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Functions and Graphs 
Functions and Graphs is worth 5 % to 16% of The Junior Cert. 

It appears on Paper 1. 

 

1) Understanding functions 
 

A function is a rule that produces one output for each input. 

 

For example, if I say “pick a number, then add 3, then multiply by 5”: 

If you start with an input of 10, then your output would be 65. 

If you start with an input of 6, your output would be 45. 

If you start with an input of 100, your output would by 515 

and so on. 

 
The set of inputs in called the ‘domain’. 

The set of outputs is called the ‘range’. 
 
The fancy way to write the above rule is: 

𝑓(𝑥) = 5(𝑥 + 3) 

         = 5𝑥 + 15 
Instead of using 𝑓(𝑥) =, we can use 𝑓: 𝑥 → or 𝑦 = 
 

Example 1 
If 𝑓(𝑥) = 3𝑥 − 7, find  

i) 𝑓(2) 
ii) 𝑓(0) 
iii) 𝑓(−8) 

 
i) Well, if 𝑓(𝑥) = 3𝑥 − 7 

=> 𝑓(2) = 3(2) − 7 
            = 6 − 7 

       = −1 
ii) Well, if 𝑓(𝑥) = 3𝑥 − 7 

=> 𝑓(0) = 3(0) − 7 
            = 0 − 7 

       = −7 
iii) Well, if 𝑓(𝑥) = 3𝑥 − 7 

=> 𝑓(−8) = 3(−8) − 7 
                  = −24 − 7 

         = −31 
 

Example 2 
If 𝑓(𝑥) = 6𝑥 − 4, solve 𝑓(𝑥) = 38.  
 
Now, be careful here, we aren’t asked for 𝑓(38), we’re actually being told 𝑓(𝑥) = 38 

=> 6𝑥 − 4 = 38 
     6𝑥 = 38 + 4 

6𝑥 = 42    

𝑥 =
42

6
 

𝑥 = 7   
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If there is more than one function in a question, the Examiner usually calls the second one 𝑔(𝑥) or 𝑔: 𝑥, although he can 

actually use any letter. 

Example 3 
f  and g are two functions such that 𝑓: 𝑥 → 𝑥2 + 2 and 𝑔: 𝑥 → 17 − 2𝑥.  
Find the values of x for which 𝑓(𝑥) = 𝑔(𝑥). 
 
Well, we’re told they’re equal, so we put them equal: 

𝑥2 + 2 = 17 − 2𝑥 
𝑥2 + 2𝑥 + 2 − 17 = 0 

𝑥2 + 2𝑥 − 15 = 0 
𝑎 = 1     𝑏 = 2     𝑐 = −15 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑥 =
−(2) ± √(2)2 − 4(1)(−15)

2(1)
 

𝑥 =
−2 ± √64

2
  

𝑥 =
−2 ± 8

2
 

𝑥 =
−2 + 8

2
        𝑜𝑟        𝑥 =

−2 − 8

2
 

𝑥 =
6

2
             𝑜𝑟        𝑥 =

−10

2
 

𝑥 = 3              𝑜𝑟          𝑥 = −5 
 

 

Example 4 

If 𝑓: 𝑥 → 1 +
2

𝑥
, , find the value of k if 𝑓 (

1

3
) = 𝑘𝑓(2) 

Solution 

1 +
2

1
3

= 𝑘 [1 +
2

2
]  

1 + 6 = 𝑘[1 + 1] 
7 = 𝑘[2] 
7 = 2𝑘    
7

2
= 𝑘     

 
 

Question 1.1 

𝑔(𝑥) = √5𝑥 − 2, 𝑥 ∈ ℕ. Find 𝑔(2). 

Give your answer in the form 𝑎√𝑎, 𝑎 ∈ ℕ. 
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Question 1.2 

Here is a number machine. 

          Input                    Add 5                    Multiply by 4                    Output 

a) Find the output when the input is 10 

 

b) Work out the input when the output is 28 

 

c) Work out the input when the output is -8  

 

d) Find an expression, in terms of x, for the output when the input is x. 
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Question 1.3 

If 𝑓(𝑥) = 𝑥2 + 3𝑥 − 7, show that the 𝑓(𝑥 + 1) + 3 = 𝑥2 + 5𝑥. 
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2) Graphing linear and quadratic functions 
 

Functions without squared things in them represent lines. These are called ‘linear functions’. 

For example 𝑓(𝑥) = 3𝑥 − 7 would represent a line and is called a linear function. 

Functions with squared things in them represent U or ∩ shaped curves. These are called quadratic functions. 

For example 𝑓(𝑥) = 𝑥2 + 2𝑥 − 3 would be U shaped and is called a quadratic function. 

𝑓(𝑥) = −𝑥2 + 2𝑥 − 3 would be ∩ shaped and can be called a quadratic function. 

