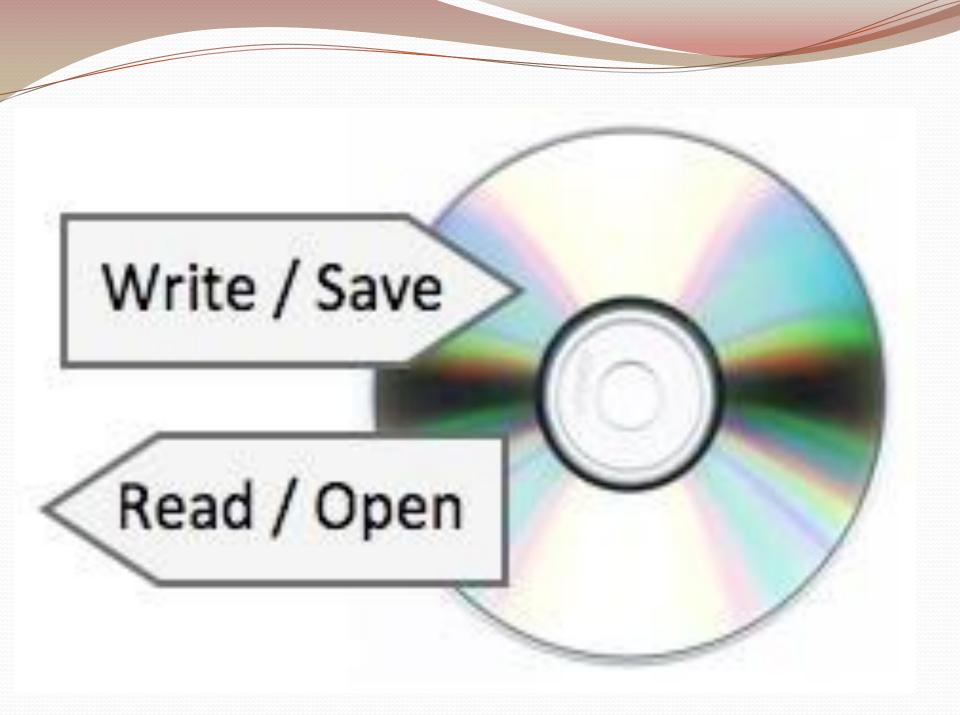
Module 3 Storage Devices and Media Page 36


OBJECTIVES

- describe common backing storage media and their associated devices:
 - magnetic tapes,
 - CDs (all types),
 - DVDs (all types),
 - DVD-RAM discs,
 - HD DVD discs,
 - Blu-Ray discs,
 - hard discs,
 - memory sticks,
 - flash memory
- identify **typical uses** of the storage media, including types of access (e.g. serial/sequential, direct/random) and access speeds;
- describe the comparative advantages and disadvantages of using different backing storage media;
- define the term backup and describe the need for taking backups;
- describe the difference between main/internal memory and backing storage, stating the relative benefits of each in terms of speed and permanence.

• What is the difference between read and write?

What is Data Storage?

- When we talk about 'storing' data, we mean putting the data in a known place. We can later come back to that place and get our data back again.
- 'Writing' data or 'saving' data are other ways of saying 'storing' data.
- 'Reading' data, 'retrieving' data or 'opening' a file are ways of saying that we are getting our data back from its storage location.

Backing Storage vs Main Memory

- Main memory (sometimes known as internal memory or primary storage) is another name for RAM (and ROM).
- Main memory is usually used to **store data temporarily**. In the case of RAM, it is **volatile** (this means that when power is switched off all of the data in the memory disappears).
- Main memory is used to store data whilst it is being processed by the CPU. Data can be put into memory, and read back from it, very quickly

Memory is fast to access, but only holds data temporarily...

Backing Storage

- Backing storage (sometimes known as secondary storage) is the name for all other data storage devices in a computer: hard-drive, etc.
- Backing storage is usually non-volatile, so it is generally used to store data for a long time.

