBiPoAtRn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Li | Be |   |    |    |    |    |    |    |    |    |    |    | В  | С  | Ν  | 0  | F  | Ne |
| RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXeCsBaLuHfTaWReOsIrPtAuHgTIPbBiPoAtRn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Na | Mg |   |    |    |    |    |    |    |    |    |    |    | AI | Si | Р  | s  | CI | Ar |
| CsBaLuHfTaWReOsIrPtAuHgTlPbBiPoAtRn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | К  | Ca |   | Sc | Ti | v  | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rb | Sr |   | γ  | Zr | Nb | Мо | Тс | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Те | Ţ  | Xe |
| Fr     Ra     Lr     Rf     Db     Sg     Bh     Hs     Mt     Ds     Rg     Cn     Nh     FI     Mc     Lv     Ts     Og                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cs | Ba |   | Lu | Hf | Та | w  | Re | Os | lr | Pt | Au | Hg | ті | Pb | Bi | Ро | At | Rn |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fr | Ra | [ | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |   |    | _  |    |    | _  |    |    |    |    | _  |    |    | _  |    | 1  | 8  |

| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ac | Th | Pa | υ  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |

| C, Si | SiC               |
|-------|-------------------|
| H, Te | H <sub>2</sub> Te |

### **REVIEW FROM MONDAY**

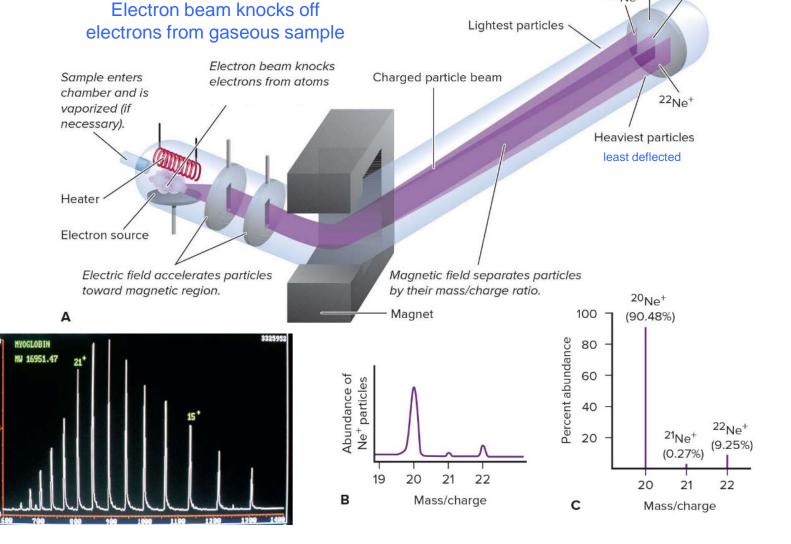
<sup>20</sup>Ne<sup>+</sup>

Detector

<sup>21</sup>Ne<sup>+</sup>

# **Relative Atomic Masses**

## Separating the Neon Isotopes


| particle | charge | mass (u)   |
|----------|--------|------------|
| electron | -1     | 0.00054857 |
| proton   | +1     | 1.00727646 |
| neutron  | 0      | 1.00866491 |

| isotope          | #p | #n | mass (u)  | mol fract |
|------------------|----|----|-----------|-----------|
| <sup>20</sup> Ne | 10 | 10 | 19.992440 | 0.9048    |
| <sup>21</sup> Ne | 10 | 11 | 20.993846 | 0.0027    |
| <sup>22</sup> Ne | 10 | 12 | 21.991385 | 0.0925    |

Relative Atomic Mass

$$\mathsf{RAM} = \sum_{i} m_i f_i$$

Horse myoglobin – common MW calibrant for mass spectrometers



## **REVIEW FROM MONDAY**

# Some Types of Mass Spec

## **EI** – electron ionization

impact by very high energy e- M + e- -> M+ + e- (lower energy) M+ detected, fragments