How do I know if it’s U shaped or ∩ shaped?! 

Well, if the 𝑥2 is positive we get a happy face: U 

If the 𝑥2 is negative we get a sad face: ∩  

Example 1 

 
 
It’s handy to make out a table when you’re asked to work with numerous values. On a graph 𝑓: 𝑥 or 𝑓(𝑥) or 𝑔(𝑥) 
stand for y. 

X 𝒚 = −𝟐𝒙𝟐 + 𝟏𝟒𝟎𝒙  

0 𝑦 = −2(0)2 + 140(0) => 𝑦 = 0 

10 𝑦 = −2(10)2 + 140(10) => 𝑦 = 1200 
20 𝑦 = −2(20)2 + 140(20) => 𝑦 = 2000 
30 𝑦 = −2(30)2 + 140(30) => 𝑦 = 2400 

40 𝑦 = −2(40)2 + 140(40) => 𝑦 = 2400 
50 𝑦 = −2(50)2 + 140(50) => 𝑦 = 2000 
60 𝑦 = −2(60)2 + 140(60) => 𝑦 = 1200 
70 𝑦 = −2(70)2 + 140(70) => 𝑦 = 0 

Note: There is a shortcut way to create the above table on your calculator. However, students usually make 
mistakes so we will do it using the table as above. 
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Question 2.1 
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Question 2.2 

Let f be the function 𝑓: 𝑥 → 5𝑥 − 4 and g be the function 𝑔: 𝑥 → 3𝑥 + 1. Draw the graph of f and the graph of g,                    

for 0 ≤ 𝑥 ≤ 5, 𝑥 ∈ 𝑹. 
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3) Finding coefficients of functions 
 

One of the Examiners favourite Junior Cert questions is to give you a graph and ask you to find values. Just follow these 

steps: 

Step 1: Sub in the points given. 

Step 2: Do simultaneous equations 

Example 1 

 

 

 
Solution 
Now we know 𝑓: 𝑥 → 𝑥2 + 𝑏𝑥 + 𝑐 can be re-written as 𝑦 = 𝑥2 + 𝑏𝑥 + 𝑐. 
Step 1: We know two points on the graph: 

(−3, 0) 
0 = (−3)2 + 𝑏(−3) + 𝑐  

0 = 9 − 3𝑏 + 𝑐 

           3𝑏 − 𝑐 = 9     ① 
 

(1, 0) 
0 = (1)2 + 𝑏(−1) + 𝑐  

0 = 1 + 1𝑏 + 𝑐 

        𝑏 + 𝑐 = −1      ② 
 

Step 2: Now this is just an Algebra question where we can solve by using simultaneous equations: 

①        3𝑏 − 𝑐 = 9 

②          𝑏 + 𝑐 = −1 
                     4𝑏 = 8 

    𝑏 =
8

4
 

    𝑏 = 2 

Subbing back into ①: 
3(2) − 𝑐 = 9 
      6 − 𝑐 = 9 
     6 − 9 = 𝑐 
        −3 = 𝑐 
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Question 3.1 

Let 𝑓 be the function 𝑓: 𝑥 → 4𝑥2 + 𝑏𝑥 + 𝑐, 𝑥 ∈ ℝ and 𝑏, 𝑐 ∈ ℤ. 

The points (2, 6) and (−1, 0) lie on the graph of 𝑓, as shown in the diagram. 

 

Find the value of b and the value of c.  
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Question 3.2 
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4) Graphs crossing the x and y axes 
 

The Examiner can ask you where a graph crosses the x-axis or y-axis. 

Rule: On the x-axis: y = 0 

 On the y-axis: x = 0 

Note: Where a graph crosses the x-axis is known as the root(s) of the function. 

Example 1 

 

 

 
Solution 
Well, A and B are on the x-axis, so y = 0 

=> 0 = 𝑥2 − 2𝑥 − 8 
𝑎 = 1     𝑏 = −2     𝑐 = −8 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

𝑥 =
−(−2) ± √(−2)2 − 4(1)(−8)

2(1)
 

𝑥 =
2 ± √36

2
  

𝑥 =
2 ± 6

2
 

𝑥 =
2 + 6

2
        𝑜𝑟        𝑥 =

2 − 6

2
 

𝑥 =
8

2
             𝑜𝑟        𝑥 =

−4

2
 

     𝑥 = 4              𝑜𝑟          𝑥 = −2     
=> 𝐵 = (4, 0)         𝑎𝑛𝑑            𝐴 = (−2, 0)  

Note: You can just tell which one is which by looking at the diagram. 
Now, C is on the y-axis, so x = 0 

=> 𝑦 = (0)2 − 2(0) − 8 
 𝑦 = 0 − 0 − 8  

𝑦 = −8 
=> 𝐶 = (0, −8) 
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Question 4.1 

 

 

 

 

Note: If you’re asked where 2 graphs intersect simply put them equal to each other and tidy up the algebra to find the 

x-value (or values if there’s more than one intersection).To find the y-values, you simply sub the x-values you found 

back into either of the two functions. 
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Question 4.2 

 

    Find where the graph intersects the graph by: 

i) Reading your graph. 

ii) Using algebra. 