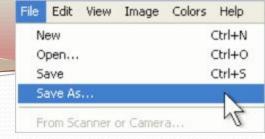
Backing storage devices are slower to access, but can hold data permanently...

Magmetic Tape

Storage Media & Devices

- The device that actually holds the data is known as the **storage medium** ('media' is the plural).
- The device that saves data onto the storage medium, or reads data from it, is known as the **storage device**.
- Sometimes the storage medium is a **fixed** (permanent) part of the storage device, e.g. the magnetic coated discs built into a hard drive
- Sometimes the storage medium is **removable** from the device, e.g. a CD-ROM can be taken out of a CD drive.

Which one is the device and which

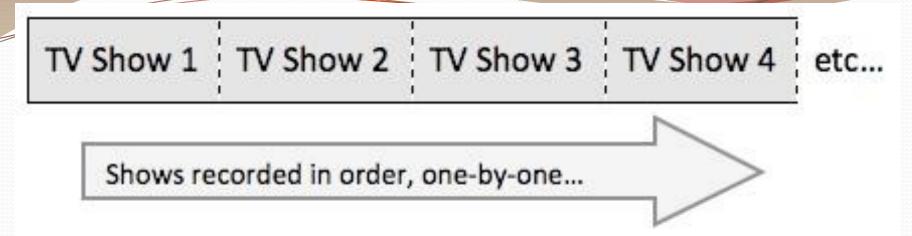


one is the media?

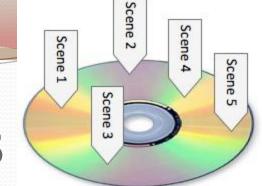
Media

Accessing Stored Data

- We refer to a collection of data stored in a computer system as a 'file'. Files are often organised into 'folders'.
- Whenever you click 'Save' in an application, burn files to a CD-R, copy music onto your MP3 player, or drag and drop a file onto memory stick, you are using storage devices - devices that can store and retrieve data.


2 ways of accessing stored data

- Serial/Sequential access
- Direct/Random access


Serial / Sequential Access

- A serial (or sequential) access storage device is one that stores files **one-by-one** in a sequence.
- A non-computer serial access device that will be familiar to you is a VHS videotape. Because video is stored on a long piece of tape, when TV shows are recorded onto the tape, they go on **one-by-one**, in **order**...
- Systems that store things on tape (video, music, computer data, etc.) are always serial access

• If you want to watch a show that you recorded earlier, you have to **rewind** / **fast-forward** through all other shows until you find it.

• The shows are only accessible in the **same order** that you recorded them. This type of one-by-one storage and access is called **serial access**.

Direct / Random Access

- A direct (or 'random') access storage device is one that stores files so that they can be **instantly accessed** there is no need to search through other files to get to the one you want.
- An example of a direct access device would be a DVD movie. Unlike the VHS videotape movie, you can jump to any scene on a DVD.
- aAll parts of the DVD are **directly** accessible. This type of file storage is called **direct access**.

750,000 Floppy Discs!

