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Abstract: In the present article, a new methodological framework for the efficient and sustainable
exploitation of offshore wind potential was developed. The proposed integrated strategic plan was
implemented for the first time at national spatial planning scale in Greece. The methodological
approach is performed through geographical information systems (GIS) and Microsoft Project Server
Software and includes five distinct stages: (i) definition of vision/mission, (ii) identification of
appropriate areas for offshore wind farms’ (OWFs) siting, (iii) determination of the OWFs’ layout,
(iv) calculation of the OWFs’ (projects) total investment cost and, finally, (v) portfolio analysis. The
final outcome of the proposed strategic planning is the prioritization of the proposed sixteen offshore
wind projects based on their strategic value, as well as the estimation of the overall investment cost of
the entire portfolio. High economic, socio-political and environmental benefits could be achieved
through the implementation of only 60% of the total investment capital of the proposed strategic plan.

Keywords: strategic planning; site selection process; offshore wind farms; geographic information
systems; portfolio analysis; Greece

1. Introduction

In recent years, there has been a growing interest towards the installation of OWFs, due to the
existence of multiple benefits related to the siting and operation of wind turbines offshore, such as
existence of stronger winds of longer duration, availability of extensive free space for the construction
of large-scale projects, reduction, and/or avoidance of noise and visual disturbances caused to the
landscape by these structures, etc. Following the installation of the first OWF in Denmark in the early
1990s, a significant increase of the offshore wind industry was noted in the first decade of 2000, with
the overall capacity doubling every 2–4 years [1].

On a global scale, according to statistical figures from Global Wind in 2014, over 90% of all offshore
wind installations were implemented in European waters. Offshore wind energy in Europe reached
the record figure of 3148 megawatt (MW) of total installed capacity in 2017, which corresponds to
560 new offshore wind turbines and 17 OWFs [1,2]. This particular record is two times higher than
the figures of 2016 and 4% higher than the previous record of 2015 [2]. In the following year (2018),
409 new offshore wind turbines connected to the electricity grid across 18 offshore wind projects in
Europe [3]. The referred amount corresponds to 2649 MW of net additional capacity, which is 15.8%
lower than in 2017 [3]. Thus, Europe’s cumulative offshore wind capacity reached 18,499 MW at the
end of 2018, which corresponds to a total of 4543 grid-connected wind turbines across 11 European
countries [3]. At present, the UK has the largest amount of offshore wind capacity in Europe with 44%
of all installations in MW, followed by Germany with 34%, Denmark (7%), Belgium (6.4%) and the
Netherlands (6%) [3]. Finally, in recent years focus was given on the development of OWFs in deeper
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waters [4–7], where floating support structures are preferable. For example, useful methodologies
have been developed for determining with accuracy all the relevant economic decision variables of
floating OWFs [6], for proposing the best technological alternatives [5] and analyzing future wind
resources in deeper waters [7].

An important process of the installation of OWFs is the determination of areas suitable for the
deployment of the offshore energy systems. The site selection for utilizing OWFs corresponds to a
multidimensional decision-making issue. Although several applications in various spatial planning
scales can be found in the literature [8–24], the applications of OWF siting at national scale are really
handful. Only five out of seventeen [8,10,14,17,19], refer to site suitability analyses on a national spatial
planning scale. More specifically, [8] applied five factors and seven constraints using multi-criteria
decision making and GIS models to provide a suitability map for offshore wind energy in Egypt. The
analysis was conducted at large scale covering the whole of Egypt and its surrounding waters. The
large-scale potential of China’s offshore wind energy from the perspective of current technical, spatial,
and economic constraints and its possible contributions to the nation’s energy system was investigated
in [10]. With the aid of a GIS-based tool, offshore wind potential was evaluated as a combination
of wind resources, technical projections of wind turbines, economic costs and spatial constraints of
offshore wind farms. Location-specific levelized production cost and cost supply curves of offshore
wind energy were also developed. A two-step decision-making procedure was adopted in [14] to
evaluate the locations for offshore wind farms in Greece. Unsuitable locations were initially rejected
using GIS and three constraint factors, while the remaining sites were evaluated with the AHP method
and five evaluation criteria. A spatial model for the assessment of offshore wind energy potential,
production costs, and the identification of suitable areas based on GIS was presented in [17] and
applied in a part of the Danish Exclusive Economic Zone (EEZ). Finally, a multi-criteria site selection
analysis was performed by considering technical, social, and civil restrictions for finding the most
suitable offshore wind farm locations in Turkey among the 55 coastal regions, including their technical
power capacities [19].

