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ABSTRACT  

This paper provides a cost analysis case study to compare the effectiveness of using reinforced concrete versus steel 

as a construction material for conical tanks. Simplified design approaches, which were developed in previous 

investigations, are utilized to design a wide range of reinforced concrete conical tanks and steel counterparts having 

three different capacities (500 m3, 1750 m3 and 3000 m3). The cost analysis is conducted for each of the concrete and 

steel tanks. This analysis includes the cost of material, formwork, labour and life-cycle cost. Also, a general study of 

the effect of tank dimensions on the cost is provided. The results of this study show that steel conical tanks are 

considered as a more economical choice for medium and small capacity tanks, regardless their dimensions. On the 

other hand, for large capacity conical tanks (3000 m3), the tank dimensions govern which construction material 

(reinforced concrete or steel) is more cost effective.  

 

Keywords: Conical tanks; hydrostatic load, cost analysis, analysis of variance 

1. INTRODUCTION 

The vessels used for elevated liquid storage containers are commonly built in a conical shape, including pure conical 

tanks and conical-cylindrical combined tanks. The construction of conical tanks is dominated by using either steel, 

conventional reinforced concrete or partially pre-stressed concrete. The decision to select the most proper construction 

material for conical tanks depends on various factors: structural performance, material cost, life service, material 

availability and cost of labour works (Barry 2001). The main advantages of  reinforced concrete tanks over steel tanks 

are that they provide high resistance to compression stresses and have long service life (i.e. up to 50 years) compared 

to steel tanks (i.e. up to 20 years) (Cheremisinoff 1996). On the other hand, the main disadvantages of reinforced 

concrete tanks are related to the low tensile strength and the large thickness required to satisfy design requirements, 

which leads to a significant increase in their own weight. Despite the advantage of using reinforced concrete as a 

construction material for storage tanks, steel tanks are widely used in North America over the last 25 years. This is 

due to the fact that steel storage tanks are leak-free structures and they also provide high tension resistance and lighter 

own weight compared to reinforced concrete counterparts. The only concern about steel as a construction material is 

that it is sensitive to geometric imperfections, buckling, and corrosion problems.  

 

Choosing the most proper construction material, which leads to an economical design, is not an easy task as it involves 

many parameters. These parameters include: type of the structure, construction techniques, and life-cycle cost of 

construction material. In fact, there is a limited data in the open literature regarding the comparison between the cost 

of reinforced concrete conical tanks and steel counterparts. Few researches presented trials to minimize the cost of 

storage tanks; Saxena et al. (1987) presented a cost function which includes the cost of different construction materials 

(e.g. concrete and steel) and the cost of formwork. It was concluded in their study that more savings in cost can be 

achieved in case of large storage capacity tanks. Later on, Copley et al. (2000) presented the design and cost analysis 
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of a partially pre-stressed concrete conical tank having a storage capacity of 7570 m3. In their cost analysis, they 

showed that the cost of construction of the steel tank is more economical than that of the pre-stressed concrete 

counterpart. However, the life-cycle cost analysis, which was implemented in Copley`s work, showed that pre-stressed 

concrete is a better alternative in terms of long service life. 

  

Moreover, most of structural optimization techniques of conical tanks deal with minimizing the weight of the structure 

by achieving the minimum thickness, which satisfies design requirements (Kamal and Hoijat 1998; El Ansary et al. 

2010; El Ansary et al. 2011). Also, Barakat and Altoubat (2000) introduced optimization techniques, which were 

coupled with the finite element method in the analysis and design of reinforced concrete conical and cylindrical water 

tanks. They illustrated the effect of different parameters, including wall thickness at the base and at the top of the tank, 

base thickness, tank height, inclination angle and concrete compressive strength. It was concluded that the total cost 

of cylindrical tanks is about 18% - 40% more than that of the conical water tanks having the same inner volume.  

 

The main objective of this study is to investigate the economics of reinforced concrete conical tanks versus steel 

counterparts. This study considers only pure conical vessels having a constant thickness and subjected to hydrostatic 

loading as shown in Figure 1. The design of concrete tanks is conducted under the effect of hydrostatic load following 

the simplified approach presented by Azabi (2014), which complies with the requirements of the ACI350-06 (2006). 