## **CI** – chemical ionization

reagent gas (CH<sub>4</sub>, NH<sub>3</sub>) in ionization source, protonates molecule

 $M + (gas^+) \rightarrow MH^+ + gas$  less fragmentation

# MALDI – matrix-assisted laser desorption/ionization

M dissolved in UV absorbing compd, evaporated, UV laser vaporizes matrix into gas phase, M<sup>+</sup> formed

 $M \sim 10^6$  g/mol - biomolecules



## **REVIEW FROM MONDAY**

# Working with Isotopic Data

RAM = 10.811

**EX 1.** From the following data and your periodic table determine the percent natural abundance of the following two isotopes:

| isotope  | mass     | $f_i$       |
|----------|----------|-------------|
| boron-10 | 10.01294 | X           |
| boron-11 | 11.00931 | 1- <i>x</i> |

fractions sum to 1

 $\begin{array}{rcl} \mathsf{RAM} = \sum_{i} m_{i} f_{i} & => & 10.811 = 10.01294 \, \texttt{x} + 11.00931(1 - \texttt{x}) \\ & \texttt{x} = (11.00931 - 10.811) / (11.00931 - 10.01294) \\ & \texttt{3 decimals} \\ & = 0.19831 / 0.99837 \\ & = 0.1990324 \ => & 19.9\% \ ^{10}\mathsf{B} \\ & \texttt{80.1\%} \ ^{11}\mathsf{B} \end{array}$ 

# Working with Isotopic Data

**EX 2.** Copper has two isotopes. 30.91% of the mass of copper is due to <sup>65</sup>Cu whose isotopic mass is 64.9278. Calculate the mass of the other isotope and give its complete symbol.

$$RAM = \sum_{i} m_{i} f_{i} = m_{Cu-65} f_{Cu-65} + m_{x} f_{x} = 63.55$$

 $\sum_{i} f_i = 1$ 

$$m_x = \frac{65.55 - (0.3091)(64.9278)}{1.0000 - 0.3091}$$
$$= (63.55 - 20.0618)/0.6909$$
$$= 62.93$$

## Atoms and the Mole

**EX 4.** A single atom of an element has a mass of  $2.10730 \times 10^{-22}$  g. What is the element assuming it has only one isotope?

ratio of RAMs = ratio of masses of atoms

$$\frac{\text{RAM x}}{12} = \frac{2.10730 \times 10^{-22}}{(12 \text{ g} / N_{o})}$$
$$\text{RAM x} = 2.10730 \times 10^{-22} N_{o}$$
$$= 126.904 \implies \text{iodine}$$

# Atoms and the Mole – Composition of Compounds

**relative atomic mass (RAM)** => actual mass of one atom (Lorenzo Romano Amadeo Carlo **Avogadro**, Conte di Quarequa e di Cereto)

**Avogado's Number** defined to be the number of atoms in exactly 12 g of <sup>12</sup>C (1 mole)  $N_0 = 6.02214 \times 10^{23} \text{ mol}^{-1}$ 