Considering the tools and techniques that have been applied so far in the OWF siting
literature, several researchers have applied multi-criteria techniques to rank OWF siting alternatives
(e.g., [8,12–14]), indicating that multi-criteria decision analysis plays a crucial role in OWF siting. GIS
presents also an important tool for the identification and the selection of suitable sites for the installation
of wind farms either on land or in the marine environment [25]. It has been used globally in many
countries for the site selection of offshore wind projects, such as Egypt [8], Ohio-USA [9], China [10],
Greece [11–14], South Korea [15], Spain [16], Thailand [26], etc.

What is missing from the current literature and practice is the development of an integrated
strategic plan for the efficient and sustainable exploitation of the offshore wind potential and the
relevant deployment of OWFs. In the present paper a new Strategic Planning methodology to identify
and prioritize suitable areas for offshore wind sites is introduced, which addresses a gap in knowledge
in the offshore wind energy field. In order to do this, this work utilizes a countrywide case study
(Greece) where the developed methodology is applied. It should be noted that no OWFs have been
developed so far in Greece.

The methodology proposed and applied includes the implementation of five distinct stages
corresponding to: (i) the definition of vision and mission of the strategic planning, as previously
mentioned, (ii) the identification of appropriate areas for OWFs’ siting based on specific exclusion
criteria, (iii) the determination of the OWFs’ layout in the aforementioned areas, (iv) the calculation
of the OWFs’ (projects) total investment cost by calculating the capital expenditure (CAPEX), the
operating expenses (OPEX) and the decommissioning expenses (DECEX) and, finally, (v) a portfolio
analysis based on seven assessment criteria.

A critical advantage of the proposed methodology is that it addresses existing gaps on renewable
energy sources (RES) siting issues, by: (i) introducing a holistic, step-by-step, OWF siting methodology,
which considers all the relevant critical issues that an OWF developer or/and an energy planner
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should analyze and resolve, (ii) providing a long-term planning approach (25 years, after the plan’s
implementation), and (iii) recognizing a multi-disciplinary approach, as it considers legal, technical,
economic, environmental, societal, and political issues. The final outcome is the assessment and ranking
of all OWF project proposals considering their strategic value and cost constraints. The proposed
methodology can be easily applied in other regions by following the abovementioned five stages. The
novelty of the paper lies both on the integrated methodology itself (strategic spatial planning) and on
the tools and criteria used in the analysis.

More specifically, GIS is used in a twofold way in the present paper: (i) for identifying the most
suitable areas (SAs) for OWFs in Greece and (ii) for determining the layout and for the first time the
precise location coordinates of the wind turbines in each OWF (OWFs’ mapping and micro-siting
determination) and, therefore, the energy capacity of the projects. The estimation of the precise location
coordinates of the wind turbines in an OWF is a critical issue in the planning phase and should be
accomplished before the construction phase of such large-scale projects. Moreover, the present paper
proposes for the first time a prioritization of OWF projects (and, thus, an identification of optimum
sites for OWFs’ installation) through portfolio analysis. Portfolio analysis includes a collection of
projects/proposals that will compete for selection based on their cost relative to their strategic value. The
Microsoft Project Server tool, which integrates multi-criteria evaluation techniques and mathematical
optimization, is used for the first time on the subject of OWFs’ siting, in order to perform the required
portfolio analysis and strategic scenarios in relation to the country’ energy needs.