State one advantage and one disadvantage of each method. 
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Question 4.3 
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5) Maximum/minimum values 
 

The maximum (or minimum) value of a graph is the highest (or lowest) y-value. 

For example, in the following graph: 

 

… the minimum value is −4 (it has no maximum.) 

Note the way we talk about y-values here , not x-values. 

 

 

6) Increasing/ Decreasing functions 
 

A function is increasing when the graph is ‘going uphill’. 

A function is decreasing when the graph is ‘going downhill’ 

In the graph below: 

 

… the function is increasing from x = −1 to x = 2. 

The function is decreasing from x = −4 to x = −1. 

Note the way we talk about x-values here, not y-values. 
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7) One graph below the other 
 

If you were given the following graph: 

 

and asked where is 𝑓(𝑥) < 𝑔(𝑥)? 

This simply means: where is f(x) below g(x)? 

i.e.: Where is the curve below the line? 

The answer is “between x = −1 and x = 3.” 

The fancy way you might see this written is −1 < 𝑥 < 3, but you can just write it in words like we did above, as this gets 

full marks. 

 

What if you were asked where is f(x)<0? 

This simply means: where is f(x) lower than the x-axis? 

The answer is “between −3 and 2”, which can be written as −3 < 𝑥 < 2. 

Note: If you’re not sure whether to use < or ≤, just use what’s given in the question. 

 

 

  

g(x)  

f(x)  
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Question 7.1 

Write the range of the values of x for which  

i) 𝑔(𝑥) < 𝑓(𝑥) 

ii) 𝑓(𝑥) > 0 

 

 

  

g(x)  

f(x)  
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8) Axis of symmetry 
 

The axis of symmetry is simply a straight line that the graph could fold over onto itself. 

The Examiner can ask you to draw or write the equation of the axis of symmetry.  

For example, the straight line below shows the axis of symmetry: 

 

 

Question 8.1 

 

 

  

(−1, −4). 
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9) Quadratic real life graphs 
 

The Examiner loves to relate quadratic graph questions to real life. 

Example 1 

 
Solution 

a) We’re asked to find the width. 
Let’s call it y. 
Now, we’re told the perimeter is = 24metres 

=> 𝑥 + 𝑦 + 𝑥 + 𝑦 = 24  
2𝑥 + 2𝑦 = 24  
2𝑦 = 24 − 2𝑥  

𝑦 =
24 − 2𝑥

2
  

𝑦 = 12 − 𝑥 
 
 

b) (i)  Inner length = 𝑥 − 2 
     Inner width = 𝑦 − 2 

             = (12 − 𝑥) − 2 
             = 10 − 𝑥 

(ii) Area   = (𝑙𝑒𝑛𝑔𝑡ℎ)(𝑤𝑖𝑑𝑡ℎ) 
= (𝑥 − 2)(10 − 𝑥) 
= 10𝑥 − 𝑥2 − 20 + 2𝑥 
= −𝑥2 + 12𝑥 − 20 
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c) (i) 
x 𝒚 = −𝒙𝟐 + 𝟏𝟐𝒙 − 𝟐𝟎  

2 𝑦 = −(2)2 + 12(2) − 20 => 𝑦 = 0 
3 𝑦 = −(3)2 + 12(3) − 20 => 𝑦 = 7 
4 𝑦 = −(4)2 + 12(4) − 20 => 𝑦 = 12 
5 𝑦 = −(5)2 + 12(5) − 20 => 𝑦 = 15 

6 𝑦 = −(6)2 + 12(6) − 20 => 𝑦 = 16 
7 𝑦 = −(7)2 + 12(7) − 20 => 𝑦 = 15 
8 𝑦 = −(8)2 + 12(8) − 20 => 𝑦 = 12 

9 𝑦 = −(9)2 + 12(9) − 20 => 𝑦 = 7 
10 𝑦 = −(10)2 + 12(10) − 20 => 𝑦 = 0 

 

 
(ii) We’re asked to find the max possible area. But area =−𝑥2 + 12𝑥 − 20 (from part (b)) 
But 𝑓: 𝑥 → −𝑥2 + 12𝑥 − 20 (from part (c)) 
=> area = f:x 
But f:x is y 
=> area = y 
So, really, we’re being asked to find the max possible y-value. From the graph this is clearly 16. 
i.e.: max possible area = 16m2 
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Question 9.1 
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Question 9.2 
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10) Other real life graphs 
 

We meet ‘distance-time’ graphs in the Arithmetic chapter.  

