Stormwater

Calculations

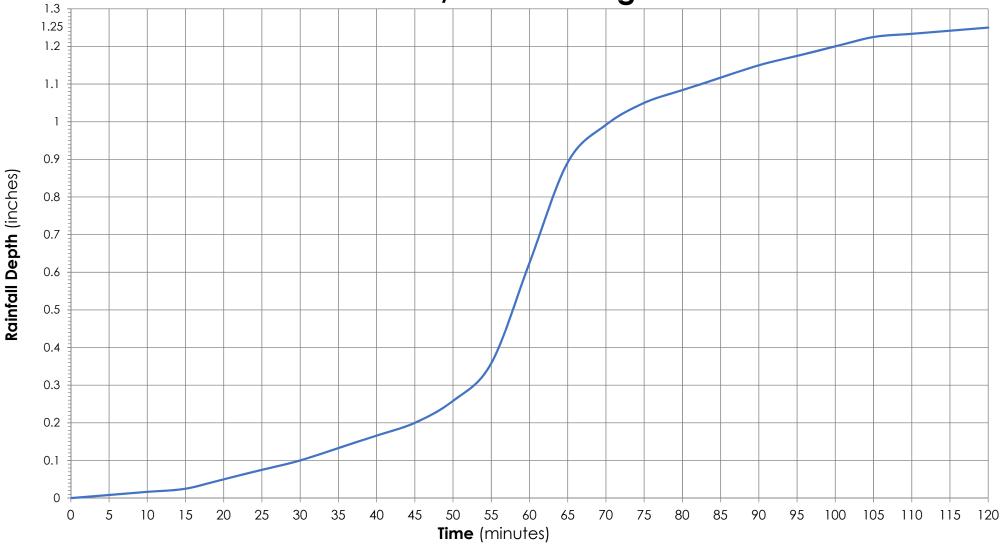
Lisa Schaefer NJDEP Division of Water Quality SWMDR Training Day 1 October 29, 2019

Presentation Goals

- Calculate the Time of Concentration (T_c)
- Calculate Peak Flow Rates Using the Rational Method
- Size a Basin Using the Modified Rational Method
- Use the NRCS Methodology (TR-55) (Peak Flow, Volume and Hydrographs)

Estimate Runoff with Models

N.J.A.C. 7:8-5.6(a)1: Stormwater runoff shall be calculated in accordance with the following:


- i. NRCS Methodology
 - Section 4, National Engineering Handbook (NEH-4) https://directives.sc.egov.usda.gov/OpenNonWebCon tent.aspx?content=43924.wba
 - Technical Release 55 ("TR-55") https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/s telprdb1044171.pdf
- ii. The Rational Method for peak flow and the Modified Rational Method for hydrograph computations

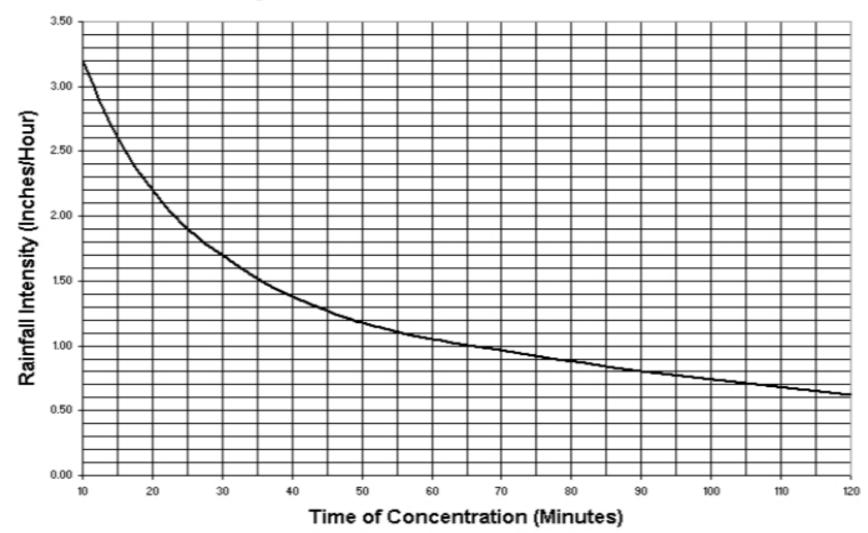
Compute stormwater runoff for:

- 1. Groundwater Recharge
- 2. Stormwater Quality
- 3. Stormwater Quantity

NJDEP Stormwater Water Quality Design Storm = 1.25-Inch/2-Hour Design Storm

Stormwater Quantity Control Design Storms Intensity-Duration-Frequency (IDF) Curve 180 240 ю.o 9.0 8.0 7.0 6.0 5.0 RAINFALL INTENSITY INCHES PER HOUR 4.0 30 2.5 2.0 1.5 1.0 0.9 0.8 0.7 0.6 RAINFALL FREQUENCY DATA, ANNUAL SERIES BASED ON: TRENTON, NEW JERSEY Q.5 DATA 1913 - 1975 0.4 0.3 10 15 20 60 90 120 180 240 30 45 DURATION OF STORM IN MINUTES

6


Stormwater Quantity Control Design Storms Intensity-Duration-Frequency (IDF) Curve 180 240 ю.o 9.0 8.0 7.0 6.0 5.0 RAINFALL INTENSITY INCHES PER HOUR 4.0 30 2.5 2.0 1.5 1.0 0.9 0.8 0.7 0.6 RAINFALL FREQUENCY DATA, ANNUAL SERIES BASED ON: TRENTON, NEW JERSEY Q.5 DATA 1913 - 1975 0.4 0.3 10 15 20 60 90 120 180 240 30 45

DURATION OF STORM IN MINUTES

7

NJDEP WQDS

1.25-Inch/2-Hour Water Quality Design Storm Rainfall Intensity-Duration Curve

Design Storms – Rainfall Data

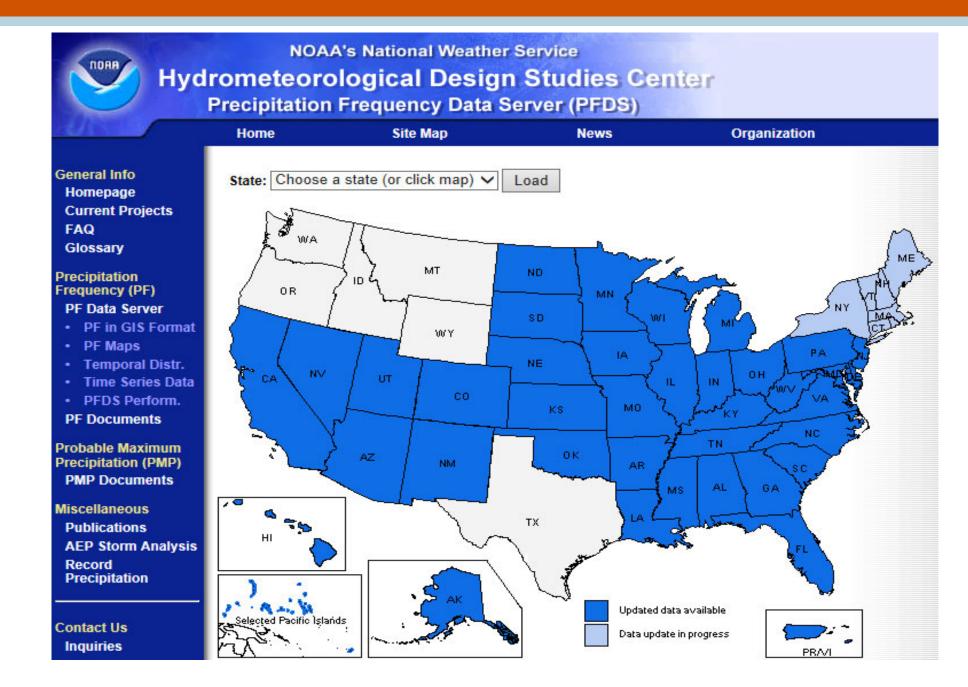
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs141p2_018235.pdf

For a specific county, rainfall depth from the New Jersey 24hour Rainfall Frequency Data :

NEW JERSEY 24 HOUR RAINFALL FREQUENCY DATA

Rainfall amounts in Inches

County	1 year	2 year	5 year	10 year	25 year	50 year	100 year
Atlantic	2.72	3.31	4.30	5.16	6.46	7.61	8.90
Bergen	2.75	3.34	4.27	5.07	6.28	7.32	8.47
Burlington	2.77	3.36	4.34	5.18	6.45	7.56	8.81
Camden	2.73	3.31	4.25	5.06	6.28	7.34	8.52
Cape May	2.67	3.25	4.22	5.07	6.34	7.47	8.73
Cumberland	2.69	3.27	4.25	5.09	6.37	7.49	8.76
Essex	2.85	3.44	4.40	5.22	6.44	7.49	8.66
Gloucester	2.71	3.29	4.24	5.05	6.29	7.36	8.55
Hudson	2.73	3.31	4.23	5.02	6.19	7.20	8.31
Hunterdon	2.80	3.38	4.26	5.00	6.09	7.02	8.03
Mercer	2.74	3.31	4.23	5.01	6.19	7.20	8.33
Middlesex	2.76	3.35	4.30	5.12	6.36	7.43	8.63
Monmouth	2.79	3.38	4.38	5.23	6.53	7.66	8.94
Morris	2.94	3.54	4.47	5.24	6.37	7.32	8.35
Ocean	2.81	3.42	4.45	5.33	6.68	7.87	9.20
Passaic	2.87	3.47	4.42	5.23	6.43	7.47	8.62
Salem	2.69	3.26	4.20	5.00	6.22	7.28	8.45
Somerset	2.76	3.34	4.25	5.01	6.15	7.13	8.21
Sussex	2.68	3.22	4.02	4.70	5.72	6.60	7.58
Union	2.80	3.39	4.35	5.17	6.42	7.49	8.69
Warren	2.78	3.34	4.18	4.89	5.93	6.83	7.82


Notes: The average point rainfall amounts listed above were developed from data contained in NOAA Atlas 14 Volume 2.