Finally, a total of twenty (exclusion and assessment) criteria are employed in the proposed
methodology and the present site suitability support framework almost fully covers the economic,
social, political, technical and environmental dimensions of the OWFs’ siting problem in a national
spatial planning scale. The proposed methodology deploys a number of criteria and restrictions of
previous studies (e.g., wind velocity, water depth, distance from protected areas), while it introduces
innovative criteria in relation to OWF siting issues. Exclusion criteria such as seismic hazard zones,
landscape protection/visual and acoustic disturbance as well as assessment criteria (AC) such as
electrical energy demand and distance from military exercise areas (firing fields and exercise locations)
are applied for the first time at national planning scale.

This paper is structured in eight sections. Section 2 briefly presents the proposed methodology.
Section 3 defines the exclusion criteria and the relevant exclusion zones and presents the sources and
the processing method of the required spatial data. In Section 4, the main technical specifications of
offshore wind turbines (e.g., most suitable support structure definition) and their layout characteristics
considered in this study are presented. Section 5 describes the method applied for estimating CAPEX,
OPEX, and DECEX during the life cycle of the projects and, thus, the total investment costs of the
portfolio projects. Section 6 includes a description of the criteria used for assessing SA for OWF siting
and of the portfolio analysis, while in Section 7 the results of all stages of the methodological framework
are presented and discussed. Finally, in Section 8 the conclusions of the present study are cited.

2. Materials and Methods

In order to identify the most appropriate, sustainable, technically and economically viable solutions
to site offshore wind projects in Greece the strategic planning methodology shown in Figure 1 is
developed and applied in the present paper. The proposed methodological framework consists of five
stages, which are analyzed below.
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Figure 1. Proposed strategic planning methodology for offshore wind farms (OWFs’) siting in Greece.

Stage 1 (Stg1)—Vision and Mission of Strategic Planning

In the first stage, the vision and mission of the strategic planning are defined, on which the next
four stages are based. This stage is approached through a combination of proactive and empirical
strategy [27]. It takes into account the current situation in the examined country, regarding the issue of
energy independence, as well as the future demand for the production of a large number of public
commodities, such as electricity, with the ultimate goal to export the latter and, thus, improve the
country’s current economic status. At this point, it is worth to mention that in Greece by the end of June
2018, the total wind capacity, generated only by onshore wind turbines, was 2690.5 MW, representing
an increase of only 1.5% or 39.2 MW compared to the end of 2017 [28]. Thus, the abundant wind
potential existing in the Greek marine environment remains still unexploited. In addition, the national
effort to reduce GHG emissions is focused on the energy sector. The policy plan for Greece ‘National
Energy Plan: Roadmap to 2050’ was posted by the Ministry for Energy, Environment and Climate
Change in 2012 [29]. The roadmap aimed at a reduction of 60% to 70% of CO2 emissions from the
energy sector by 2050 compared to 2005, with 85%–100% of electricity coming from RES [29].

Stage 2 (Stg2)—Exclusion of Unsuitable Areas

This particular stage is based on the use of the GIS mapping tool. It includes the exclusion of the
areas deemed unsuitable for the siting of OWFs, through the application of various exclusion criteria,
resulting to the definition of SA on a national level. The exclusion criteria are defined based on the
special characteristics of the examined area, considering also the relevant provisions of the Greek
Specific Framework for the Spatial Planning and Sustainable Development for the Renewable Energy
Sources (SFSPSD-RES) [30].

Stage 3 (Stg3)—Determination of Technical Specifications and Layout

This stage deals with technical issues related to such projects, such as the selection of the model
type of the wind turbine (rotor-nacelle-assembly), the selection of most suitable type of support
structure, etc. The required technical specifications are determined by the following elements: (i) the
specific characteristics of the suitable sites, that is, wind velocity, wind direction, water depth and the
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available surface area/shape of the proposed sites, and, also, (ii) studying similar projects that have
been completed and are in full or partial operation to this day [31]. In addition, using GIS, the OWFs
are sited within the SA identified in Stage 2.