However, the Examiner may use a different scenario. 

Example 1 

 
Solution  

i) We can see the temperature is 0 degrees after 6 minutes. 
ii) The temperature was -3 degrees at the start. At 10 minutes it was 2 degrees, so therefore the rise in the 

first 10 minutes was 5 degrees. 
iii) Here, we’re being asked to find a missing coefficient, so, according to Section 3, we must sub in a point 

on the graph. 
Now, there are loads of points we could pick, let’s just pick (6, 0), where 6 is the time (t) and 0 is the 
temperature (C) 

𝐶 =
1

2
(𝑡 + 𝑘) 

 0 =
1

2
(6 + 𝑘) 

× 2:    0 = 6 + 𝑘                  
−6 = 𝑘                 
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Question 10.1 
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Another type of potential exam question involves water filling containers. 

If I took two containers: 

 
… and I put a water hose in each of them. The height of the water in container 1 would increase far quicker than 

container 2: 

 

Now, the increase in height may not always be linear (a straight line) 

For example, the following shape: 

 

would have a graph like this: 

 

What about if you fill up a spherical flask: 

 

The graph for this would be: 

 

  



 
 

 

©The Dublin School of Grinds              Page 33  

Question 10.2 

The following shapes are all containers that are to be filled with water from a hose pipe. The water flows at a steady 

rate all of the time: 

 

Sketch a graph for each container, representing the height of the water over time 
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Question 10 .3 

For each graph of height versus volume/time below, sketch a container that could result in such a graph when filled at a 

constant rate. It may be that it’s not possible to match a container to some graphs – in which case you should explain 

why a match can’t be found.  
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11) Exponential functions 
 

Functions which have a variable power are called exponential functions. 

For example 𝑓(𝑥) = 2𝑥 is an exponential function. 

When graphed, these have weird shapes, similar to a skateboard ramp. 

𝑓(𝑥) = 2𝑥 would look like this: 

 

Example 1 
Graph the function 𝑓(𝑥) = 4.2𝑥  in the domain −4 ≤ 𝑥 ≤ 1, where 𝑥 ∈ 𝑅. 
Note: The dot here means multiply, not decimal. 
Solution  
Just like other graphs, we do up a table to help us: 

x 𝒚 = (𝟒). 𝟐𝒙  

-4 𝑦 = (4).2−4 => 𝑦
= 0.25 

-3 𝑦 = (4).2−3 => 𝑦
= 0.5 

-2 𝑦 = (4).2−2 => 𝑦 = 1 
-1 𝑦 = (4).2−1 => 𝑦 = 2 
0 𝑦 = (4).20    => 𝑦 = 4 

1 𝑦 = (4).21   => 𝑦 = 8 
So our graph would look like: 

 
 

Note that the graph crosses the y-axis at 4. This is no coincidence! The graph will always cut the y-axis at whatever 

number your function is multiplied by. 
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 For example 7.2x would cross at y = 7 

          -8.3x would cross at y = -8 

           2x would cross at y = 1 (because it is 1.2x) 

          … and so on. 

 In the above diagram, what if I asked you to find f(-2)? This simply means: find the height of the graph at x = -2. 

The answer is 1. 

Similarly 𝑓(−3) =
1

2
, 𝑓(−1) = 2 , and so on. 

 And if I asked you to estimate the value of x for which 𝑓(𝑥) = 1.1? 

This simply means: find which x value gives a height of 1.1? 

The answer is ≈ - 1.9. 

Question 11.1 

a) Sketch the graph of 𝑓(𝑥) = 3𝑥 in the domain −2 ≤ 𝑥 ≤ 2, where 𝑥 ∈ 𝑅. 

b) Where is 𝑓(𝑥) = 9? 

c) On the same diagram, sketch 𝑔(𝑥) = 2.3𝑥  
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Question 11.2 

Identify each function as linear, quadratic, or exponential 

 

 

Question 11.3 

Give an example of  

i) A linear relationship 

ii) A quadratic relationship 

iii) An exponential relationship 
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12) Past and probable exam questions 
 

Question 1 

(a)  
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(b) 
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Question 2 

(a)  

Let 𝑓 be the function 𝑓: 𝑥 → 7𝑥 − 𝑥2. 