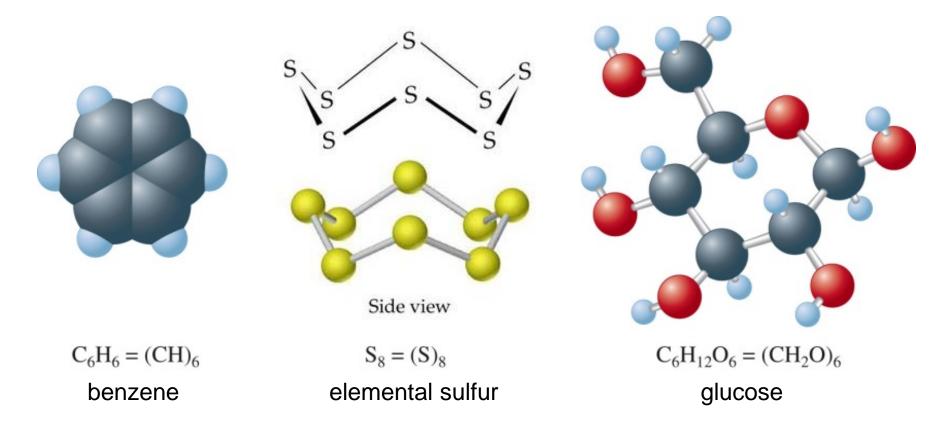


#### Bond going Bonds in away from plane observer of paper Bond coming toward observer Simple perspective Plastic model **Ball-and-stick** Space-filling model The three representations drawing in a single drawing. model

## molar mass: atoms <=> mole <=> mass

# % Composition

**EX 8.** Find the percent composition of sulfuric acid,  $H_2SO_4$ ; [H = 1.0079, S = 32.065, O = 15.999]


$$M_{\rm H_2SO_4} = 2(1.0079) + 32.065 + 4(15.999) = 98.0768$$

- H:  $2(1.0079)/98.0768 \times 100 = 2.055328069$
- S: 32.065/98.0768 × 100 = 32.69376652

O:  $4(15.999)/98.0768 \times 100 = 65.25090541$ 

# **Determining the Formula of a Compound**

## empirical and molecular formulas

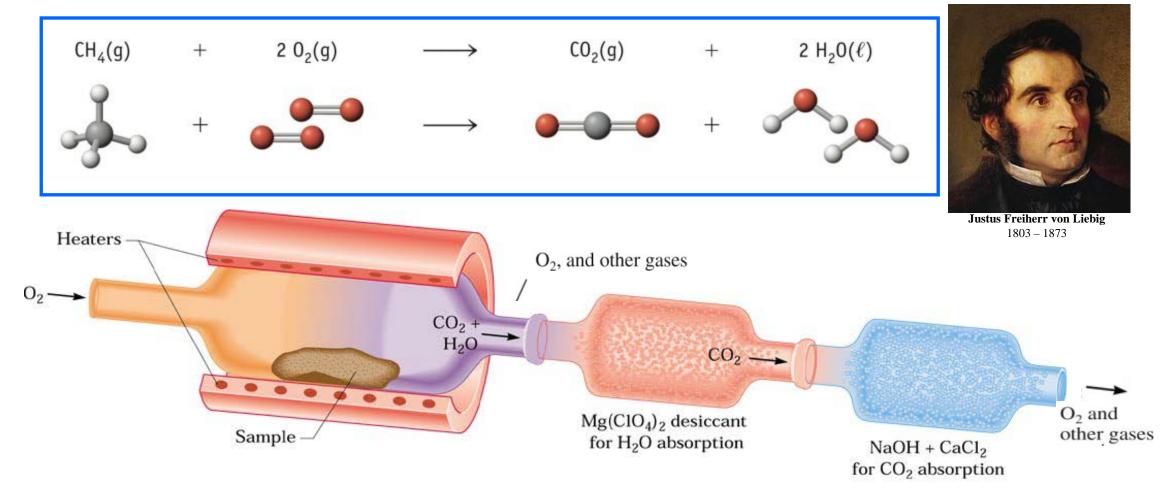


# **Formula from Mass Data**

```
EX 9. Find the empirical formula of an iron oxide if 1.596 g of the oxide
contains 1.116 g of iron. [Fe= 55.845, O = 15.999]
                           find moles then ratio
Fe: 1.116/55.845 = 0.01998388
O: (1.596 - 1.116)/15.999 = 0.03000187
                                            whole number ratio
O/Fe = 0.03000187 / 0.019998388 = 1.5013 \times 2/2 = 3.002/2
                                    = 30/2 \text{ Fe} => \text{Fe}_2 O_3
```

# Formula from % Composition

**EX 10.** A compound of sulfur and fluorine contains 25.2% S. [S = 32.065, F = 18.998]


- a) What is its empirical formula? find moles then ratio, assume a mass
  - S: 25.2/32.065 = 0.78590
  - F: (100 25.2)/18.998 = 3.93725 difference
  - $S: F = 0.78590 / 3.93725 \implies 1 / 5.01 \implies SF_5$
- b) If 0.0450 moles has a mass of 11.4 g what is its molecular formula?