Stage 4 (Stg4)—Costing of OWFs

This stage includes the estimation of CAPEX, OPEX and DECEX of all proposed projects,
considering the available data of similar completed projects that are still in operation [31].

Stage 5 (Stg5)—Assessment of SA and Portfolio Analysis

In the final stage of the proposed methodology, the project portfolio is created for the strategic
planning of OWFs in Greece and its analysis is carried out. The portfolio decision analysis approach
combines multi-criteria evaluation and mathematical optimization and is characterized by the following
elements: (i) formation of one portfolio of project proposals (basic goal), taking into account multiple
objectives, interactions, and resource constraints; (ii) capturing of the decision makers’ preferences
regarding the objectives by utilizing a multi-attribute value function; (iii) implementation of integer
optimization to obtain the feasible portfolio with the greatest overall strategic value and (iv) potential
implementation of interactive “what-if” analyses to examine how the optimal portfolio of actions
changes in response to changes in the model parameters or constraints [32]. The objective of this
particular stage is to calculate the strategic value of the proposed projects based on specific AC and to
prioritize the implementation of the portfolio projects. AC arise mainly from the special characteristics
of the SA and their prioritization is achieved with the contribution of an expert group (EG) on issues
related to the siting of RES and, more specifically, OWFs, through a questionnaire survey. The portfolio
analysis is carried out using Microsoft Project Portfolio Server software. Various energy policy scenarios
are formulated for the country based on economic restrictions.

3. Exclusion Criteria and Data Collection/Digitization

3.1. Exclusion Criteria

The study area is defined by the EEZ of Greece and any area outside of it, is legally excluded. The
EEZ of a country or otherwise the National Territorial Waters, particularly in recent years, is formally
taken into consideration, as a siting criterion, [16,20,33–35]. The exclusion criteria considered in this
paper are discussed below.

Wind Velocity

Wind velocity is a significant criterion for the site selection of an OWF, as it is directly linked
to the economic feasibility of the project. Therefore, an accurate and detailed analysis of wind data
is crucial for a potential wind energy assessment of the proposed suitable sites. In this study, wind
velocity data are provided based on measurements made at the height of 80 m on an hourly basis and
includes measurements for 10 years (2009–2018). In the present site suitability analysis, marine areas,
where annual average wind velocity is smaller than 6 m/s at a height of 80 m above the mean water
level, are considered unsuitable for the siting of OWFs [16].

Water Depth

Water depth is one of the key criteria for OWFs’ siting, as it significantly contributes to the
determination of the investment cost of such projects [1]. Specifically, the water depth affects the
selection of the wind turbine’s support structure, as well as the CAPEX and OPEX of an OWF project,
which increase significantly in deeper waters. For example, according to [36], it can be assumed that
with water depth the costs increase due to mooring, anchoring, and cabling costs in deeper waters. In
the present investigation, the maximum limit of water depth is set to 500 m [16,36,37].
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Military Zones

These marine areas are officially used by the National Army either for training purposes or as
firing fields and therefore cannot be considered for any other use. The present criterion is taken into
consideration by [8,15,33,34,37].

Seismic Hazard Zones

The seismic hazard factor should be considered generally in the site selection process to reduce
construction cost. Greece corresponds to one of the most seismically active countries worldwide.
Therefore, all infrastructures should be adequately designed against earthquake. In the case of OWFs,
this fact may lead to special designs of the wind turbines’ support structure and, therefore, to larger
construction costs. Thus, the areas belonging to the Seismic Hazard Zone III (0.36 g) in Greece
are excluded. The present criterion has not been considered so far in any other study of OWFs’
siting internationally, whereas it has been proposed as a criterion for selecting sites suitable for OWF
developments in the South Korea by [38], but it was not considered as a site selection criterion in
their study.

Underwater Cables

This exclusion criterion refers to the cables that already exist on the seafloor and serve either
for electricity transmission or for telecommunication purposes (e.g., [8,12,33,34]). It is important to
consider the underwater routes of those cables, in order to avoid any damage to them during the
installation process of OWF developments.