On the other hand, the design of steel tanks was obtained by using the simplified approach provided by Sweedan and 

El Damatty (2009). The current cost study is based on an average unit prices for contractors working in Canada. It 

should be noted that these unit prices are variable depending on various factors such as site location, material 

availability, energy cost and others. A total of 51 tanks are chosen to cover a wide range of practical tank dimensions 

and are categorized into three capacities; 500 m3, 1750 m3, and 3000 m3. These tanks are designed first as reinforced 

concrete tanks then as steel tanks. The cost of each tank is estimated and a comparison is then conducted to analyze 

the economics of using the two construction materials (i.e. reinforced concrete and steel) for these tanks. Statistical 

analyses are also performed in order to evaluate the factors having the most significant effect on the cost of conical 

tanks. 

 

 
Figure 1: Typical pure conical tank 

2. DESIGN OF REINFORCED CONCRETE CONICAL TANKS UNDER HYDROSTATIC LOAD 

Design of reinforced concrete conical tanks includes many parameters; angle of inclination of tank’s wall, tank height, 

base radius, and wall thickness. In order to achieve an adequate design, it is essential to predict the maximum internal 

forces that include hoop tension acting in the circumferential direction and the meridional moment combined with the 

axial compression force acting in the longitudinal direction. Conducting this analysis needs modeling experience and 

knowledge about design steps. An alternative way is to rely on simplified design procedures which satisfy code 

provisions. In this study, a reliable simplified procedure proposed by Azabi (2014) was utilized in the design of 

reinforced concrete tanks. This approach includes certain design charts that were developed by modelling a wide 
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practical range of reinforced concrete conical tanks having different dimensions. All analyzed tanks were modelled 

using a degenerated consistent sub-parametric shell element developed in-house (Koziey and Mirza, 1997; El Damatty 

et al., 1997, 1998). 

  

The simplified design charts enable the designers to easily evaluate the required minimum thickness and the associated 

internal forces in both the circumferential and longitudinal directions. These forces are then employed to design for 

the required reinforcing steel. Consequently, the cost of the required construction material (i.e. reinforced concrete) 

can be estimated. The steps of the procedure involved in the design can be explained as follows: 

 

1. The tank dimensions (angle of inclination qv, base radius Rb, and tank height H) are chosen according to the 

required tank volume (i.e. capacity). It should be mentioned that specific capacity ranges are assumed in this study 

covering a practical range starting from 500 m3 up to 3000 m3.  

2. The design charts proposed by Azabi (2014) are then used to determine the minimum required thickness. By 

knowing the values of the base radius and the tank height, linear interpolation is applied to predict the minimum 

required thickness of the walls. 

3. A factor (Gf), which relates the tank dimensions to the internal forces that are developed in the tank wall due to 

hydrostatic pressure, is calculated using Equation 1. This factor is then used in the design charts to estimate the 

internal forces developed in the tanks’ walls due to un-factored hydrostatic pressure. The outputs of these charts 

include the maximum values of hoop tension, meridional moment and meridional compression.  

 

[1]   (Gf) =  
𝐻2

𝑡𝑚𝑖𝑛..(𝐶𝑜𝑠 𝜃𝑣)2  

 

The required circumferential reinforcement (Ash) is then calculated using Equation 2. 

 

[2]   𝐴𝑆ℎ =
𝑇𝑢

0.9×𝑓𝑦
 

 

Where Tu is the maximum factored hoop tension force magnified by the environmental durability factor Sd, (Tu = 

1.4 × Sd × T), where T is the service hoop tension obtained from step 3, fy is the steel yielding strength, and Sd is 

the environmental durability factor calculated from Equation 3 according to requirements of ACI350-06 (Design 

Considerations for Environmental Engineering Concrete Structures). 

 

[3]   Sd=
∅fy

γ fs
   

 

In Equation (3),  is the strength reduction factor, ( = 0.9) for both hoop tension and flexural members),            fy 

= 400 MPa is the steel yield strength, fs = 140 MPa is the allowable stress in normal environment, and               γ = 
factored load 

unfactorred load
  = 1.4 in case of hydrostatic pressure and dead loads. 

4. The area of longitudinal reinforcement (Asv) is calculated by performing sectional analysis and developing an 

interaction diagram showing section capacity under the combined meridional moment and meridional normal force 

following the ACI318-05.   