Data Storage Capacity

Floppy disc

CD-ROM

DVD

USB memory stick

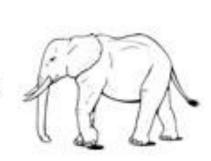
Backup tape

Hard drive

1.44MB

800MB

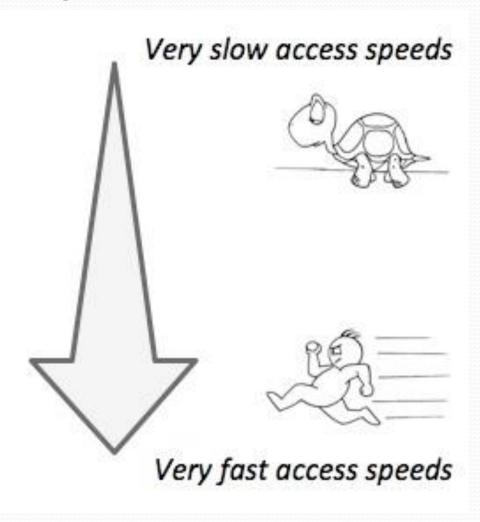
4.7GB = 4,700MB

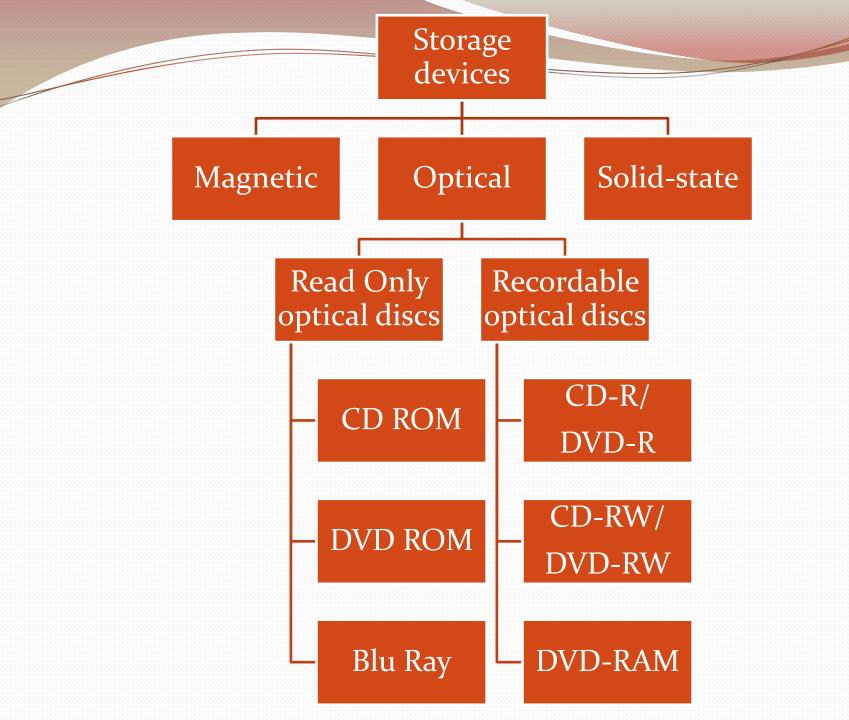

16GB = 16,000MB

800GB = 800,000MB

1TB = 1,000,000MB

Small data capacity




Huge data capacity

Data Access Speeds

 Some storage devices can access data very quickly, whilst others are extremely slow...

Floppy disc drive CD-ROM drive DVD drive USB memory stick Backup tape drive* Hard drive

Magnetic Storage Devices / Media

- Why Magnetic?
- Magnetic storage media and devices store data in the form of tiny magnetised dots. These dots are created, read and erased using magnetic fields created by very tiny electromagnets.
- In the case of magnetic tape the dots are arranged along the length of a **long plastic strip** which has been coated with a magnetisable layer (audio and video tapes use a similar technology).
- In the case of magnetic **discs** (e.g. floppy disc or hard-drive), the dots are arranged in **circles** on the surface of a **plastic**, **metal or glass** disc that has a magnetisable coating.