Point rainfall estimates for specific locations may be obtained from the Precipitation Frequency Data Server located at <u>http://www.nws.noaa.gov/ohd/hdsc/</u>

For most hydrologic design procedures, the rainfall amounts listed above may be rounded to the nearest tenth of an inch.

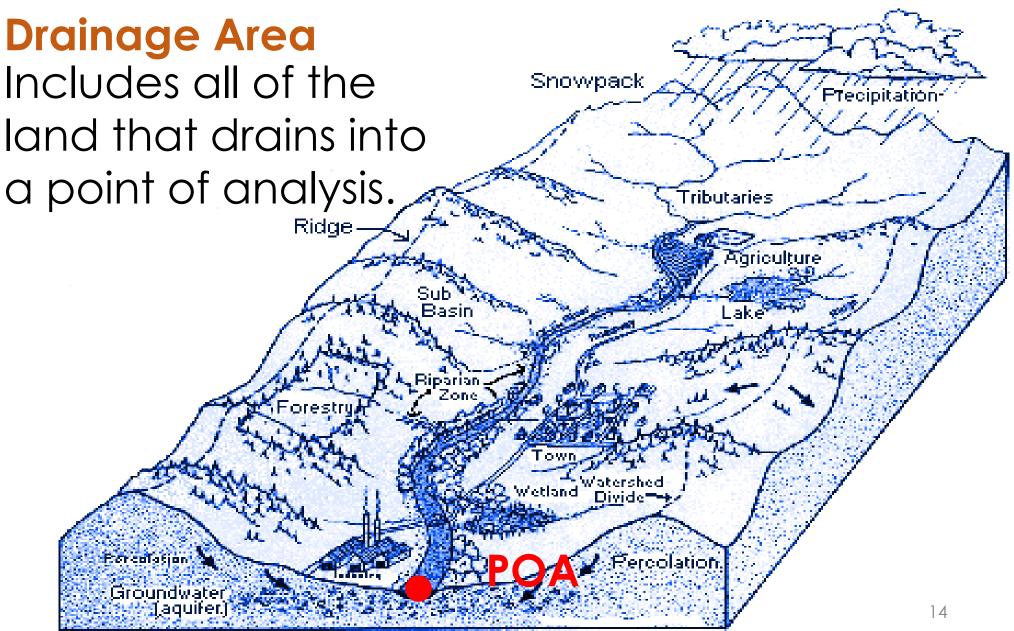
Design Storms – Rainfall Data

https://hdsc.nws.noaa.gov/hdsc/pfds/

Home	Site Map	News	Or	ganization
NOAA A	TLAS 14 POINT PRECIPIT	ATION FREQUENC	Y ESTIMATES: N	1J
Data description Data type: Precipitation intensity Select location	▼ Units: English ▼ Time series	type: Partial duration V		
1) Manually:				
The second se	s, use "-" for S and W): Latitude:	Longitude:	Submit	
b) By station (list of NJ statio	ns): Select station	T		
c) By address Search	2			
Map Terrain Pernsylvania State College Altoona Pernsylvania Terrison Union Harrisonburg	Allentown Eds tarrisburg Reading Philadiolphia New Jersey Attan Dover Attan	York New York	Providence Rhods New Bedford Island Of	a) Select location Move crosshair or double click b) Click on station icon Show stations on map Location information: Name: Columbus, New Jersey, USA* Latitude: 40.1000° Longitude: -74.7000° Elevation: 94.85 ft **
	S GTV			* Source: ESRI Maps ** Source: USGS

POINT PRECIPITATION FREQUENCY (PF) ESTIMATES

WITH 90% CONFIDENCE INTERVALS AND SUPPLEMENTARY INFORMATION NOAA Atlas 14, Volume 2, Version 3


PF tabular

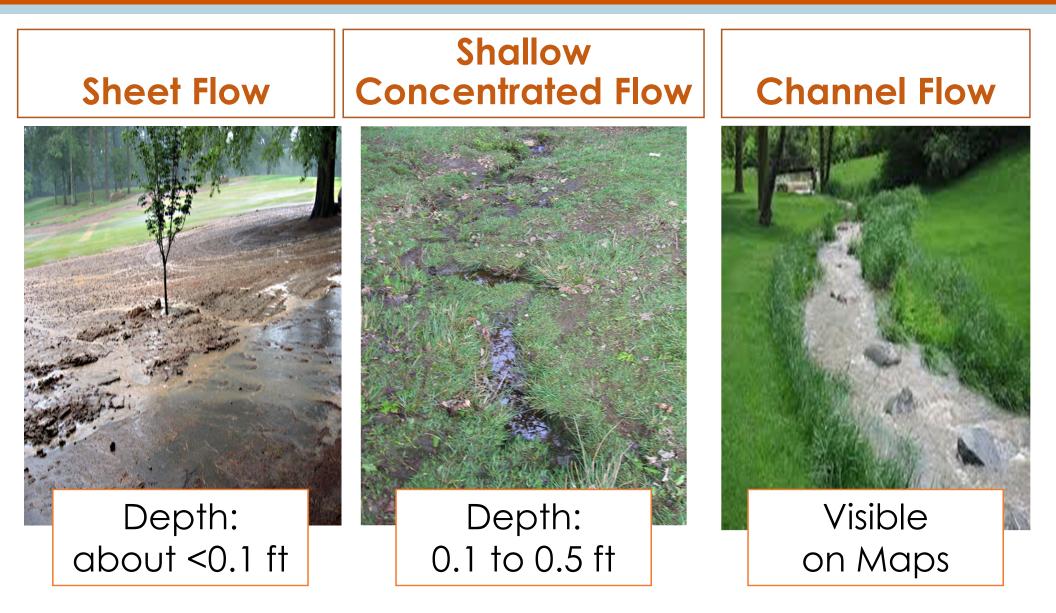
PF graphical

Supplementary information

	Average recurrence interval (years)						
Duration	1	2	5	10	25	50	100
5-min	4.16	4.97	5.90	6.59	7.43	8.05	8.66
	(3.79-4.57)	(4.52-5.46)	(5.36-6.48)	(5.96-7.24)	(6.70-8.15)	(7.21-8.84)	(7.74-9.54)
10-min	3.33	3.98	4.73	5.27	5.92	6.41	6.89
	(3.03-3.65)	(3.62-4.37)	(4.30-5.19)	(4.77-5.78)	(5.34-6.50)	(5.75-7.04)	(6.14-7.58)
15-min	2.77	3.33	3.99	4.44	5.00	5.41	5.80
	(2.52-3.04)	(3.04-3.66)	(3.62-4.38)	(4.02-4.88)	(4.51-5.49)	(4.85-5.94)	(5.18-6.39)
30-min	1.90	2.30	2.83	3.22	3.71	4.07	4.44
	(1.73-2.09)	(2.10-2.53)	(2.57-3.11)	(2.92-3.53)	(3.34-4.07)	(3.65-4.48)	(3.97-4.89)
60-min	1.19	1.44	1.82	2.10	2.47	2.76	3.06
	(1.08-1.30)	(1.32-1.59)	(1.65-1.99)	(1.90-2.30)	(2.22-2.71)	(2.48-3.03)	(2.73-3.37)
2-hr	0.718	0.875	1.11	1.29	1.53	1.73	1.93
	(0.652-0.791)	(0.794-0.964)	(1.00-1.22)	(1.16-1.41)	(1.37-1.68)	(1.54-1.90)	(1.71-2.13)
3-hr	0.524	0.639	0.810	0.943	1.13	1.28	1.44
	(0.475-0.580)	(0.580-0.707)	(0.732-0.896)	(0.850-1.04)	(1.01-1.25)	(1.14-1.41)	(1.27-1.59)

Calculate the Time of Concentration (T_c)

Produced by Lane Council of Governemetr


What Affects the T_c?

- Surface Roughness
- Channel shape and flow patterns
- Slope

- Runoff moves through a watershed as:
- 1. Sheet Flow,
- 2. Shallow Concentrated Flow,
- 3. Channel Flow or

A combination of these

Velocity Method:

$$T_{c} = \sum_{i=1}^{n} (T_{t-sheet flow_{i}} + T_{t-shallow conc flow_{i}} + T_{t-channel flow_{i}})$$

Sheet Flow:

$$\mathsf{T}_{\dagger} = \frac{0.007 \ (nL)^{0.8}}{(P_2)^{0.5} s^{0.4}}$$

- T_t = travel time (hr)
- $L = \text{length of sheet flow} (\leq 150 \text{ ft in length})$
- *n* = Manning's overland roughness coefficient
- $P_2 = 2$ -year, 24-hour rainfall (NJ Depth: 3.2 – 3.5 in)
- s = slope of hydraulic grade line (ft/ft)

Table 3-1

sheet flow

- TR-55, Chapter 3: Time of Concentration and Travel Time
- n = roughness coefficient for sheet flow
- 0.40 = max. roughness in NJ

Surface description	n <u>1</u> /
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2/	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods: ^{3/}	
Light underbrush	0.40
Dense underbrush	0.80

Roughness coefficients (Manning's n) for

¹ The n values are a composite of information compiled by Engman (1986).

- ² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.
- 3 $\,$ When selecting n , consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow. $\,$ 20

P_2 = 2-year, 24-hour rainfall

- 3.2 3.5 in. in NJ
- NOAA's National Weather Service
 - Precipitation
 Frequency Data
 Server (PFDS)
- NRCS County Rainfall

D (1)				
Duration	1	2	5	10
5-min	0.343	0.409	0.486	0.542
	(0.311-0.378)	(0.372-0.451)	(0.440-0.535)	(0.490-0.597)
10-min	0.548	0.654	0.779	0.867
	(0.497-0.603)	(0.595-0.721)	(0.705-0.857)	(0.784-0.954)
15-min	0.684	0.822	0.985	1.10
	(0.622-0.754)	(0.748-0.906)	(0.892-1.08)	(0.992-1.21)
30-min	0.938	1.14	1.40	1.59
	(0.853-1.03)	(1.03-1.25)	(1.27-1.54)	(1.44-1.75)
60-min	1.17	1.43	1.79	2.07
	(1.06-1.29)	(1.30-1.57)	(1.63-1.98)	(1.87-2.28)
2-hr	1.41	1.72	2.18	2.53
	(1.28-1.56)	(1.56-1.90)	(1.98-2.40)	(2.29-2.79)
3-hr	1.55	1.89	2.40	2.79
	(1.40-1.72)	(1.71-2.10)	(2.16-2.66)	(2.51-3.10)
6-hr	1.96	2.38	3.01	3.52
	(1.77-2.19)	(2.15-2.65)	(2.71-3.35)	(3.16-3.91)
12-hr	2.38	2.88	3.66	4.33
	(2.15-2.67)	(2.60-3.23)	(3.30-4.10)	(3.88-4.84)
24-hr	2.76	3.33	4.24	5.00
	(2.55-3.00)	(3.08-3.63)	(3.91-4.60)	(4.60-5.42)
2-day	3.19	3.86	4.91	5.78
	(2.94-3.48)	(3.56-4.22)	(4.51-5.36)	(5.29-6.31)

Shallow Concentrated Flow:

$$\mathsf{T}_{\dagger} (\mathsf{hr}) = \frac{L}{V * 3600}$$

- $T_t = travel time (hr)$
- L = flow length (ft)
- V = estimated velocity (ft/sec)

V = estimatedvelocity,

 $= 16.1345(s)^{0.5}$ for unpaved conditions

 $= 20.3282(s)^{0.5}$ for paved conditions,

where:

= slope of the S hydraulic grade line or watercourse slope, ft/ft

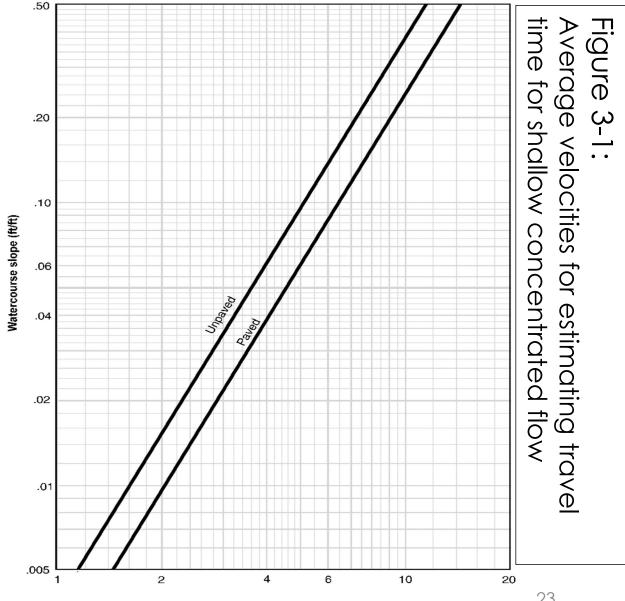
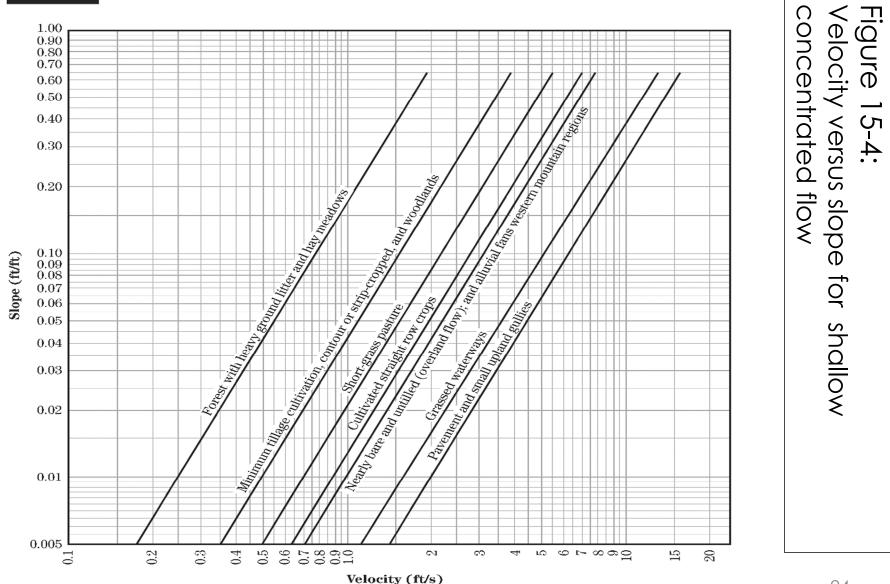



Figure 15–4 Velocity versus slope for shallow concentrated flow

Channel Flow:

$$T_{t}(hr) = \frac{L(n)}{3600(1.49R^{\frac{2}{3}}s^{0.5})}$$

- n = roughness coefficient for open channel flow
- L = length (ft)
- R = hydraulic radius of channel (ft)
 - $=\frac{a}{p_w}$, where a = cross sectional flow area (sf)

 p_w = wetted perimeter (ft)

s = channel slope (ft/ft)

Example Project

Developer wants to develop a 20 acre site:

Existing:

- Forested
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

Proposed:

- 100% impervious surfaces
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

What are the times of concentration of both the <mark>existing</mark> and proposed conditions on the site?

Calculate Existing T_c

- = Sum of all Travel Times for each Segment:
- Sheet Flow: $T_{\dagger}(hr) = \frac{0.007 \ (nL)^{0.8}}{(P_2)^{0.5} s^{0.4}}$
- Shallow Concentrated Flow:

$$T_{\dagger}(hr) = \frac{L}{V * 3600}$$

• Channel Flow:

 $T_{\dagger}(hr) = N.A.$

Existing Sheet Flow T_t

$$T_{t}(hr) = \frac{0.007 (50n)^{0.8}}{(P_{2})^{0.5} (0.005)^{0.4}}$$

- $L = 50 \, \text{ft}$
- $u = \dot{S}$
- $P_2 =$?
- *s* = 0.5% = 0.005 ft/ft

Existing roughness coefficient (n)

n = 0.40 (max. for woods)

Cable 3-1 Roughness coefficients (Manning's n sheet flow				
Surfa	ace description	n 1/		
Juiit		11 -		
Smooth surfa	aces (concrete, asphalt,			
gravel, o	r bare soil)	0.011		
Fallow (no re	esidue)	0.05		
Cultivated so	vils:			
Residue	cover ≤20%	0.06		
Residue	cover >20%	0.17		
Grass:				
Short gra	ass prairie	0.15		
Dense gi	rasses ² /	0.24		
	agrass	0.41		
	al)	0.13		
Woods:3/		\frown		
Light un	derbrush	(0.40)		
Dense u	nderbrush	0.80		

¹ The n values are a composite of information compiled by Engman (1986).

- ² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.
- ³ When selecting n , consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