3. DESIGN OF STEEL CONICAL TANKS UNDER HYDROSTATIC LOAD 

Similar to reinforced concrete tanks, hydrostatic pressure acting on the walls of the steel tanks leads to tension hoop 

stresses (σh) that are acting in the circumferential direction and vary along the wall height. In addition, meridional 

compressive stresses (σm) that reach their maximum value at the base of the wall are acting in the meridional direction. 

Those stresses are magnified due to the effect of boundary conditions as well as geometric imperfections. Therefore, 

a magnification factor should be provided to relate the theoretical membrane stresses, which can be evaluated from 

static equilibrium of the shell to the actual maximum stresses acting on the wall. Sweedan and El Damatty (2009) 

developed a simplified procedure that can evaluate this magnification factor associated with the maximum stresses 

developed in the tank’s wall. Consequently, the wall thickness can be designed to prevent steel yielding. This 

simplified procedure is utilized in the current study to design the steel conical tanks under consideration according to 

the following steps: 
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1. The tanks’ dimensions (angle of inclination qv, base radius Rb, and tank height H) are chosen to be similar to the 

concrete tanks designed previously to keep storage capacities the same. For each tank, an initial value of the wall 

thickness (ts) is assumed taking into account that the minimum thickness is 6.4 mm according to AWWA-D100 

(2011) code provisions. 

2. From static equilibrium, the theoretical tensile hoop stress (𝜎ℎ
𝑡ℎ) and the theoretical meridional compression stress 

(𝜎𝑚
𝑡ℎ) are calculated from Equations 4 and 5, respectively. 

 

[4]   𝜎ℎ
𝑡ℎ =  

𝛾𝑤 𝐻 𝑅𝑏

𝑡𝑠 𝑐𝑜𝑠𝜃𝑣
  

 

[5]   𝜎𝑚
𝑡ℎ =  

𝛾𝑤 𝐻 𝑡𝑎𝑛𝜃𝑣

2 𝑅𝑏 𝑡𝑠 𝑐𝑜𝑠𝜃𝑣
[𝑅𝑏 𝐻 + 𝐻 𝑡𝑎𝑛𝜃𝑣(1

3⁄ 𝐻)] 

 

Where, γw is the specific weight of water. 

Based on the Von Mises yield criterion, the theoretical maximum effective membrane stresses (𝜎𝑙
𝑡ℎ) is calculated 

from Equations 6 to 9. 

 

[6]  𝜎𝑙
𝑡ℎ =  √

3

2
[(𝜎1)2 + (𝜎2)2 + (𝜎3)2]  

 

in which 

 

[7]  𝜎1 =  𝜎𝑚
𝑡ℎ − 

𝜎𝑚
𝑡ℎ− 𝜎ℎ

𝑡ℎ

3
  

 

[8]  𝜎2 =  𝜎ℎ
𝑡ℎ − 

𝜎𝑚
𝑡ℎ− 𝜎ℎ

𝑡ℎ

3
   

 

[9]   𝜎3 =  − 
𝜎𝑚

𝑡ℎ− 𝜎ℎ
𝑡ℎ

3
  

3. The magnification factor (𝛽) is then calculated from Equation 10. 

 

[10]  𝛽 =  𝑎 (
𝑅𝑏

𝐻
)

𝑏

+  𝑐 (
𝑡𝑠

𝐻
)

𝑑

+ 𝑒 (
𝑅𝑏

𝐻
)

𝑓

(
𝑡𝑠

𝐻
)

𝑔
(𝜃𝑣)ℎ  

 

Where, (a, b, c, d, e, f, g, h) are the regression factors that are given by Sweedan and El Damatty (2009). It should 

be mentioned that a good quality of welding of steel panels is assumed in the current study and regression factors 

for good conical shells are used in Equation 10. A yield stress of 300 MPa is assumed for all studied tanks.  

4. The total actual stress (𝜎𝑙) is then calculated by multiplying the magnification factor (𝛽) by the theoretical 

maximum effective membrane stresses ( 𝜎𝑙
𝑡ℎ) as shown in Equation 11. 

 

[11]  𝜎𝑙 =  𝛽 𝜎𝑙
𝑡ℎ 

 

5. The actual total stress is then compared to the yield strength of steel ( 𝜎𝑦 = 300 MPa ). The yield strength should 

be greater than the actual total stress. The procedure is repeated until the optimum thickness is achieved (i.e. 𝜎𝑙  ≅
 𝜎𝑦 ). 