 $M_{SF_5} = 32.065 + 5(18.998) = 127.05$  (empirical formula mass)

 $M \Rightarrow g / mol = 11.4 / 0.0450 = 253.3 g / mol (molecular formula mass)$ 

ratio:  $253.3/127.055 = 1.993 => S_2F_{10}$ 

# **Formula from Chemical Analysis**



A combustion train for measuring the amounts of carbon and hydrogen in a compound

# Formula from Chemical Analysis (Combustion)

**EX 11.** Compound contains only C, H, N, O. Burning 1.261 g in excess O<sub>2</sub> produced 2.286 g  $CO_2$  and 0.5805 g water vapor. 0.364 g N<sub>2</sub> gas also collected. What is its empirical formula?  $[C = 12.011, H = 1.0079, N = 14.0067, O = 15.999; M_{CO_0} = 44.009; M_{H_0O} = 18.0148]$  $\{C, H, O, N\} \rightarrow CO_2 + H_2O + N_2$  $CO_2$ : (2.286 g  $CO_2$  / 44.009 g/mol) (1 mol C/1 mol  $CO_2$ ) = 0.05194 mol C 0.062389 g C  $H_2O$ : (0.5805 / 18.0148) (2 mol H/1 mol  $H_2O$ ) = 0.0644 mol H 0.06495 g H(0.364 / 14.007)  $N_2$ : = 0.02598 mol NO: 1.261 - (0.62389 + 0.06495 + 0.364)= 0.013 mol O 0.2081 g O C : H : N : O = 0.0519 : 0.0644 : 0.0259 : 0.013

3.99 : 4.96 : 2.00 :  $1.00 => C_4 H_5 N_2 O$ 

# **Chemical Equations**

"Nothing is created ... and it may be considered as a general principle that in every operation [reaction] there exists an equal quantity of matter before and after the operation ... It is on this principle that is Antoine Laurent de Lavoisier, 1785 founded all the art of per forming chemical experiments ..."

 $(\ell)$ 

*(s)* 



Lavosier's Law of Conservation of Mass - in a chemical reaction matter is neither created nor destroyed:

### **Chemical Equations**

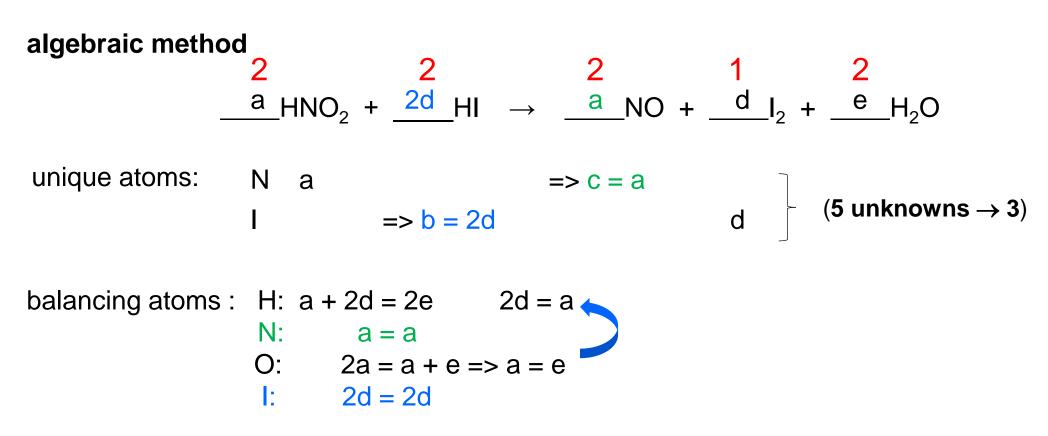
indicate the **physical state** 

$$\begin{aligned} \mathsf{HCI}(aq) + \mathsf{NaHCO}_3(s) &=> \\ \mathsf{NaCI}(aq) + \mathsf{CO}_2(g) + \mathsf{H}_2\mathsf{O}(l) \end{aligned}$$