Draw the graph of 𝑓 for 0 ≤ 𝑥 ≤ 7, 𝑥 ∈ ℝ. 
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(b)  

 

 

 

  

(a): 
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Question 3 

(a)  
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(b)  

 

 

(c)  
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Question 4 
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Question 5 

      

 

 

 

  

(a) 



 
 

 

©The Dublin School of Grinds                        Page 46  

 

 

 

 

 

 

 

 

  

(b) 

Use your graph from part (a) to estimate 
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Question 6 
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Question 7 
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Question 8 
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Question 9 
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Question 10 
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Question 11 
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Question 12 
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Question 13 
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©The Dublin School of Grinds                        Page 60  

Question 14 
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Question 15 
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Question 16 
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©The Dublin School of Grinds                        Page 65  

Question 17 
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13) Solutions to Functions and Graphs 
 

Question 1.1 

𝑔(𝑥) = √5𝑥 − 2 

𝑔(2) = √5(2) − 2 

=  √10 − 2 

= √8 

= 2√2 
 

 

Question 1.2 

a) 10 + 5 = 15 
15 × 4 = 60 
Output = 60 

b) (x + 5) × 4 = 28 

⇒ x + 5 = 
28

4
= 7 

⇒ x + 5 = 7 
x = 2 

c) (x + 5) × 4 = – 8 
⇒ x + 5 = –2 
⇒ x = –7 

d) 4(x + 5) 
 

  

Question 1.3 

Substitute (x + 1) for x 
(x + 1)2 + 3(x + 1) – 7 + 3  
= x2 + 2x + 1 + 3x + 3 – 7 + 3 
= x2 + 5x 

 
 

Question 2.1 

 
x 7x – x2 y 

0 7(0) – 02 0 

1 7(1) – 12 6 

2 7(2) – 22 10 

3 7(3) – 32 12 

4 7(4) – 42 12 

5 7(5) – 52 10 

6 7(6) – 62 6 

7 7(7) – 72 0 
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Question 2.2 

𝑓: 𝑥 → 5𝑥 − 4 
x 5x – 4 y 

0 5(0) – 4 – 4 

1 5(1) – 4 1 

2 5(2) – 4 6 

3 5(3) – 4 11 

4 5(4) – 4 16 

5 5(5) – 4 21 

 
𝑔(𝑥) = 3𝑥 + 1 

x 3x + 1 y 

0 3(0) + 1 1 

1 3(1) + 1 4 

2 3(2) + 1 7 

3 3(3) + 1 10 

4 3(4) + 1 13 

5 3(5) + 1 16 

 

 
 
 

 

Question 3.1 

f(x) → 4x2 + bx + c 
 (2,6) 4(2)2 + b(2) + c = 6 
  16 + 2b + c = 6 
  ⇒ 2b + c = –10 
 (–1,0) 4(–1)2 + b(–1) + c = 0 
  4 – b + c = 0 
  ⇒ – b + c = –4 
 2b + c = –10 ( × 1)     2b + c = –10   
 – b + c = –4 ( × 2)  – 2b + 2c = –8 
                 3c = –18  

⇒ c = – 6 
– b + c = –4 
– b – 6 = –4 

 – b = 2 
 ⇒ b = – 2 
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Question 3.2 

 
i)  

(–1,0) (–1)2 + b(–1) + c = 0 
  1 – b + c = 0 
  ⇒ –b + c = –1 
 (2,0) (2)2 + b(2) + c = 0 
  ⇒ 2b + c = –4 
 
 –b + c = –1 ( × 2)  –2b + 2c = –2   
 2b + c = –4 ( × 1)     2b +  c = –4 
               3c = –6  

          ⇒ c = – 2 
– b + c = –1 
– b – 2 = –1 

 – b = 1 
 ⇒ b = –1 
 = x2 – x – 2 = 0 

ii) k2 – k – 2 = – k + 14 
k2 – 16 = 0 
(k + 4)(k – 4) = 0 
⇒ k = 4 or k = –4 

 
 

Question 4.1 

i) f(x) = x2 – 4x + 3 
x2 – 4x + 3 = 0 
(x – 3)(x – 1) = 0 
⇒ x = 3 or x = 1 
A = (1,0) and B = (3,0) 

ii) A = (1,0) which is also a point on g(x) 
g(x) = x + k  (sub in (1,0)) 
0 = 1 + k 
⇒ k = –1 
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Question 4.2 

 
x 5 – 3x – 2x2 y 

–3 5 – 3(–3) – 2(–3)2 –4 

–2 5 – 3(–2) – 2(–2)2 3 

–1 5 – 3(–1) – 2(–1)2 6 

0 5 – 3(0) – 2(0)2 5 

1 5 – 3(1) – 2(1)2 0 

2 5 – 3(2) – 2(2)2 –9 

 
x – 2x –1 y 

–3 –2(–3) –1 5 

–2 –2(–2) –1 3 

–1 –2(–1) –1 1 

0 –2(0) –1 –1 

1 –2(1) –1 –3 

2 –2(2) –1 –5 

 

 
i) Using Algebra 

5 – 3x – 2x2 = –2x – 1 
⇒ 2x2 + x - 6 = 0 
(2x – 3)(x + 2) = 0 
2x – 3 = 0    or x = –2 

x = 
3

2
 or x = –2 

 

If x =
3

2
, then y = −2(

3

2
) − 1 = −4 

(
3

2
, −4) 

 
If x = –2, then y = –2(–2) – 1 = 3 
(–2, 3) 
 

Points of intersection are (–2, 3) and (
3

2
, −4). 