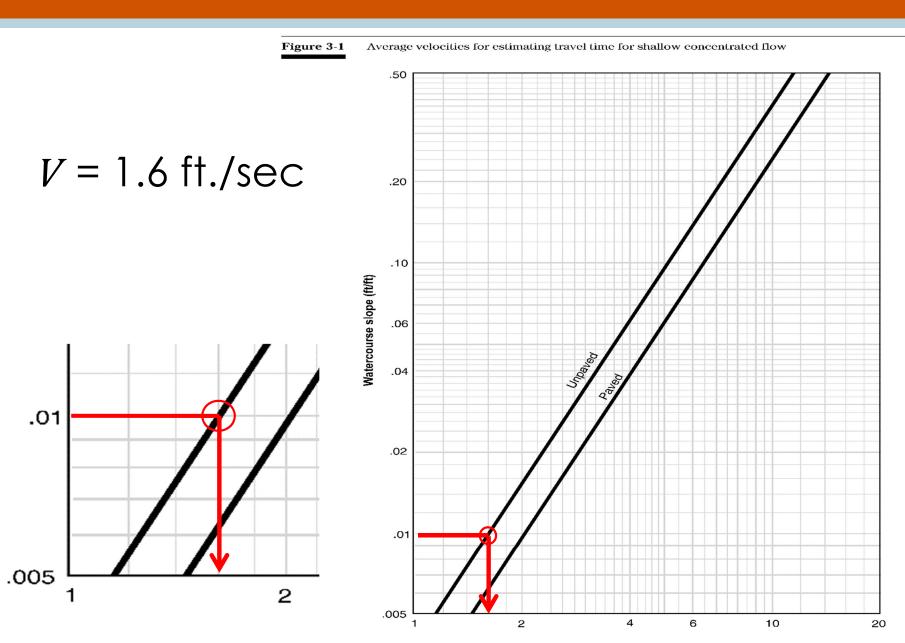
$P_2 = 2$ -year, 24-hour rainfall

$P_2 = 3.33$ inches

Duration				
Duration	1	2	5	10
E min	0.343	0.409	0.486	0.542
5-min	(0.311-0.378)	(0.372-0.451)	(0.440-0.535)	(0.490-0.597)
10-min	0.548	0.654	0.779	0.867
TU-min	(0.497-0.603)	(0.595-0.721)	(0.705-0.857)	(0.784-0.954)
15-min	0.684	0.822	0.985	1.10
15-min	(0.622-0.754)	(0.748-0.906)	(0.892-1.08)	(0.992-1.21)
30-min	0.938	1.14	1.40	1.59
30-min	(0.853-1.03)	(1.03-1.25)	(1.27-1.54)	(1.44-1.75)
60-min	1.17	1.43	1.79	2.07
ou-min	(1.06-1.29)	(1.30-1.57)	(1.63-1.98)	(1.87-2.28)
2-hr	1.41	1.72	2.18	2.53
2-11	(1.28-1.56)	(1.56-1.90)	(1.98-2.40)	(2.29-2.79)
3-hr	1.55	1.89	2.40	2.79
5-11	(1.40-1.72)	(1.71-2.10)	(2.16-2.66)	(2.51-3.10)
6-hr	1.96	2.38	3.01	3.52
0-111	(1.77-2.19)	(2.15-2.65)	(2.71-3.35)	(3.16-3.91)
12-hr	2.38	2.88	3.66	4.33
12-111	(2.15-2.67)	(2.60-3.23)	(3.30-4.10)	(3.88-4.84)
24-hr	2.76	3.33	4.24	5.00
24-111	(2.55-3.00)	(3.08-3.63)	(3.91-4.60)	(4.60-5.42)
2-day	3.19	3.86	4.91	5.78
2-uay	(2.94-3.48)	(3.56-4.22)	(4.51-5.36)	(5.29-6.31)

Existing Sheet Flow T_t

$$T_{t}(hr) = \frac{0.007 [50(0.40)]^{0.8}}{(3.33)^{0.5} (0.005)^{0.4}}$$


$T_{t}(hr) = .35 hr = 21 minutes$

Existing Shallow Concentrated Flow T_t

$$T_{t}(hr) = \frac{1000}{V * 3600}$$

L = 1000 ft V = ?

Existing estimated velocity (V)

Existing Shallow Concentrated Flow T_t

$$T_{t}(hr) = \frac{1000}{1.6 * 3600}$$

 $T_{t}(hr) = .17 hr = 10.5 min$

$T_c(min) = 21 + 10.5$

= 31.5 **min**

Proposed Sheet Flow T_t

$$T_{t}(hr) = \frac{0.007 (50(.011))^{0.8}}{(3.33)^{0.5} (0.005)^{0.4}} = .02 hr = 1.2 min$$

- $L = 50 \, \text{ft}$
- n = 0.011
- $P_2 = 3.33$ in
- s = 0.5% = 0.005 ft/ft

Proposed Shallow Concentrated Flow T_t

$$T_{t}(hr) = \frac{1000}{2.05 * 3600}$$
$$T_{t}(hr) = .14 hr = 8.5 min$$

 $L = 1000 \, \text{ft}$

 $V = 2.05 \, \text{ft/sec}$

Proposed T_C

$T_c(min) = 1.2 + 8.5$ = 9.7 min

Minimum T_c Allowed:

- Rational method = 10 min
- NRCS method = 6 min

TR 55 Worksheet 3: Time of Concentration (T _c) or Travel Time (T _t)					
Project: MS4 Reviewer Training	Designed By: AA	Date: 1/1/17			
Location: New Jersey	Checked By:	Date:			
Check one Present Developed					
Check one: T _c T _t through subarea					

NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

Sheet Flow (Applicable to T _c only)	Segment ID	AB		
1. Surface description (Table 3-1)				Shoot Flow T
2. Manning's roughness coeff., n (Table 3-1)		0.40		Sheet Flow T _t
 Flow length, L (total L ≤ 100 ft) 		50		
4. Two-year 24-hour rainfall, P2		3.3		
5. Land slope, s		0.005		
6. $T_t = 0.007 (nL)^{0.8}$ Compute T_t		0.35	+	= 0.35
P ₂ ^{0.5} s ^{0.4}				
Shallow Consistent Flow	Comment ID	5.0		(Shallow)
Shallow Concetrated Flow	Segment ID	BC		Concentrated
7. Surface description (paved or unpaved)		unpaved		Concentrated
8. Flow length, L		1.000		Flow T ₊
9. Watercourse slope, s		0.010		
10. Average velocity, V (Figure 3-1)		1.6		
	hr	0.17	+	= 0.17
3600 V				
Channel Flow	Segment ID			
12. Cross sectional flow area, a	ft ²			
13. Wetted perimeter, P _w				
14. Hydraulic radius, r = <u>a</u> Compute r				
P _w				
15. Channel Slope, s	ft/ft			
16. Manning's Roughness Coeff., n				т
17. $V = 1.49 r^{2/3} s^{1/2}$ Compute V	ft/s			I _C
n		L		Ŭ
18. Flow length, L	ft			
19. T _t = <u>L</u> Compute T _t	hr		+	=
3600 V 20. Watershed or subarea T_{c} or T_{t} (add T_{t} in step	s 6, 11, and 19			hr 0.52 40

TR 55 Worksheet 3: Time of C	concentration (T _c) or Travel Time	e (T _t)
Project: MS4 Reviewer Training	Designed By: AA	Date: 1/1/17
Location: New Jersey	Checked By:	Date:
Check one: Present / Developed		
Check one: V T _c T _t through subarea		

NOTES: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

Sheet Flow (Applicable to T _c only)	Segment ID	AB	
1. Surface description (Table 3-1)			Shoot Flow T
2. Manning's roughness coeff., n (Table 3-1)		0.01	Sheet Flow T _t
 Flow length, L (total L < 100 ft) 	ft	50	1
4. Two-year 24-hour rainfall, P2	in	3.3	
5. Land slope, s		0.005	
6. $T_t = 0.007 (nL)^{0.8}$ $P_2^{0.5} s^{0.4}$ Compute T_t	hr	0.02 +	= 0.02
Shallow Concetrated Flow	Segment ID	BC	Shallow
		50	Concentrated
7. Surface description (paved or unpaved)		paved	Concentrated
8. Flow length, L		1,000	Flow T ₊
9. Watercourse slope, s	ft/ft	0.010	
10. Average velocity, V (Figure 3-1)	ft/s	2.1	
11. T _t = <u>L</u> Compute T _t 3600 V	hr	0.14 +	= 0.14
Channel Flow	Segment ID]
12. Cross sectional flow area, a	ft²		1
13. Wetted perimeter, Pw	ft		
14. Hydraulic radius, r = a Compute r	ft		
Pw			
15. Channel Slope, s	ft/ft		
16. Manning's Roughness Coeff., n			T_
17. V = $1.49 r^{2/3} s^{1/2}$ Compute V	ft/s		'C
n			
18. Flow length, L			
19. $T_t = \underline{L}$ Compute T_t	hr	+	
3600 V 20. Watershed or subarea T _c or T _t (add T _t in steps	6, 11, and 19		. hr 0.16

Calculate **Peak Flow Rates** Using the **Rational Method**

Assumptions:

- Rainfall intensity is uniform over the drainage basin during the duration of the rainfall
- Maximum runoff rate occurs when the rainfall lasts as long or longer than the time of concentration
- The frequency for rainfall and runoff are equal

General Use:

- Used for relatively small drainage areas with uniform surface cover (≤20 acres)
- Used for urban areas
- Not applicable if areas of ponding occur
- Used only to estimate the peak runoff rate

Equation:

$$Q = ciA$$

- Q = peak flow(cfs)
- c = rational runoff coefficient (dimensionless)
- = average rainfall intensity (in/hr) i
- A = drainage area basin (acres)
- Rational method runoff coefficient (c) is a function of the soil type and drainage basin slope
- Table 10-4 in Section 10 of the Roadway Design Manual published by New Jersey Department of Transportation, available online at:

https://www.state.nj.us/transportation/eng/documents/RDM/docu ments/2015RoadwayDesignManual.pdf