 

4. COST ESTIMATION 

The total cost of the storage vessel of a tank is the summation of the cost of different parameters. This study focuses 

on the construction costs, which includes material, labour, erection and life-cycle costs. This section presents the 

details and methodology of analyzing the cost of each tank using two different construction materials (reinforced 

concrete and steel). 
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4.1 Construction cost estimation 

The cost of construction using each material (i.e. reinforced concrete and steel) is estimated to identify the most cost 

effective construction material for conical tanks. The cost of reinforced concrete, which includes labour works, is 

measured by concrete volume, the weight of steel rebar and the surface area of the formwork. For the cost of steel 

tanks, the material unit prices are presented by unit weight. The prices assumed in the current study are based on the 

average prices collected from local construction industry. 

4.1.1 Construction cost estimation for concrete tanks 

 The cost of materials and construction is estimated according to the volume of concrete and the reinforcing ratio 

of circumferential (i.e. horizontal) and longitudinal (i.e. vertical) steel as well as the surface area for the formwork 

(El Reedy 2011). Table 1 shows the unit prices for concrete considered in this study. The construction cost function 

is presented as the summation of the following parameters: 

 Cost of concrete = (Tank’s surface area × Wall thickness) × Cost of cubic meter of concrete. 

 Cost of reinforcement steel = Concrete volume × 7.85 
𝑡𝑜𝑛

𝑚3 × (𝜌𝑠ℎ+ 𝜌𝑠𝑣) × Cost of steel 
𝐶𝐴𝐷$

𝑡𝑜𝑛
 

Where 𝜌𝑠ℎ is the ratio of circumferential steel (𝜌𝑠ℎ =
𝐴𝑠ℎ

𝐴𝑐
), Ash is the area of circumferential reinforcement that is 

determined by using the simplified design charts provided by Azabi (2014). Referring to Equation 2, the area of the 

circumferential reinforcement can be calculated to be used in determining the ratio of circumferential steel. The ratio 

of vertical steel 𝜌𝑠𝑣 is always taken as (𝜌𝑠𝑣 = 1% of gross area of concrete). Based on the constructability aspects, the 

tank’s wall is assumed to have the same vertical reinforcement for external and internal sides. 

 Cost of formwork = Tank’s surface area × Cost of double face of formwork 

 Total cost (material + construction) per volume (
𝐶𝐴𝐷$

𝑚3  ) = Cost of concrete + Cost of reinforcement + Cost of 

formwork + Cost of labour 

Table 1: Unit price for reinforced concrete conical tanks 

Item description Unit 
Price 

(CAD$/Unit) 

1. Cost of materials   

 Pumped concrete with admixtures and air entraining agents. m3 255 

 Reinforcement steel M16/20. ton 1324 

 Impermeable plywood formwork double face. m2 266 

2. Cost of labour   

 Fabrication of wood and reinforcement steel and pouring 

concrete (per concrete volume). 

m3 45 

4.1.2 Construction Cost Estimation for Steel Tanks 

The cost of the designed steel tanks is estimated assuming the material unit cost for steel to be 3000 𝐶𝐴𝐷$

𝑡𝑜𝑛
. The 

construction and erection unit cost is taken as 30% of the total material cost, as stated by (EL Reedy 2011). The 

construction cost function is calculated as the summation of the cost of the following parameters: 

 Material cost = Material weight × Material unit cost  

= (Steel unit weight; 7.850  
𝑡𝑜𝑛

𝑚3  ) × (Wall thickness; ts) × (Tank surface area) × (Material unit cost; 3000  
𝐶𝐴𝐷$

𝑡𝑜𝑛
 ) 

 Total cost (material + construction) per volume (
𝐶𝐴𝐷$

𝑚3  ) = 
(𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 × 1.3) 

𝑣𝑜𝑙𝑢𝑚𝑒
 

4.2 Life-Cycle Cost Estimation 

In order to estimate the current cost of future maintenance and rehabilitation works, the present value analysis method 

is performed for all concrete and steel tanks for a service life of 50 years (El Reedy 2011). This method is widely used 

in construction applications and it also presents the future costs in today’s monetary taking into consideration the 

inflation and interest rates. It should be mentioned that for comparison purposes, the same period of life-cycle (i.e. 50 
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years) is chosen for both steel and concrete tanks. El Reedy (2011) provided an expression to calculate the value of 

maintenance and repairs required, as shown in Equation 12.  