The substance is in the gaseous state or vapor state. (g) The substance is in the liquid state. The substance is in a fluid state (either gas or liquid). (fl)The substance is in the solid state. The substance is crystalline. (cr)The substance is dissolved in water (in aqueous solution). (aq)(sln) The substance is in solution.

# **Conservation of Mass => Balance Equations**

by inspection


3 NaBr + 1 
$$H_3PO_4 \rightarrow$$
3 HBr + 1  $Na_3PO_4$ 

most complicated first

algebraic method

$$\underline{\mathbf{a}}_{HNO_2} + \underline{\mathbf{b}}_{HI} \rightarrow \underline{\mathbf{c}}_{NO} + \underline{\mathbf{d}}_{I_2} + \underline{\mathbf{e}}_{H_2O}$$

# **Conservation of Mass => Balance Equations**



so a = 2d = e; let d = 1 then a = 2a chemical equation requiring complicated algebraic manipulations is best solved by matrix methods d = 1e = 2

## **Stoichiometry** – Mass Relationship between Reactants and Products

## $2 C_5 H_{10}(I) + 15 O_2(g) \rightarrow 10 CO_2(g) + 10 H_2O(I)$

## LOTS OF INFORMATION

 $\begin{array}{l} 2\ C_5H_{10}\ \text{molecules}\ +\ 15\ O_2\ \text{molecules}\ \rightarrow\ 10\ \text{CO}_2\ \text{molecules}\ +\ 10\ \text{H}_2\text{O}\ \text{molecules}\\ 4\ C_5H_{10}\ \text{molecules}\ +\ 30\ O_2\ \text{molecules}\ \rightarrow\ 20\ \text{CO}_2\ \text{molecules}\ +\ 20\ \text{H}_2\text{O}\ \text{molecules}\\ 2N_{_0}\ C_5H_{10}\ \text{molecules}\ +\ 15N_{_0}\ O_2\ \text{molecules}\ \rightarrow\ 10N_{_0}\ \text{CO}_2\ \text{molecules}\ +\ 10N_{_0}\ \text{H}_2\text{O}\ \text{molecules}\\ 2\ \text{molecules}\ +\ 15N_{_0}\ O_2\ \text{molecules}\ \rightarrow\ 10\ \text{molecules}\ +\ 10\ \text{molecules}\ +\ 10N_{_0}\ \text{H}_2\text{O}\ \text{molecules}\\ 2\ \text{molecules}\ +\ 15N_{_0}\ O_2\ \text{molecules}\ \rightarrow\ 10\ \text{molecules}\ +\ 10\ \text{molecules}\ +\ 10N_{_0}\ \text{H}_2\text{O}\ \text{molecules}\\ 2\ \text{molecules}\ +\ 15\ \text{molecules}\ \rightarrow\ 10\ \text{molecules}\ +\ 10\ \text{molecules}\ +\ 10N_{_0}\ \text{H}_2\text{O}\ \text{molecules}\\ 140.268\ \text{g}\ C_5H_{10}\ +\ 479.97\ \text{g}\ O_2\ \rightarrow\ 440.09\ \text{g}\ \text{CO}_2\ +\ 180.148\ \text{g}\ \text{H}_2\text{O}\end{array}$ 

 $620.24 \text{ g} \rightarrow 620.24 \text{ g}$