 
Graph:  
Advantage → It’s easy to read straight from the graph 
Disadvantage → It may not be accurate 
 
Algebra 
Advantage → It will give precise points of intersection 
Disadvantage → It is more difficult 
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Question 4.3 

a) f(x) = 2x2 + x – 6 = 0 
(2x – 3)(x + 2) = 0 
2x – 3 = 0 or x + 2 = 0 

⇒ x = 
3

2
 or x = –2 

  
g(x) = x2 – 6x + 9 = 0 
(x – 3)(x – 3) = 0 
⇒ x = 3 
 
h(x) = x2 – 2x = 0 
x2 – 2x = 0 
x(x – 2) = 0 
⇒ x = 0 or x = 2 
 

b) h(x) = Diagram 2 
f(x) = Diagram 3 
g(x) = Diagram 5 

 

Question 7.1 

i) –2 < x < 1 
ii) –4 < x < 2 

 

Question 8.1 

Axis of Symmetry  
x = –1 

 

Question 9.1 

a) 2x + 2y = 18 
⇒ 2y = 18 – 2x 
⇒ y = 9 – x 
Area = length × width = x(9 – x) = 9x – x2 

b) Area function: 
x 9x – x2 y 

1 9(1) – (1)2 8 

2 9(2) – (2)2 14 

3 9(3) – (3)2 18 

4 9(4) – (4)2 20 

5 9(5) – (5)2 20 

6 9(6) – (6)2 18 

7 9(7) – (7)2 14 

 

 
 

c)  
i) Area when x = 2.7 = 17m2 
ii) x = 3.3 and 5.4 
iii) Max possible area = 20.25 m2 
iv) Length = Breadth = 4.5 
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Question 9.2 

a) 2x + 2y = 14 
⇒ 2y = 14 – 2x  
⇒ y = 7 – x 
 

b) x(7 – x) = 7x – x2 
x 7x – x2 y 

0 7(0) – (0)2 0 

1 7(1) – (1)2 6 

2 7(2) – (2)2 10 

3 7(3) – (3)2 12 

4 7(4) – (4)2 12 

5 7(5) – (5)2 10 

6 7(6) – (6)2 6 

7 7(7) – (7)2 0 

 

 
 

c)  
i) Area when width is 1.5 = 8.5 m2 
ii) Max possible area = 12.2 m2 
iii) 0.5m or 6.4m 
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Question 10.1 

a)  

0 : 45 + 
7

10
(0) −

1

200
(0)2 = 45 

20 : 45 + 
7

10
(20) −

1

200
(20)2 = 57 

40 : 45 + 
7

10
(40) −

1

200
(40)2 = 65 

60 : 45 + 
7

10
(60) −

1

200
(60)2 = 69 

80 : 45 + 
7

10
(80) −

1

200
(80)2 = 69 

100 : 45 + 
7

10
(100) −

1

200
(100)2 = 65 

Table 
Time is seconds, t 0 20 40 60 80 100 
Altitude in km, h 45 57 65 69 69 65 

 
b)  

 

 
 

c) 69.5 km 
d) 26 sec 

e) h = 45 + 
7

10
(26) −

1

200
(26)2 = 59.82 

f) 45 + 
7

10
𝑡 −

1

200
𝑡 2= 9   (multiply everything by 200) 

⇒ 200(45) + 200(
7

10
) 𝑡 − 200 (

1

200
) 𝑡 2 = 9(200) 

9,000 + 140t – t2 = 1800 
⇒ t2 – 140t – 7200 = 0 
(t – 180)(t + 40) = 0 
⇒ t = 180  or t = - 40  (not possible since t must be greater than 0) 
∴ t = 180 sec 

 
 

Question 10.2 

N.B. 2nd part of d is parallel to b 
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Question 10.3 

Types of containers: 
1.                          2.                                     3.                                  4. 

 
Container no. 5 is impossible to draw since the height of water reduces. This is only possible if liquid is removed 
which is not the case. 
 

 

Question 11.1 

a)  
𝒙 𝒚 = 𝟑𝒙  

-2 𝑦 = 3−2 
=> 𝑦 =

1

9
 

-1 𝑦 = 3−1 
=> 𝑦 =

1

3
 

0 𝑦 = 30    => 𝑦 = 1 

1 𝑦 = 31   => 𝑦 = 3 
2 𝑦 = 32 => 𝑦 = 9 

b) 𝑓(𝑥) = 9 when 𝑥 = 2. 