 

[12]   Present Value = Repair Cost ×  (1 + 𝑚)(−𝑛) 

 

Where; m is the discount rate (m = 4%), and n is the number of years of each maintenance period. 

Based on the data collected from the local market, the maintenance cost of concrete tanks is assumed in the current 

study to be 89 
𝐶𝐴𝐷$

𝑚2  every 5 years while in case of steel tanks, it is recommended to cost 40 
𝐶𝐴𝐷$

𝑚2  at a period of 3 years. 

It is worth to mention that the operating cost is not taken as part of this study. 

5. RESULTS AND DISCUSSION 

This study includes 51 conical tanks having wide range of dimensions with different capacities; 500 m3, 1750 m3, and 

3000 m3. For illustration purposes, only 12 tanks out of the 51 studied tanks are presented. The dimensions of these 

twelve tanks are presented in Table 2. 

Table 2: Design and estimated cost of conical tanks (-) 

Capacity 

(m3) 
Tank # 

Rb 

(m) 
qv H (m) 

Section Design Cost (CAD$/m3) 

Concrete Steel 
Concrete Steel 

tc (mm) sh (%) ts (mm) 

500 

7 4 15 6.6 200 0.92 6.4 339 198 

9 4 45 4.15 200 0.91 6.4 363 212 

11 4.5 30 4.61 200 0.84 6.4 315 184 

13 5.5 15 4.3 200 0.82 6.4 275 161 

1750 

16 3 60 6.52 273 1.67 22 352 385 

21 4 45 8.02 241 1.69 13 276 220 

29 5.5 15 11.2 267 1.61 8.5 251 157 

34 6 30 7.92 233 1.66 8 230 142 

3000 

37 3 45 11.25 316 1.66 24.5 256 295 

41 4 45 10.31 333 1.57 20 251 248 

47 5.5 30 11.62 343 1.68 13 226 168 

49 5.5 60 6.78 407 2.09 22.5 311 312 

(-) The study included 51case studies. 12 tanks are presented in this table. 

(-) The vertical reinforcement for reinforced concrete tanks is always taken as 1% (0.5% from each side). 

 

The considered tanks are first designed as reinforced concrete and then as steel tanks according to the simplified design 

procedures mentioned earlier. The cost analysis is then conducted for all designed tanks as presented in Table 2. This 

table shows the design outputs and the total cost described as price per unit volume (i.e. CAD$ per m3) for each tank. 

The comparison between the cost of reinforced concrete conical tanks and steel counterparts is displayed in Figures 

2, 3, and 4 for tanks with volumes of 500 m3, 1750 m3, 3000 m3, respectively. Also, each figure categorizes the tank 

cost according to the base radiuses, where Rb is varying from 3 m to 6 m with an increment of 0.5 m. In the current 

study, only the cost of tanks having radiuses of 3 m, 4 m, 5 m, and 6 m are shown in these figures. Table 2 and Figure 

2 show that steel tanks are more cost effective than reinforced concrete for small capacity tanks, i.e. 500 m3 tanks. The 

average total cost of reinforced concrete conical tanks is estimated to be 338 
𝐶𝐴𝐷$

𝑚3 , which is approximately 1.7 times 

the cost of steel counterparts. 
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Figure 2: Cost analysis for tanks capacity 500 m3 (C: Concrete, S: Steel) 

 

For conical tanks having a volume of 1750 m3, it is concluded that steel tanks are more economical than reinforced 

concrete tanks. Figure 3 shows that the total cost of steel tanks is less than that of reinforced concrete tanks having the 

same dimensions. In general, steel tanks show less cost compared to reinforced concrete counterparts with a percentage 

of reduction varying between 4% and 39%. It can be noticed from the results that in only two cases the cost of steel 

tanks is found to be greater than that of reinforced concrete tanks. The reported percentage of increase for these two 

cases are 9 % and 2 % for tanks having walls inclined to the vertical with an angle of  60° and having base radiuses 

of 3 m, and 3.5 m, respectively. 