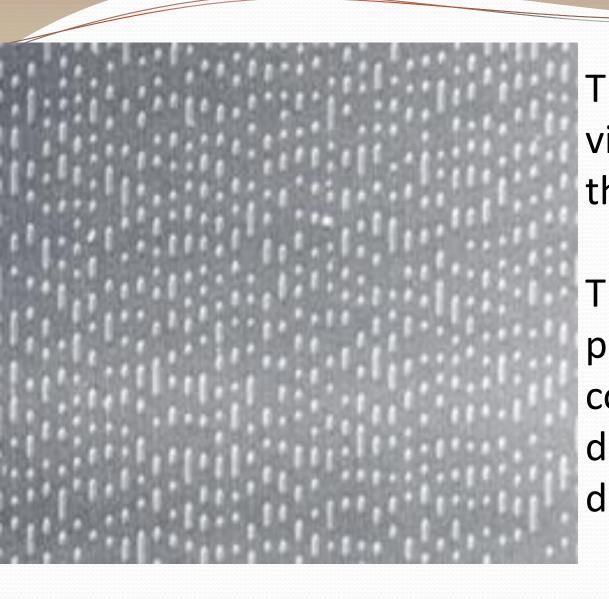
Hard Drives

- Hard-drives have a very large storage capacity (up to 1 TB). They can be used to store vast amounts of data.
- Hard-drives are random access devices and can be used to store all types of films, including huge files such as movies. Data access speeds are very fast.
- Data is stored inside a hard-drive on rotating metal or glass discs (called 'platters').

- A hard-drive **built into the case** of a computer is known as 'fixed'. Almost every computer has a fixed hard-drive.
- Fixed hard-drives act as the main backing storage device for almost all computers since they provide almost instant access to files (random access and high access speeds).

Portable Hard Drive

- A portable hard-drive is one that is placed into a small case along with some electronics that allow the harddrive to be accessed using a USB or similar connection.
- Portable hard-drives allow very large amounts of data to be transported from computer to computer.
- Many portable music players (such as the iPod classic) contain tiny hard-drives. These miniature devices are just not much bigger than a stamp, but can still store over 100MB of data!



Magnetic Tape

- Magnetic tape is a large capacity, serial access medium. Because it is a serial access medium, accessing individual files on a tape is slow.
- Tapes are used where large amounts of data need to be stored, but where quick access to individual files is not required. A typical use is for data back-up (lots of data, but rarely only accessed in an emergency)
- Tapes are also used and in some batch-processing applications (e.g. to hold the list of data that will be processed).

Optical Storage Devices / Media

- Why 'Optical'?
- Optical storage devices save data as patterns of dots that can be read using light. A laser beam is the usual light source.
- The data on the storage medium is read by bouncing the laser beam off the surface of the medium. If the beam hits a dot it is **reflected** back differently to how it would be if there were no dot. This difference can be detected, so the data can be read.
- Dots can be created using the laser beam (for media that is writable such as CD-Rs). The beam is used in a high-power mode to actually mark the surface of the medium, making a dot. This process is known as 'burning' data onto a disc

This is a magnified view of the dots on the surface of a CD.

The different patterns of dots correspond to the data stored on the disc.

Read-Only Optical Discs

- Read-only optical discs have data written onto them when they are manufactured. This data cannot be changed.
- CD-ROM
- Compact Disc Read-Only Memory (CD-ROM) discs can hold around 800MB of data. The data cannot be altered (non-volatile), so cannot be accidently deleted. CD-ROMs are random-access devices.
- CD-ROMs are used to distribute all sorts of data: software (e.g. office applications or games), music, electronic books (e.g. an encyclopaedia with sound and video.)

DVD-ROM

- Digital Versatile Disc Read-Only Memory (DVD-ROM) discs can hold around 4.7GB of data (a dual-layer DVD can hold twice that). DVD-ROMs are random-access devices.
- DVD-ROMs are used in the same way as CD-ROMs (see above) but, since they can hold more data, they are also used to store high-quality video.

High Capacity Optical Discs Blu-Ray

- Blu-Ray disks are a recent replacement for DVDs. A
 Blu-Ray disc can hold 25 50GB of data (a dual-layer
 Blu-Ray disc can hold twice that). Blu-Ray discs are
 random-access devices.
- Blu-Ray discs are used in the same way as DVD-ROMs but, since they can hold more data, they are also used to store very high-quality, high-definition (HD) video, movies and computer games.

HD DVD

- High-definition DVD (HD-DVD) discs can hold around 15GB of data (a dual-layer HD-DVD can hold twice that). HD-DVDs are random-access devices.
- HD-DVD discs are used in the same way as DVD-ROMs but, since they can hold more data, they are also used to store very high-quality, high-definition (HD) video.