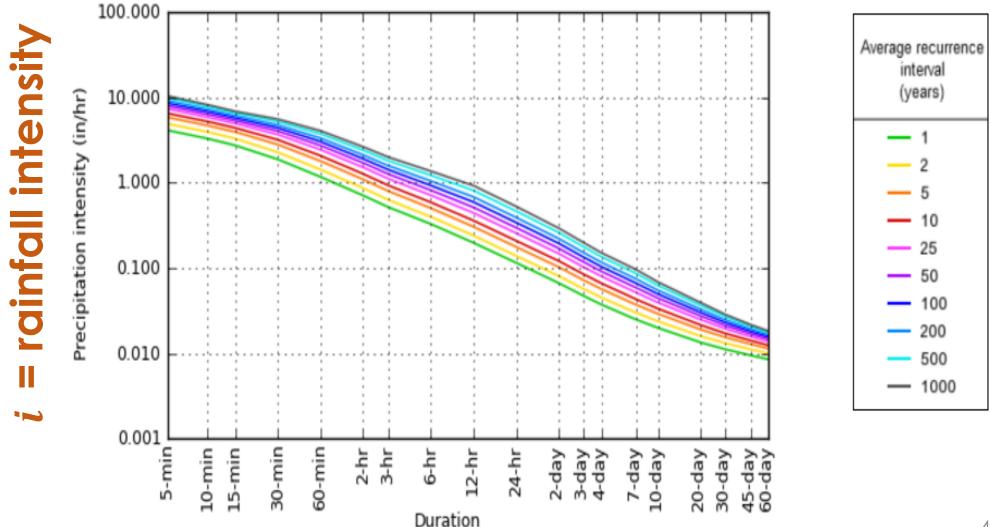
Rational Method Equation

c = rational runoff coefficient

		Rund	off Coet	fficient,	Ç	
	Soi	l Group	A	Soil Group B		
Slope :	< 2%	2-6%	> 6%	< 2%	2-6%	> 6%
Forest	0.08	0.11	0.14	0.10	0.14	0.18
Meadow	0.14	0.22	0.30	0.20	0.28	0.37
Pasture	0.15	0.25	0.37	0.23	0.34	0.45
Farmland	0.14	0.18	0.22	0.16	0.21	0.28
Res. 1 acre	0.22	0.26	0.29	0.24	0.28	0.34
Res. 1/2 acre	0.25	0.29	0.32	0.28	0.32	0.36
Res. 1/3 acre	0.28	0.32	0.35	0.30	0.35	0.39
Res. 1/4 acre	0.30	0.34	0.37	0.33	0.37	0.42
Res. 1/8 acre	0.33	0.37	0.40	0.35	0.39	0.44
Industrial	0.85	0.85	0.86	0.85	0.86	0.86
Commercial	0.88	0.88	0.89	0.89	0.89	0.89
Streets: ROW	0.76	0.77	0.79	0.80	0.82	0.84
Parking	0.95	0.96	0.97	0.95	0.96	0.97
Disturbed Area	0.65	0.67	0.69	0.66	0.68	0.70

Rational Method Equation

i = rainfall intensity


NOAA's National Weather Service

Precipitation Frequency Data Server (PFDS)

Duration	Average recurrence interval (years)						
Duration	1	2	5	10	25	50	100
5-min	4.12	4.91	5.83	6.50	7.34	7.96	8.56
	(3.73-4.54)	(4.46-5.41)	(5.28-6.42)	(5.88-7.16)	(6.60-8.08)	(7.12-8.75)	(7.62-9.44)
10-min	3.29	3.92	4.67	5.20	5.85	6.34	6.80
	(2.98-3.62)	(3.57-4.33)	(4.23-5.14)	(4.70-5.72)	(5.26-6.43)	(5.67-6.97)	(6.06-7.51)
15-min	2.74	3.29	3.94	4.39	4.94	5.35	5.73
	(2.49-3.02)	(2.99-3.62)	(3.57-4.34)	(3.97-4.83)	(4.44-5.44)	(4.78-5.88)	(5.10-6.32)
30-min	1.88	2.27	2.80	3.18	3.66	4.03	4.39
	(1.71-2.07)	(2.07-2.50)	(2.54-3.08)	(2.88-3.50)	(3.29-4.03)	(3.60-4.43)	(3.91-4.84)
60-min	1.17	1.43	1.79	2.07	2.44	2.73	3.02
	(1.06-1.29)	(1.30-1.57)	(1.63-1.98)	(1.87-2.28)	(2.19-2.68)	(2.44-3.00)	(2.69-3.33)
2-hr	0.707	0.862	1.09	1.27	1.51	1.70	1.90
	(0.642-0.781)	(0.782-0.950)	(0.988-1.20)	(1.14-1.39)	(1.35-1.66)	(1.52-1.87)	(1.69-2.10)
3-hr	0.517	0.630	0.798	0.929	1.11	1.26	1.42
	(0.467-0.574)	(0.570-0.699)	(0.720-0.886)	(0.836-1.03)	(0.995-1.23)	(1.12-1.40)	(1.25-1.58)

Rational Method Equation IDF Curve

PDS-based intensity-duration-frequency (IDF) curves Latitude: 40.2208°, Longitude: -74.7455°

Example Project

Developer wants to develop a 20 acre site:

Existing:

- Forested
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

Proposed:

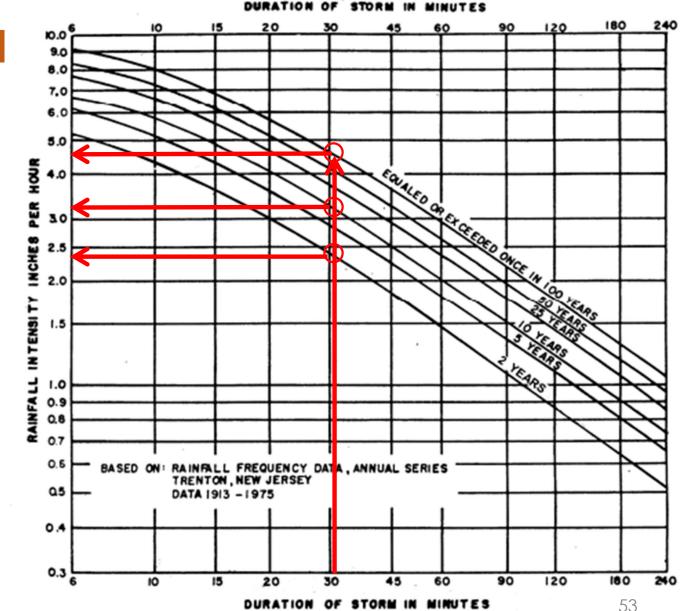
- 100% impervious surfaces
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

- 1. What is the **existing** peak runoff rate leaving the site for the 2-, 10- & 100-year storm events?
- 2. What is the proposed peak runoff rate leaving the site for the 2-, 10- & 100-year storm events?
- What is the peak runoff rate that is allowed to discharge from the developed site for the 2-, 10-, & 100-year storm events?

Use the Equation:

$$Q = \frac{ci}{A}$$

- C = S
- *i* = ?
- $A = 20 \, \mathrm{ac}$
- $T_{c} = 31.5 \text{ min}$


Existing condition rational runoff coefficient (c)

c = 0.08

ons	Runoff Coefficient, C						
	Soi	Soil Group A			l Group	В	
Slope :	< 2%	2-6%	> 6%	< 2%	2-6%	> 6%	
Forest	0.08	0.11	0.14	0.10	0.14	0.18	
Meadow	0.14	0.22	0.30	0.20	0.28	0.37	
Pasture	0.15	0.25	0.37	0.23	0.34	0.45	
Farmland	0.14	0.18	0.22	0.16	0.21	0.28	
Res. 1 acre	0.22	0.26	0.29	0.24	0.28	0.34	
Res. 1/2 acre	0.25	0.29	0.32	0.28	0.32	0.36	
Res. 1/3 acre	0.28	0.32	0.35	0.30	0.35	0.39	
Res. 1/4 acre	0.30	0.34	0.37	0.33	0.37	0.42	
Res. 1/8 acre	0.33	0.37	0.40	0.35	0.39	0.44	
Industrial	0.85	0.85	0.86	0.85	0.86	0.86	
Commercial	0.88	0.88	0.89	0.89	0.89	0.89	
Streets: ROW	0.76	0.77	0.79	0.80	0.82	0.84	
Parking	0.95	0.96	0.97	0.95	0.96	0.97	
Disturbed Area	0.65	0.67	0.69	0.66	0.68	0.70	

Existing rainfall intensity (i)=

- 100-year =
 4.5 in/hr
- 10-year =
 3.2 in/hr
- 2-year =
 2.4 in/hr

Existing rainfall intensity (i) = 2-year = 2.27 in/hr 10-year = 3.18 in/hr 100-year = 4.39 in/hr

Duration					Average recurren	ce interval (years)	
Duration	1	2	5	10	25	50	100
5-min	4.12	4.91	5.83	6.50	7.34	7.96	8.56
	(3.73-4.54)	(4.46-5.41)	(5.28-6.42)	(5.88-7.16)	(6.60-8.08)	(7.12-8.75)	(7.62-9.44)
10-min	3.29	3.92	4.67	5.20	5.85	6.34	6.80
	(2.98-3.62)	(3.57-4.33)	(4.23-5.14)	(4.70-5.72)	(5.26-6.43)	(5.67-6.97)	(6.06-7.51)
15-min	2.74 (2.49-3.02)	3.29 (2.99-3.62)	3.94 (3.57-4.34)	4.39 (3.97-4.83)	4.94 (4.44-5.44)	5.35 (4.78-5.88)	5.73 (5.10-6.32)
30-min	1.88	2.27	2.80	3.18	3.66	4.03	4.39
	(1.71-2.07)	(2.07·2.50)	(2.54-3.08)	(2.88-3.50)	(3.29-4.03)	(3.60-4.43)	(3.91-4.84)
60-min	1.17 (1.06-1.29)	1.43 (1.30-1.57)	1.79 (1.63-1.98)	2.07 (1.87-2.28)	2.44 (2.19-2.68)	2.73 (2.44-3.00)	3.02 (2.69-3.33)
2-hr	0.707	0.862	1.09	1.27	1.51	1.70	1.90
	(0.642-0.781)	(0.782-0.950)	(0.988-1.20)	(1.14-1.39)	(1.35-1.66)	(1.52-1.87)	(1.69-2.10)
3-hr	0.517	0.630	0.798	0.929	1.11	1.26	1.42
	(0.467-0.574)	(0.570-0.699)	(0.720-0.886)	(0.836-1.03)	(0.995-1.23)	(1.12-1.40)	(1.25-1.58)