  

 
Figure 3: Cost analysis for tanks capacity 1750 m3 (C: Concrete, S: Steel) 

 

Based on the cost analysis of large capacity tanks (i.e. 3000 m3) as presented in Figure 4, it can be observed that in 

some cases concrete as a construction material is a more economical choice. Figure 4 shows that the cost of concrete 

tanks is less than steel for the case of wide conical tanks having walls inclined to the vertical with an angle greater 

than 45° and a base radius less than 4 m. Otherwise, steel provides a more economical choice for all conical tanks 

having 30° inclination angle and tanks with 45° walls and having a base radiuses of (4 m to 6 m). Based on the results 

reported for large capacity tanks, no clear trend can be reached in order to decide which construction material is the 

most cost effective one. 
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Figure 4: Cost analysis for tanks capacity 3000 m3 (C: Concrete, S: Steel) 

 

The results obtained from the cost analysis are evaluated statistically by using one way analysis of variance ANOVA 

for a single factor (Stamatis 2002). This analysis is conducted to assess the significance in the change of the cost from 

one case to another. Two different case studies are performed using ANOVA. The first case is conducted for reinforced 

concrete tanks and steel counterparts in order to study the variance in the cost function with the change of material 

type. In the second case of this study, ANOVA is employed to evaluate the effect of tank dimensions on its cost for 

each type of the studied tanks. 

 

As a result of the analysis of variance of the first case study, small capacity tanks show significant differences in cost 

due the difference in construction material (i.e. concrete and steel). It is found that for 500 m3 and 1750 m3 capacities, 

where (p-value  0.05) as presented in Table 3, the cost of steel conical tanks is significantly less than concrete 

counterparts. On the other hand, for large tanks having 3000 m3 capacity, there is no significant difference in cost (p-

value > 0.05). It can be stated that for large capacity tanks the effect of the type of construction material (steel or 

concrete) on the cost is negligible. 

Table 3: Effect of material type on cost of conical tanks; descriptive of ANOVA 

Tank Capacity (m3) Groups (1) Count (Tanks) Sum (2) Avg.(2) Variance P-value 

500 
C 14 4731 337.9 1794.6 4.85E-11 

S 14 2765 197.5 604.4  

1750 
C 22 6267 284.8 1748.0 0.0025 

S 22 5011 227.7 5201.2  

3000 
C 15 4067 271.1 1432.2 0.7128 

S 15 4208 280.5 8138.1  

(1) C: Concrete, S: Steel. 

(2) Sum: Summation in CAD$/m3. 

(3) Avg.: Average in CAD$/m3. 

For the second case study, ANOVA results, as presented in Table 4, show that regardless the type of the construction 

material, the effect of changing the inclination angle qv has a significant effect on the cost of the tanks. This is noticed 

for 1750 m3 and 3000 m3 capacities where p-values are less than 0.05. Therefore, increasing the inclination angle 

increases the cost of both concrete and steel conical tanks. It is also noticed that the change of the inclination angle in 

case of small capacity tanks (i.e. 500 m3) has a negligible effect on the cost (p-value  0.05). The reason of this 

negligible effect is that the minimum wall thickness governs the design of these small capacity tanks. Moreover, the 
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results show that the change in the base radius has a minor effect on the cost of conical tanks except in case of small 

capacity tanks (i.e. 500 m3).  

Table 4: P-Value of ANOVA – effect of tank dimensions on cost based on a significant level ( 

Tank Capacity (m3) 
Effect of θv Effect of Rb 

Concrete Steel Concrete Steel 

500 0.288133 0.326551 0.055180847 0.04254477 

1750 1.66E-09 1.12E-06 0.971745071 0.812747932 

3000 3.23E-10 0.000494 0.999773457 0.804062029 

6. CONCLUSIONS 

The current study presents a cost analysis to compare the effectiveness of using reinforced concrete versus steel as a 

construction material for conical tanks. In order to conduct this comparison, 51 conical tanks having different 

capacities (i.e. 500 m3, 1750 m3, 3000 m3) and different dimensions are designed first as reinforced concrete tanks and 

then as steel tanks. Two simplified design approaches that were developed in previous investigations are utilized in 

designing the studied tanks. The cost analysis conducted in this study includes the cost of materials, formwork, labour 

and life-cycle. At the end of the study, statistical analyses using one way ANOVA are conducted to study the 

significance of type of construction material on the cost function and to investigate the effect of dimension parameters 

on the cost for both reinforced concrete tanks and steel counterparts. The main conclusions of this study are listed 

below: 

 Compared to reinforced concrete, steel is a more cost-effective construction material for conical tanks with 

capacities of 1750 m3 or less. Steel tanks provide a reduction in the cost up to 42%, and 22% for 500 m3, and 1750 

m3, respectively. This conclusion can be generally applied for conical tanks having different dimensions except 

for those tanks with inclination angle 60° and base radiuses of 3 m and 3.5 m. 