Distance from Ports

The distance of an OWF project from a port presents an important factor affecting the total
investment cost, since it has a direct impact on the installation costs, the operation and maintenance
costs, as well as the decommission costs of the OWF [39]. Specifically, the total investment cost
decreases as the location of an OWF is closer to an existing port, while, moreover, the proximity of
the installation area to a port simplifies the overall project management (e.g., no need to install a
substation within the marine environment). This criterion has been considered in the site selection
of hybrid offshore wind and wave energy systems in Greece [37]. The selected limit of the distance
from a domestic port is set in the present paper at 100 km and marine areas that are further away from
100 km are excluded.

Distance from High Voltage Electricity Grid

The distance of an OWF from the national electricity grid and particularly from a high voltage
grid is extremely important for technical and economic reasons. A connection to the high voltage grid
is selected, because in the opposite case (connection to a medium or low voltage grid) there might be a
serious risk of cable destruction due to overloading of the electricity grid [20,26,36]. There are studies
that set the distance of the candidate siting areas from the electricity grid at a limit of 200 km [8,39],
while there are others that reduce this limit to 60 km [20] or even to 40 km [26]. In the present paper, the
limit of 100 km from the existing and the potential officially approved high voltage electricity grid was
selected. Moreover, one of the most important factors for the development of OWFs is the evaluation of
capacity of the grid. In Greece, the Independent Power Transmission Operator (IPTO) S.A. undertakes
the role of transmission system operator for the Hellenic Electricity Transmission System (medium
and high voltage grid). In 2018, IPTO published an approved future plan for the spatial development
of medium and high voltage grids in Greece as a target for 2027 [40]. In this plan, the majority of
the islands that are both close and far away of the mainland lack medium and high voltage grids.
Therefore, it is impossible and economically not viable to find locations for the development of OWFs
in a long distance from the mainland in the near future. A more detailed analysis of the capacity of grid
could be useful for the OWFs’ development, but this analysis is out of the scope of the present study.
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Landscape Protection/Visual and Acoustic Disturbance

The present criterion is related to the distance of an OWF from the coast and it has been used to
ensure landscape protection, avoid visual and acoustic disturbances, and ensure the social acceptance
of an OWF [15,17]. In the present study, marine areas with a distance from the coast smaller than 20
km are considered unsuitable for OWFs’ siting and are excluded from further analysis. This limit is
defined based on [36]. Moreover, the 20 km ensure a distance of at least 130 times of the total height of
the selected offshore wind turbine, in order to avoid the visual and acoustic impacts of the project.

Distance from Shipping Routes

The existence of safe navigation routes that connect the plethora of Greek islands with the
mainland is an extremely important issue. In order to ensure the protection of shipping movement
either for trade or tourism, a safety distance of approximately 5 km (3 miles) from the referred routes is
selected [9,13].

Distance from Marine Protected Areas

In this paper, marine protected areas correspond to Sites of Community Importance (SCI) of
Natura 2000, national marine environmental parks, coastal bathing waters monitored and assessed in
the framework of the Monitoring Programme of Bathing Water Quality according to the provisions
of the Directive 2006/7/EC and swimming beaches awarded with the Blue Flag. In this paper, the
minimum distance from marine protected areas is selected equal to 2 km, as according to previous
studies [11,13,17] the relevant distance limit is set at 1–2 km.

Distance from Wildlife Refugees and Migration Corridors

This criterion includes migration corridors and wetlands of international importance, as defined
according to the Ramsar Convention. The specific criterion is considered in order to reduce the potential
risk of birds’ collision on the wind turbines, mainly during the migratory period. The installation of
OWFs should be avoided within the boundaries of the referred areas which are hosting a variety of
birds. An exclusion zone of 3 km is taken into account [10,13].

Distance from Residential Network

According to the national legislative framework (SFSDSP-RES) [30] minimum distances from
residential settlements and from traditional settlements equal to 1 km and 1.5 km respectively are
taken into consideration.

Based on all the above, Table 1 summarizes the exclusion criteria considered in the present paper
and their incompatibility zones.