54

Existing Peak Flow Rates (cfs):

Q = ciA

2-year storm: Q = .08(2.27)(20) = 3.63 cfs

10-year storm: Q = .08(3.18)(20) = 5.08 cfs

100-year storm: Q = .08(4.39)(20) = 7.02 cfs

Proposed Peak Flow Rates (cfs):

Q = ciA

2-year storm: Q = .99(3.92)(20) = 78.2 cfs

10-year storm: Q = .99(5.20)(20) = 103.8 cfs

100-year storm: Q = .99(6.80)(20) = 135.7 cfs

Peak Flow Rate Comparison (Q)

	Peak Flow Rate (cfs)				
Design Storm	Existing Condition	Proposed Condition			
2-year	3.63	78			
10-year	5.08	104			
100-year	7.02	136			

Water Quantity Standard

What is the peak flowrate <mark>allowed</mark> to discharge from the developed site for the 2-, 10- and 100-year storms?

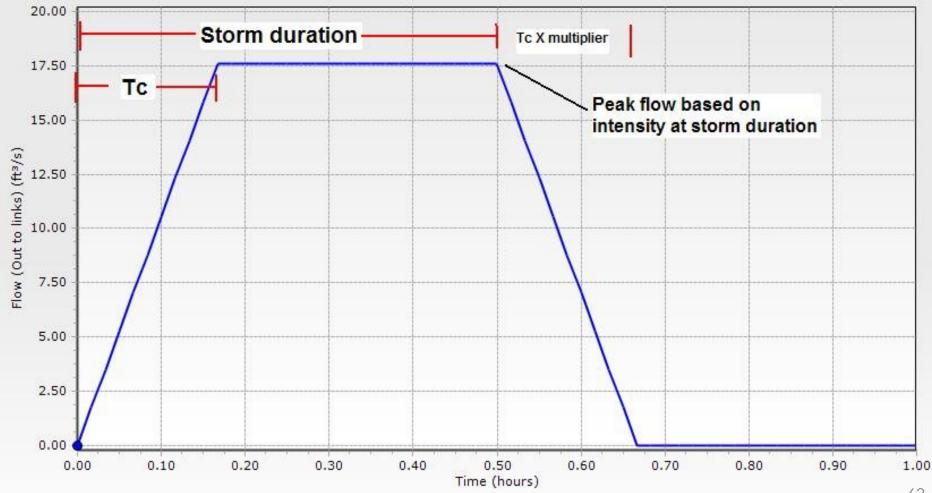
Water Quantity Standard

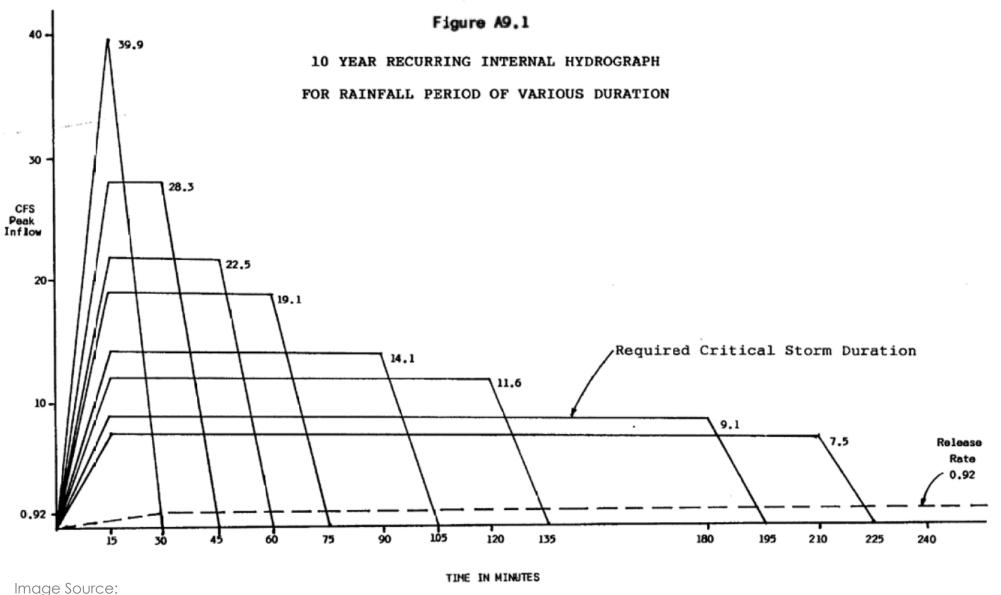
3rd Option (N.J.A.C. 7:8-5.4(a)3.iii):

Design stormwater management measures so that the post-construction peak runoff rates for the 2-, 10-, and 100-year storm events are 50, 75, and 80 percent, respectively, of the pre-construction peak runoff rates.

Water Quantity Standard

Allowable peak flow rates:


Design Storm	Reduction Ex. Pk. Factor x Flow =	•
2-year:	0.50 x 3.63 =	1.82 cfs
10-year:	0.75 x 5.08 =	3.82 cfs
100-year:	0.80 x 7.02 =	5.62 cfs


Size a Basin Using the Modified Rational Method

Major Differences from Rational Method:

- Calculates volume
- No longer assumes the storm duration is equal to the $\rm T_{\rm C}$
- Requires a flowrate leaving the basin to calculate critical storage volume

Hydrograph:

https://www.nj.gov/agriculture/divisions/anr/pdf/2014NJSoilErosionControlStandardsComplete.pdf

Example Project

Developer wants to develop a 20 acre site:

Existing:

- Forested
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

Proposed:

- 100% impervious surfaces
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

Use the Modified Rational Method to estimate the required detention volume (critical storage volume) to reduce the peak flow rate from the 100-year storm event to the allowable rate.

$T_c = 10 \text{ minutes}$ c = 0.99

Existing 100-year Peak Flow Rate (Q) = 7.02 cfs Allowable 100-year Peak Flow Rate (Q) = 5.62 cfs

Develop a Table

Α	B	С	D	E	F	G
Storm Duration (min)	Intensity (in/hr)	Inflow Rate (cfs)	Runoff Volume (cf)	Outflow Rate (cfs)	Outflow Volume (cf)	Storage Volume (cf)

Column A: Storm Duration

- Lowest Storm Duration = T_C
- Storm Duration Selection

Column B: Storm Intensity

- Storm Intensity Data
 using NOAA
- Intensities decrease with increased duration

Α	В
Storm Duration (min)	Storm Intensity (in/hr)
10	6.80
15	5.73
30	4.39
60	3.02
120	1.90
180	1.42
360	0.925
720	0.592

Column C: Inflow Rate

- Peak flow for each storm duration
- Q = ciA (rational method)
- For this example:
 c = 0.99 &
 A = 20 acres
- Q = (0.99 × 3.02 × 20) × = **59.8 cfs**

В	С
Storm Intensity (in/hr)	Inflow Rate (cfs)
6.80	134.6
5.73	113.5
4.39	86.9
3.02	59.8
1.90	37.6
1.42	28.1
0.925	18.3
0.592	11.7
	Storm Intensity (in/hr) 6.80 5.73 4.39 1.90 1.90 0.925

Column D: Runoff Volume

- Total runoff volume is area under the hydrograph
- Column D
 = Column A x Column C x 60
 = 10 x 134.6 x 60 = 80,760 cf

С	D
Inflow Rate (cfs)	Runoff Volume (cf)
134.6	80760
113.5	102150
86.9	156420
59.8	215280
37.6	270720
28.1	303480
18.3	395280
11.7	505440
	Inflow Rate (cfs)134.6134.6113.586.959.837.628.118.3

Column E: Outflow Rate

- 80% of the predevelopment peak flow rate
- Outflow rate is constant

E
Outflow Rate (cfs)
5.62
5.62
5.62
5.62
5.62
5.62
5.62
5.62

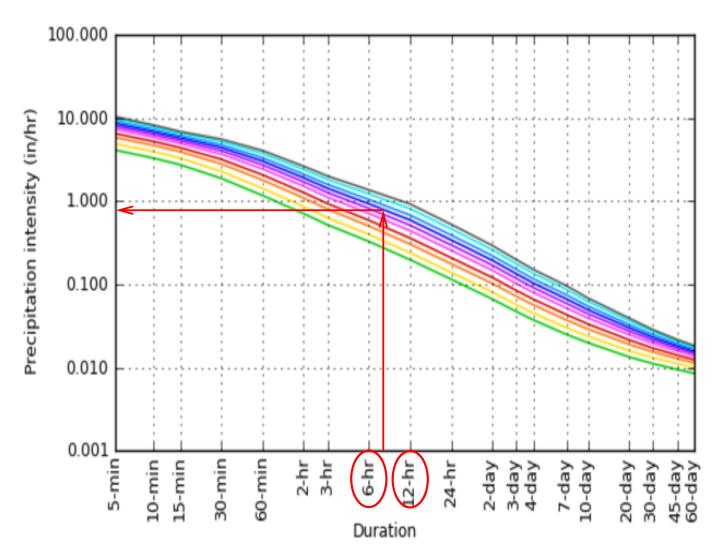
Column F: Outflow Volume

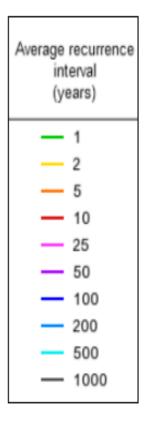
- At each storm duration how much volume is flowing out of the basin
- Column F
 = Column A x Column E x 60
 = 30 x 5.62 x 60 = 10,116 cf