 For 1750 m3 capacity conical tanks having dimensions of 60° inclination angle and base radius less than 4 m, 

reinforced concrete is considered to be more economical construction material compared to steel. 

 Cost analysis for conical tanks with 3000 m3 volume shows that concrete is more economical for tanks that have 

inclination angle of 60° and base radiuses of (3 m to 3.5 m). For all other studied cases, no general conclusion is 

reached. 

 ANOVA technique demonstrates that the angle of wall inclination has the main effect on the cost of conical tanks 

as increasing the wall inclination increases the cost. Moreover, tanks with angles of inclination 15° and 30° are 

found to be more economical than those with angles of 45° and 60° and having the same capacities. On the other 

hand, the change in the base radius has a slight effect on the cost function. The effect of the base radius is only 

noticed in case of small capacity (500 m3) tanks, where the increase in base radius leads to a slight reduction in 

cost.  

7. REFERENCES 

ACI 318. 2005. Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, 

Farmington Hills, MI, USA. 

ACI 350. 2006. Design Considerations for Environmental Engineering Concrete Structures. American Concrete 

Institute, Farmington Hills, MI, USA.  

AWWA D-100. 2011. Welded Carbon Steel Tanks for Water Storage. American Water Works Association, Denver, 

Colo., USA.   

Azabi, T. 2014. Behaviour of Reinforced Concrete Conical Tanks under Hydrostatic Loading. M.Sc. Thesis, Electronic 

Thesis and Dissertation Repository. Western University, London, ON. Canada, 140p. 

Barakat, A., and Altoubat, S.  2009. Application of Evolutionary Global Optimization Techniques in the Design of 

R.C. Water Tanks. Journal of Engineering Structures, 31 (2): 332-344. 



STR-860-10 

Barry, R. 2001. The Construction of Buildings. Blackwell Science Ltd, 4 (5), London, UK.  

Cheremisinoff, P. 1996. Advances in environmental control technology, storage tanks. Gulf Professional Publishing, 

Houston, Texas, USA. 

Copley, D., Ward, S. and Bannister, H. 2000. 2.0-Million Gallon Pre-Stressed Concrete Elevated Tank. Proceedings 

of the American Water Works Association Conference, AWWA 51525, Frankfort, Kentucky, USA. 

El Ansary, A.M., El Damatty, A.A. and Nassef, A.O. 2010. A Coupled Finite Element Genetic Algorithm Technique 

for Optimum Design of Steel Conical Tanks. Journal of Thin-Walled Structures, 48: 260-273.  

El Ansary, A.M, El Damatty, A.A and Nassef, A.O. 2011. A Coupled Finite Element Genetic Algorithm for Optimum 

Design of Stiffened Liquid-Filled Steel Conical Tanks. Journal of Thin-Walled Structures, 49 (4): 482-493.  

El Damatty, A., El Attar, M. and Korol, M. 1998. Inelastic Stability of Conical Tanks. Journal of Thin-Walled 

Structures, ASCE, 31: 343-359.  

El Damatty, A., Korol, R. and Mirza, F. 1997. Stability of Imperfect Conical Tanks under Hydrostatic Loading. 

Journal of Thin-Walled Structures, ASCE, 123 (6): 703-712.  

El Reedy, M. 2011. Construction Management and Design of Industrial Concrete and Steel Structures. Taylor & 

Francis Group. 

Kamal, C. and Hoijat, A. 1998. Cost Optimization of Concrete Structures. Journal of Structural Engineering, 124 (5): 

570-578.  

Koziey, B. and Mirza, F. 1997. Consistent Thick Shell Element. Journal of Computers and Structures, 65 (12): 531-

541. 

Saxena, S. and Mohan, C. 1987. Cost Optimization Of Intze Tanks On Shafts Using Nonlinear Programming. Journal 

of Engineering Optimization, 10 (4): 279-288.  

 Stamatis, H. 2002. Six Sigma and Beyond, Design of Experiments. CRC Press 4.  

 Sweedan, I. and El Damatty, A. 2009. Simplified Procedure for Design of Liquid-Storage Combined Conical Tanks. 

Journal of Thin-Walled Structures, 47 (6-7): 750-759. 