Table 1. Exclusion criteria and incompatibility zones.

No. Exclusion Criterion Factor Unsuitable Areas

EC.1 Exclusive Economic Zone Legal Outside the boundaries
EC.2 Wind Velocity Economic <6 m/s
EC.3 Water Depth Economic/Technical >500 m
EC.4 Military Zones Political/Restrictive All
EC.5 Seismic Hazard Zones Protective/Restrictive Zone III (0.36g)
EC.6 Underwater Cables Protective/Technical/Restrictive All
EC.7 Distance from Ports Economic/Technical >100 km
EC.8 Distance from High Voltage Electricity Grid Economic/Technical >100 km

EC.9 Landscape Protection/Visual and Acoustic
Disturbance Social/Political/Protective ≤20 km

EC.10 Distance from Shipping Routes Social/Political/Protective
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3.2. Data Collection/Digitization

In order to identify and analyze all the environmental, economic, technical, legal, and political
characteristics of the EEZ of Greece, it was essential to collect and appropriately digitize, if necessary,
certain geographical information data from national institutes, research centers, services, and official
international and national websites that provide officially approved cartographic data.

More specifically, the digital data used in the present study in correspondence with the responsible
entity/source are as follows: (i) Water depth data obtained from the Hellenic Navy Hydrographic
Service [41]. (ii) Wind velocity data provided by the Hellenic Centre for Marine Research [42]. (iii) Data
of the EEZ of Greece, the Mediterranean Sea and Greece gathered from the electronic database of the
European Statistical Service [43]. (iv) Data of SCI, national marine environmental parks, coastal bathing
waters, swimming beaches and wetlands of international importance obtained from the “GEODATA”
official national website, which has been characterized as the national gate of geographical information
data of Greece [44]. (v) Data of the underwater telecommunication cables within the EEZ of Greece,
which were collected from the electronic database of the official European website “EMODnet” [45].

Except of the above, the following data were identified, collected, and mapped: (i) The verified
shipping routes of the whole country were digitized through the basemaps of the cartographic tool
ArcGIS, using the same projected coordinate system. (ii) The military zones used for training purposes
and as firing fields, which were provided in analog format by the Hellenic Navy Hydrographic
Service [41] and they were, then, appropriately digitized. (iii) The migration corridors, which were
mapped by obtaining a corresponding map (in image format) from the Hellenic Ornithological
Society [46]. (iv) The domestic ports, which were mapped by providing information of their locations
and their names [47]. Only the officially designated ports of the country were mapped. (v) The seismic
hazard zones of the country, which were digitized through the official seismic hazard map, collected as
an image from the Technical Chamber of Greece [48]. (vi) The data related to the underwater cables
of the electricity grid, the locations of the 400 kilovolt (kV) high voltage centers and the 150 kV high
voltage substations, obtained from the IPTO, through an official map found in [40].

4. Technical Specifications and OWF Siting Layout

4.1. Definition of Wind Turbine Model

In the present study, the generic 5 MW turbine, which was developed by the National Renewable
Energy Laboratory (NREL) [49] is selected. This wind turbine model has been also used in several
previous studies [39,50–52], while a large number of existing and fully or partially operational OWFs
globally, deploy offshore wind turbines with the same nominal power (ten in Europe and six in
Asia) [31].

4.2. Selection of Wind Turbines’ Support Atructure

The selection of the wind turbines’ support structure is related to the water depth of the SA (Stg2,
Figure 1). These areas are located at a water depth of over 50 m (see Section 7.2 below) and, therefore,
floating platforms as support structures are preferable [16,39,51]. In the present paper, for water depths
of 50–200 m, the Tension Leg Buoy (TLB) is selected as the floating support structure of each wind
turbine. TLB systems can serve as sustainable solutions for the exploitation of RES [39,53]. In the
North Sea, where harsher wind and wave conditions compared to the Greek marine environment exist,
it has been demonstrated that TLBs present the most cost-effective systems for water depths from
50 to 200 m [52]. As for water depths of 200 to 500 m, the Hywind concept is selected. The simple
design of Hywind offers many important advantages, such as evidence-based technology, simple
support structure construction with the possibility of standardization and lower fabrication cost, as
well as robustness and suitability in case of harsh environmental conditions [54]. The Hywind floating
system, although slightly more expensive than the SWAY system in terms of cost per megawatt hour
(MWh) [39], corresponds to a floating platform that has been used with success globally [54,55].
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4.3. Definition of the Wind Turbines’ Layout Within the Suitable Areas