E	F
Outflow Rate (cfs)	Outflow Volume (cf)
5.620	3372
5.620	5058
5.620	10116
5.620	20232
5.620	40464
5.620	60696
5.620	121392
5.620	242784
	Outflow Rate Rate (cfs) 5.620 5.620 5.620 5.620 5.620 5.620 5.620 5.620 5.620 5.620 5.620 5.620 5.620

Column G: Storage Volume	D	F	G
 How much must be stored? 	Runoff Volume (cf)	Outflow Volume (cf)	Storage Volume (cf)
Column G	80760	3372	77388
= Column D - Column F	102150	5058	97092
	156420	10116	146304
= 156,420 - 10,116= 146,304 cf	215280	20232	195048
	270720	40465	230255
	303480	60696	242784
	395280	121392	273888

Resulting Table:


Α	В	С	D	E	F	G
Storm Duration (min)	Storm Intensity (in/hr)	Inflow Rate (cfs)	Runoff Volume (cf)	Outflow Rate (cfs)	Outflow Volume (cf)	Storage Volume (cf)
10	6.80	134.6	80760	5.620	3372	77388
15	5.73	113.5	102150	5.620	5058	97092
30	4.39	86.9	156420	5.620	10116	146304
60	3.02	59.8	215280	5.620	20232	195048
120	1.90	37.6	270720	5.620	40465	230255
180	1.42	28.1	303480	5.620	60696	242784
360	0.925	18.3	395280	5.620	121392	273888
720	0.592	11.7	505440	5.620	242784	262656


Design Storage Volume Required:

Α	B	С	D	E	F	G
Storm Duration (min)	Storm Intensity (in/hr)	Inflow Rate (cfs)	Runoff Volume (cf)	Outflow Rate (cfs)	Outflow Volume (cf)	Storage Volume (cf)
10	6.80	134.6	80760	5.620	3372	77388
15	5.73	113.5	102150	5.620	5058	97092
30	4.39	86.9	156420	5.620	10116	146304
60	3.02	59.8	215280	5.620	20232	195048
120	1.90	37.6	270720	5.620	40465	230255
180	1.42	28.1	303480	5.620	60696	242784
360	0.925	18.3	395280	5.620	121392	273888
720	0.592	11.7	505440	5.620	242784	262656

Modified Rational Method – Further Evaluation:

PDS-based intensity-duration-frequency (IDF) curves Latitude: 40.2208°, Longitude: -74.7455°

Final Table:

Α	В	С	D	E	F	G
Storm Duration (min)	Storm Intensity (in/hr)	Inflow Rate (cfs)	Runoff Volume (cf)	Outflow Rate (cfs)	Outflow Volume (cf)	Storage Volume (cf)
360	0.925	18.3	395280	5.620	121392	273888
420	0.869	17.2	433440	5.620	141624	291816
480	0.813	16.1	463680	5.620	161856	301824
540	0.757	15.0	486000	5.620	182088	303912
600	0.701	13.9	500400	5.620	202320	298080
660	0.645	12.8	506880	5.620	222552	284328
720	0.592	11.7	505440	5.620	242784	262656

Use the NRCS Methodology (TR-55)

What can it calculate?

- Peak Runoff Rates
- Runoff Volumes
- Runoff Hydrographs

NRCS Runoff Equation (CN Equation):

$$Q(\text{in}) = \frac{(P - I_a)^2}{(P - I_a) + S}$$

- Q = depth of runoff
- P = rainfall depth (in)
- I_a = initial abstraction (in), losses before runoff begins, where I_a = 0.2S
- S = potential maximum retention after runoff begins, where $S = \frac{1000}{CN} - 10$

Simplified,

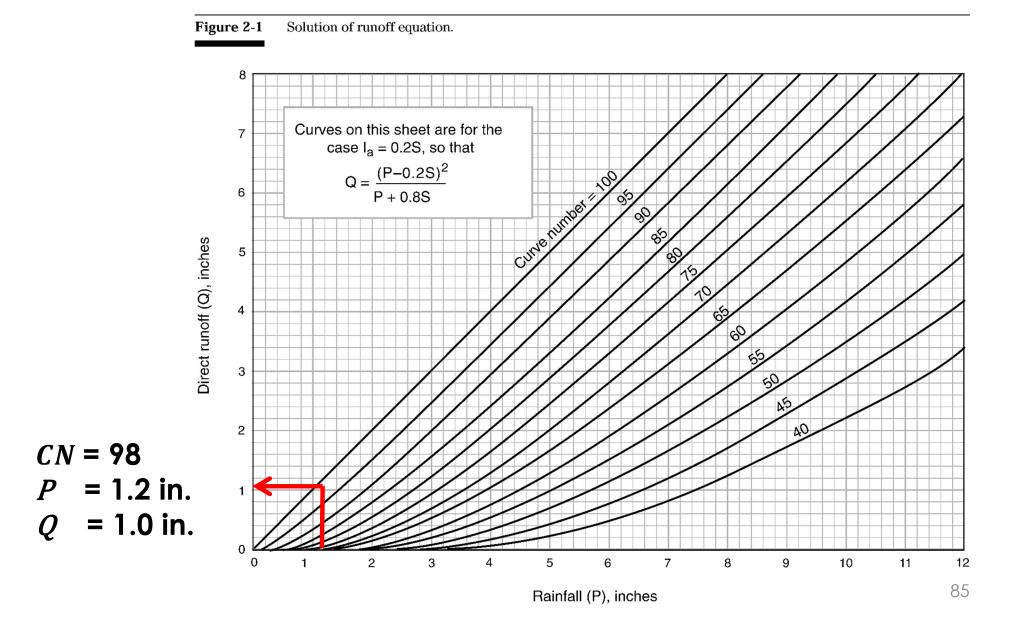
$$Q(\text{in}) = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Curve Numbers (CN):

- Hydrologic Soil Group (HSG)
- Land Cover

Hydrologic Soil Groups (HSG):*

- 'A' = Low runoff and high infiltration
- 'B' = Moderately low runoff and infiltration
- 'C' = Moderately high runoff and low infiltration
- 'D' = High runoff and very low infiltration


*When thoroughly saturated

Curve Number (CN)

Table 2-2a Runoff curve numbers for urban areas 1/

Cover description Average percer		Curve numbers for hydrologic soil group				
Cover type and hydrologic condition	impervious area 2/	А	В	С	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.)¾:					
Poor condition (grass cover < 50%)	2 · · · · · · · · · · · · · · · · · · ·	68	79	86	89	
Fair condition (grass cover 50% to 75%)			69	79	84	
Good condition (grass cover > 75%)			61	74	80	
Impervious areas:						
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)			98	98	98	
Streets and roads:						
Paved; curbs and storm sewers (excluding						
right-of-way)		98	98	98	98	
Paved; open ditches (including right-of-way)		83	89	92	93	
Gravel (including right-of-way)		76	85	89	91	
Dirt (including right-of-way)		72	82	87	89	

N.J.A.C. 7:8-5.6(a)2: Presume that the pre-construction condition of a site or portion thereof is a wooded land use with good hydrologic condition

Average CN vs. Separate CN:

• N.J.A.C. 7:8-5.6(a)4: In computing stormwater runoff from all design storms, the design engineer shall consider the relative stormwater runoff rates and/or volumes of pervious and impervious surfaces separately to accurately compute the rates and volume of stormwater runoff from the site.

Average CN vs. Separate CN (cont'd.):

- Due to the non-linear character of the equation and the presence of initial abstraction, averaging pervious and impervious CN can result in errors
- For the Water Quality Design Storm, 1 acre impervious with CN = 98 plus 2 acres grass lawn with CN = 65 generates runoff volumes as follows:
 - = 1,089 cf, when averaged
 - = 3,811 cf, when calculated separately & then added

Example Project

Developer wants to develop a 20 acre site:

Existing:

- Forested
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

Proposed:

- 100% impervious surfaces
- HSG 'A' soils
- 50 ft of sheet flow over an area with a 0.5% slope
- 1000 ft of shallow concentrated flow over an area with a 1% slope
- No channel flow occurs

Use the NRCS Method to calculate the volume generated by this site for the proposed condition during the Water Quality Design Storm.