Recordable Optical Discs

- Recordable optical discs can have data written onto them ('burnt') by a computer user using a special disc drive (a disc 'burner').
- When CD-Rs and DVD-Rs are burnt, the laser makes
 permanent marks on the silver-coloured metal layer.
 This is why these discs cannot be erased.
- When CD-RWs and DVD-RWs are burnt the laser makes marks on the metal layer, but in a way that can be undone. So these discs can be erased.

CD-R and DVD-R

 When CD-Rs and DVD-Rs are burnt, the laser makes permanent marks on the silvercoloured metal layer. This is why these discs cannot be erased.

CD-RW and DVD-RW

 When CD-RWs and DVD-RWs are burnt the laser makes marks on the metal layer, but in a way that can be undone. So these discs can be erased.

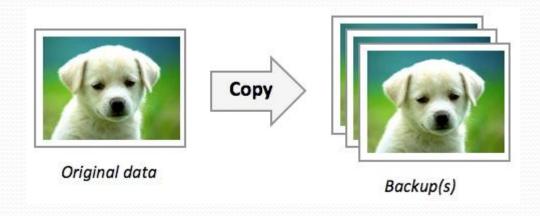
DVD-RAM

- DVD-Random Access Memory (DVD-RAM) discs are a type of re-writable DVD. They often come in a floppy-disc style case (to protect the disc).
- DVD-RAM discs have a similar capacity to a normal DVD, holding 4.7GB of data. DVD-RAM discs are randomaccess devices.
- DVD-RAM discs are used in many camcorders (video recording cameras).
- The discs are much higher quality than normal DVD-RWs and can reliably store data for up to 30 years. This means that they are often used for video and data back-up and archiving.

'Solid-State'?

- The term 'solid-state' essentially means 'no moving parts'.
- Solid-state storage devices are based on electronic circuits with no moving parts (no reels of tape, no spinning discs, no laser beams, etc.)
- Solid-state storage devices store data using a special type of memory called flash memory...
- Flash Memory
- Flash memory is **non-volatile** (like ROM) but the data stored in it can also be **erased** or **changed** (like RAM).
- Flash memory can be found in many data storage devices like USB memory sticks and Memory cards

- Memory sticks (or 'thumb-drives') have made many other forms of portable storage almost obsolete (why burn a CD or DVD when you can more easily copy your files onto a memory stick?).
- Memory sticks are non-volatile, random-access storage devices.
- Each of these small devices has some **flash memory** connected to a **USB interface**. Plug it into your computer and it appears as a drive. You can then add files, erase files, etc. You can use it to **move any type of file** between computers.
- Flash memory used to be very expensive, but in recent years it has become much **cheaper** and you can now buy a 16GB memory stick for just a few dollars.



- Many of our digital devices (cameras, mobile phones, MP3 players, etc.) require compact, non-volatile data storage.
 Flash memory cards provide this and come in a variety of shapes and sizes.
- One of the most common formats used by digital cameras is the SD Card. The cards store the digital images taken by the camera.
- Mobile phones contain a Subscriber Identity Module (**SIM**) card that contains the phone's number, the phonebook numbers, text messages, etc.
- Many phones also have extra memory cards to store music, video, photos, etc. (e.g Tiny Micro-SD cards).

What is a Backup?

- A backup simply means making one or more copies of your data.
- For example, if you have a folder of photos stored on the hard-drive of your laptop, you might back them up by copying them to a CD-R.

How Are Backups Created?

- Personal backups of the data on your hard-drive can be made by...
 - Burning files to a **CD-R**
 - Copying files to an external hard-drive
 - Copying the files to another computer on a network
- Businesses backup essential data by...
 - Making copies of data very regularly
 - Using large-capacity media such as magnetic tape
 - Keeping **old copies** of backups, just in case
 - Automating the system so that nobody forgets to do it!
 - Keeping backup media **off-site** (in case of fire or theft)