 

c)   

𝒙 𝒚 = (𝟐). 𝟑𝒙  

-2 𝑦 = (2).3−2 
=> 𝑦 =

2

9
 

-1 𝑦 = (2).3−1 
=> 𝑦 =

2

3
 

0 𝑦 = (2).30    => 𝑦 = 2 
1 𝑦 = (2).31   => 𝑦 = 6 
2 𝑦 = (2).31 => 𝑦 = 18 
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Question 11.2 

 

 
 

Question 11.3 

i) Age in years 
ii) Angle of the sun in the sky 
iii) Bacterial growth 
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12) Past & Probable Exam Questions 

Question 1 

(a) 
i)  

x 10 – x – 2x y 

–3 10 – (–3) – 2(–3)2 –5 

–2 10 – (–2) – 2(–2)2 4 

–1 10 – (–1) – 2(–1)2 9 

0 10 – (0) – 2(0)2 10 

1 10 – (1) – 2(1)2 7 

2 10 – (2) – 2(2)2 0 

3 10 – (3) – 2(3)2 –11 

 
ii) Max value = 10.1 
iii) x = –1.8  or x = 1.2 

 
(b)  

f(x) = 3x – 4 
3k – 4 = 11 
⇒ 3k = 11 + 4 
⇒ 3k = 15 
⇒ k = 5  
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Question 2 

(a)  
x 7x – x2 y 

0 7(0) – 02 0 

1 7(1) – 12 6 

2 7(2) – 22 10 

3 7(3) – 32 12 

4 7(4) – 42 12 

5 7(5) – 52 10 

6 7(6) – 62 6 

7 7(7) – 72 0 

 

 
 
(b)  

i) Max height = 12.2m 
ii) 6.8 – 0.3 = 6.5 seconds 
iii) Take a point on the graph, for example (6,0) 

f(x) = ax – x2  and substitute in (6,0) 
0 = a(6) – 62 
0 = 6a – 36 
⇒ 6a = 36 
⇒ a = 6 
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Question 3 

i) –x – 4x + 5 = 0  
⇒ 0 = x + 4x – 5  
(x + 5)(x – 1) = 0 
x = –5 or x = 1 

 
 

ii) x2 + 4x – 5 = (x + 1)2 + 4(x + 1) – 5 
x2 + 4x – 5 = x2 + 2x + 1 + 4x + 4 – 5  
x2 + 2x + 1 + 4x + 4 – 5 – x2 – 4x + 5 = 0 
2x + 5 = 0 
2x = –5  

⇒ x = –
5

2
 

 
iii) f(x) = 5x – 12 

5a – 12 = a 
⇒ 5a – a = 12 
4a = 12 
∴ a = 3 
 

iv) 9k + 8 = 44 
9k = 36 
⇒ k = 4 

 
 

Question 4 

i)  
x 2x2 – 4x + 5 y 

–2 2(–2)2 – 4(–2) + 5 21 

–1 2(–1)2 – 4(–1) + 5 11 

0 2(0)2 – 4(0) + 5 5 

1 2(1)2 – 4(1) + 5 3 

2 2(2)2 – 4(2) + 5 5 

3 2(3)2 – 4(3) + 5 11 

4 2(4)2 – 4(4) + 5 21 

 
ii) x = –0.4  or x = 2.4 
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Question 5 

 
a)  

x 35x – 5x2 y 

0 35(0) – 5(0)2 0 

1 35(1) – 5(1)2 30 

2 35(2) – 5(2)2 50 

3 35(3) – 5(3)2 60 

4 35(4) – 5(4)2 60 

5 35(5) – 5(5)2 50 

6 35(6) – 5(6)2 30 

7 35(7) – 5(7)2 0 

 

 
 

b)  
i) Max height = 61m 
ii) Height after 5.5seconds = 40m 
iii) 0.7 seconds and 6.3 seconds 
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Question 6 

 
i) f:x → x2 + bx + c 

(2, –6)   22 + 2b + c = –6  
  ⇒ 2b + c = –10 
(0,6)  02 + b(0) + c = 6 
  ⇒ c = 6 
If c = 6 :  2b + 6 = –10 
  ⇒ 2b = –16 
  ⇒ b = –8 
 x2 – 8x + 6 = 0 

ii) Sub (k, –k) into x2 – 8x + 6 
k2 – 8k + 6 = –k  
k2 – 7k + 6 = 0 
(k – 1)(k – 6) = 0 
∴ k = 1  or k = 6 

 
 