Proposed Total Runoff Amount: $Q(in) = \frac{(P - 0.2S)^2}{(P + 0.8S)}$

$$Q = ?$$

$$P = 1.25 \text{ in (WQDS)}$$

$$S = \frac{1000}{CN} - 10$$

Curve Number (*CN***) = 98**

Table 2-2aRunoff curve numbers for urban areas 1/

Cover description			Curve numbers for hydrologic soil group			
Cover type and hydrologic condition	Average percent impervious area ⊉	Α	В	С	D	
Fully developed urban areas (vegetation established)	9/.					
Open space (lawns, parks, golf courses, cemeteries, etc.) Poor condition (grass cover < 50%)		68	79	86	89	
Fair condition (grass cover 50% to 75%) Good condition (grass cover > 75%)		$\frac{49}{39}$	$\begin{array}{c} 69 \\ 61 \end{array}$	$\frac{79}{74}$	84 80	
Impervious areas: Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)		98	98	98	98	

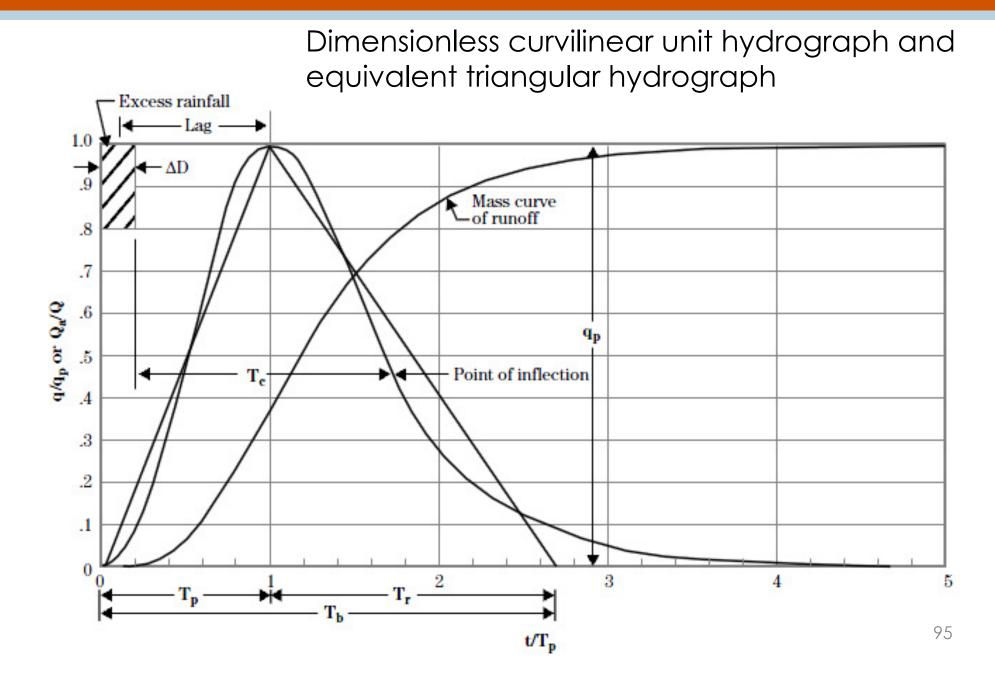
Proposed Total Runoff Amount: $Q(\text{in}) = \frac{(1.25 - 0.2\text{S})^2}{(P + 0.8\text{S})}$

$$P = 1.25$$
 in (WQDS)

$$S = \frac{1000}{CN} - 10 = \frac{1000}{98} - 10 = 0.204 \text{ in}$$

$$Q = \frac{(1.25 - 0.2(.204))^2}{(1.25 + 0.8(.204))} = 1.03 \text{ in}$$

Proposed Condition Runoff Volume:


$$V = QA$$

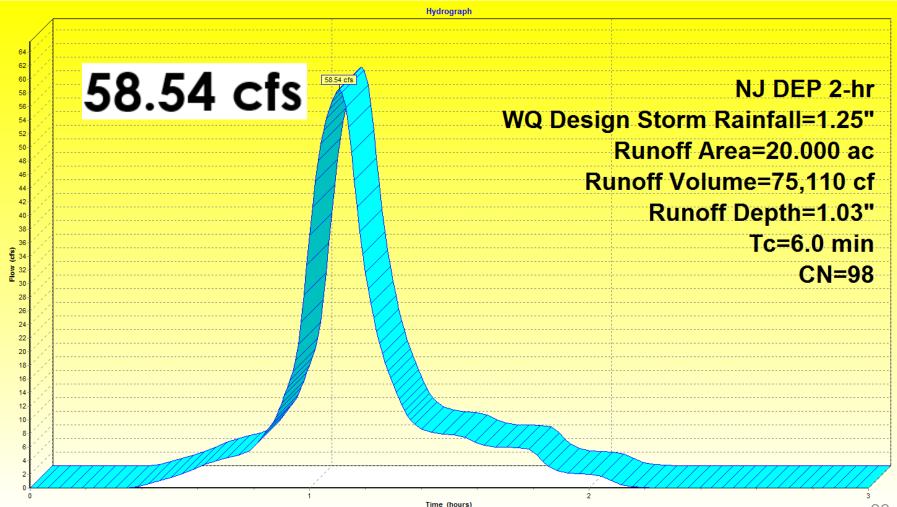
$$Q = 1.03 \text{ in } x - \frac{1 \text{ ft}}{12 \text{ in}}$$

 $A = 20 \text{ ac } x - \frac{43,560 \text{ sf}}{1 \text{ ac}}$

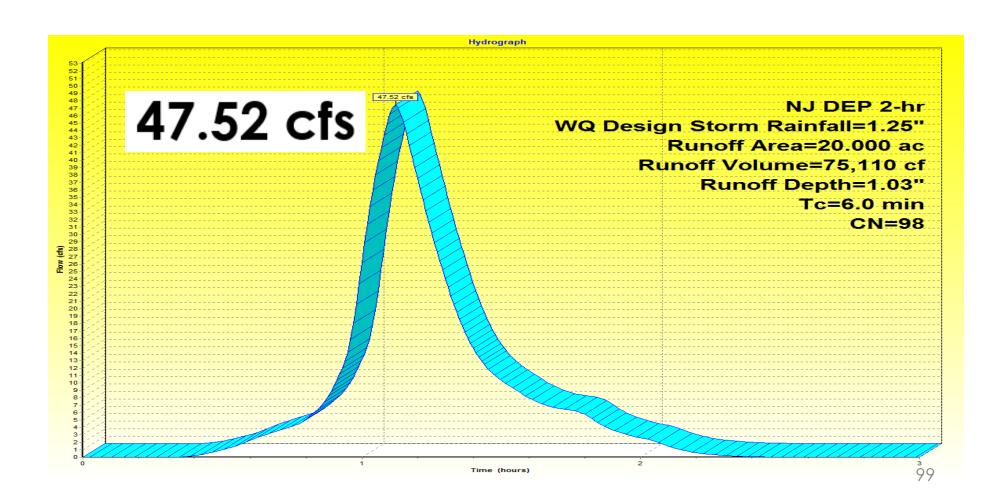
 $V = 74,778 \, \mathrm{cf}$

Synthetic Hydrographs:

- Developed for determining runoff hydrograph for ungauged watersheds
- Based on an average of natural watersheds with different sizes and geographic locations
- 2 are commonly used
 - o SCS
 - o DelMarVa


DelMarVa Dimensionless Unit Hydrograph

- Particularly suited for the flat, coastal areas in Delaware, Maryland, Virginia and New Jersey
- Not used in all areas of the coastal plain (i.e. redevelopment in coastal plains)


Unit Hydrograph Info:

- SCS
 - 484 peaking factor
 - o 37.5% of runoff in rising limb
- DelMarVa
 - 284 peaking factor
 - o 22% runoff in rising limb

SCS:

DelMarVa:

DelMarVa Dimensionless Unit Hydrograph

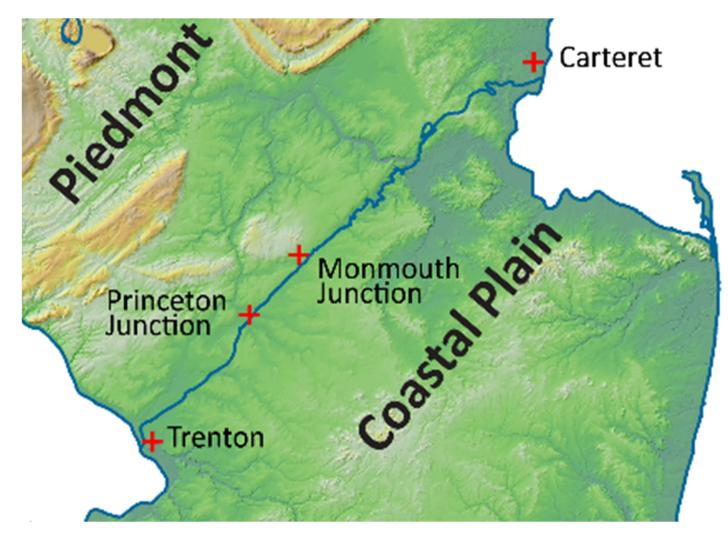
Physiographic

Provinces of

New Jersey

- Conditions for use
 - Watershed slope $\leq 5\%$
 - Coastal Plain physiography
 - o Land use is rural or agricultural
 - Significant storage in swales and depressions
 - Not heavily urbanized
 - No significant impervious cover

https://www.nj.gov/dep/stormwater/rainfalldata.htm


Imagery modified from New Jersey Geological Survey Information Circular, Physiographic Provinces of New Jersey, 2006

Elevation (feet)

DelMarVa Dimensionless Unit Hydrograph

Physiographic Provinces of New Jersey

Imagery modified from New Jersey Geological Survey Information Circular, Physiographic Provinces of New Jersey, 2006

More Information

Bureau of Nonpoint Pollution Control Division of Water Quality 401 East State Street PO Box 420, Mail Code 401-2B Trenton, NJ 08625-420 Tel: 609-633-7021 www.njstormwater.org

lisa.schaefer@dep.nj.gov