Question 7 

a) 2x + l = 140 
 l = 140 – 2x 

b)    
i) Length × width = (140 – 2x)(x) = 140x – 2x2 = –2x2 + 140x 

x –2x2 + 140x y 

0 –2(0)2 + 140(0) 0 

10 –2(1)2 + 140(1) 1200 

20 –2(2)2 + 140(2) 2000 

30 –2(3)2 + 140(3) 2400 

40 –2(4)2 + 140(4) 2400 

50 –2(5)2 + 140(5) 2000 

60 –2(6)2 + 140(6) 1200 

70 –2(7)2 + 140(7) 0 

 

 
c)   

i) Max possible area = 2450m2 
ii) Area when road frontage is 30m long 

L = 30 ⇒ 30 = 140 – 2x 
30 – 140 = –2x 
110 = 2x 
⇒ x = 55 
When x = 55, y = Area = 1600m2 
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Question 8 

a)  

 
b) f(x) : Roots = 0 and –4  (just find where the graph cuts the x–axis) 

g(x) : Roots = 1 and 5 
 

c) Find the roots 
(x – 1)(x – 1) – 4  
= x2 – 2x + 1 – 4 = x2 – 2x – 3 
(x – 3)(x + 1) = 0 
x = 3 or x = –1  
∴ it cuts the x–axis at –1 and 3 
(–1,0) and (3,0) are on the graph of h(x) 
 
Looking for other points: 
If x = 0 ⇒ y = 02 – 2(0) – 3 = –3 
(0, –3) is on the graph 
If x = 1 ⇒ y = 12 – 2(1) – 3 = –4 
(1, –4) is on the graph 
If x = 2 ⇒ y = 22 – 2(2) – 3 = –3  
(2, –3) is on the graph 
 

d) (x – h)(x – h) – 2 = x2 – 10x + 23 
x2 – 2xh + h2 – 2 = x2 – 10x + 23 
⇒ –2xh = –10x  
⇒ h = 5 
 

 
e) In this Question f(x) = x2 – 10x + 23 = (x – 5)2 – 2 

We can see from f(x), g(x) and h(x) that the axis of symmetry can be read from the function if it is in the form 
(x – h)2 + a, and it is x = h. 
∴ the axis of symmetry of f(x) is x = 5 
 
Another way to find this is as follows: 

Axis of symmetry is x = –
𝑏

2𝑎
 

Using x2– 10x + 23 

⇒ Axis of symmetry = −
−10

2
 

 x = 5 is axis of symmetry 
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Question 9 

a) g(3) = 23–3 = 20 = 1 
b)   

i) h(t) = t2 – 3t 
h(2t + 1) = (2t + 1)2 – 3(2t + 1)  
 = 4t2 + 4t + 1 – 6t – 3  
 = 4t2 – 2t – 2  

ii) t2 – 3t = 4t2 – 2t – 2  
⇒ 3t2 + t – 2 = 0 
(3t – 2)(t + 1) = 0 
3t = 2 or   t = –1 

⇒ t = 
2

3
  or t = –1 

c)   
i) To find A and B just solve the equation: 

x2 – 2x – 8 = 0 
(x – 4)(x + 2) = 0 
x = 4 or x = –2 
⇒ (4,0) and (–2,0) are A and B 
 
To find C, let x = 0 
02 – 2(0) – 8 = –8 
⇒ C = (0,–8) 
 

ii) –2 ≤ x ≤ 4 
 

 

Question 10 

(a)   

 
(b)   
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Question 11 

(i)   

 
(ii)   

 
(iii)   

 
(iv)   

 
(v)   
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Question 12 

(a)   

 
(b)   
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Question 13 

(i)   

 
(ii)   

 

 

 
(iii)   

 
(iv)   

 
(v)   
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Question 14 

(i)   

 

 
(ii)   

 
(iii)   

 
(iv)   

 
(v)   
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Question 15 

(a)   
𝑓(7) = 3(7) + 5 

= 26 
(b)   

𝑓(𝑘) = 3𝑘 + 5 
(c)   

3𝑘 + 5 = 𝑘 
2𝑘 = −5 

𝑘 = −
5

2
 

 
 

Question 16 

(a)  

 
Cellulon Mobil 

𝑐(𝑥) = 4𝑥 𝑚(𝑥) = 1000 + 2𝑥 
𝑐(0) = 4(0) = 0 𝑚(0) = 1000 + 2(0) = 1000 

𝑐(700) = 4(700) = 2800 𝑚(700) = 1000 + 2(700) = 2400 
 

(b) Answer: Cellulon 
Reason: From the graph you can see that the cost is zero when no data is downloaded. 

 
(c) (500, 200) 
 
(d) If Fergus is going to use less than 500MB of data he should choose Cellulon, but if he is going to use more he 

should choose Mobil. 
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Question 13 

(a) &   (b) 

 
𝑦 = 𝑓(𝑥) + 2 we need to add 2 to the y-axis. 
𝑦 = −𝑓(𝑥) we need to invert the graph. 
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