The layout of the wind turbines depends on various factors (e.g., cost, wake effects, etc.) and its
determination corresponds to an optimization problem [56,57]. In this paper, an oriented approach
that fulfills the aim of the present investigation is developed which, moreover, takes into consideration
the European best practices. Specifically, the distance between two successive turbines at a line parallel
and perpendicular to the prevailing wind direction is denoted as dx and dy respectively, while Drotor

denotes the rotor diameter. In existing, fully-commissioned European OWFs (e.g., Nysted OWF
Denmark, Eneco Luchterduinen OWF Netherlands, Kentish Flats OWF United Kingdom, Belwind
OWF Belgium), the values of dx are between 4.6~12.1Drotor, while the corresponding range for dy
is 3.2~8Drotor [58]. In addition, according to [59] NREL recommends values of dy correspond to
5~10Drotor. In the present study, the wind turbines’ layout is determined with the use of ‘Advanced
Editor Tools’ in ArcGIS and according to the following elements: (i) main wind direction of each
specific site, (ii) Drotor of the selected wind turbine model, (iii) shape of each OWF site and, also, (iv)
the referred European standards, in order to minimize the array losses in the proposed OWF projects.
Considering all the above, in this study, the defined dx and dy values for the wind turbines layout are
7Drotor and 7Drotor respectively.

5. Cost of OWFs

5.1. Estimation of CAPEX

The components of CAPEX considered in the present study are: (i) development and consenting,
(ii) construction phase insurance, (iii) rotor-nacelle-assembly costs, (iv) production costs (including
tower and support structure), (v) mooring costs (including installation for the case of floating wind
turbines), (vi) grid costs (including installation), and (vii) installation of the whole wind turbine
system [39,51]. According to [16,60–62], CAPEX is estimated taking into account the water depth
and the distance from the shore. In addition to these factors, the CAPEX of such projects depends
upon: (i) the wind turbine support structure deployed, which can be either fixed to the sea bed or
floating [16,39,51,52,60] and (ii) the nominal power of the wind turbine.

5.2. Estimation of OPEX

OPEX of OWFs are a major part of the total investment costs and they are directly linked and
largely affected by the distance from ports and by the water depth [39,51]. In addition, according
to [16,39,51], OPEX per year for floating support structures correspond to approximately 3% of CAPEX
(€/MW). In [39,51] OPEX was considered equal to 3.7% of CAPEX (€/MW) for wind turbines with a
TLB floating platform and equal to 3.44% of CAPEX (€/MW) for wind turbines with a Hywind floating
platform. After calculating OPEX for all OWFs for their first year of operation, OPEX during their total
life cycle, which is defined equal to 25 years [62], can be estimated. For this purpose, the formula of the
present value of annually allocated expenses (PVAAE) (Eq 1.) was used [63]:

PVAAE =
(1 + i)n

− 1
i(1 + i)n (1)

where n are the years of operation (25 years) and i the interest rate, which is taken equal to 2.5%.

5.3. Estimation of DECEX

DECEX of an OWF project may correspond to 0%–4% of the total investment costs [16,51,62,64]. In
the present paper, for each project, DECEX is taken equal to 2% of the corresponding total investment
cost, since it is considered that although a significant amount is collected from recycling the salvaged
construction materials, this amount does not suffice to cover the DECEX in total.
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6. Assessment of Suitable Areas and Portfolio Analysis

6.1. Assessment Criteria

The AC used for the portfolio analysis include: (i) wind velocity (AC.1) [8,12–14,20,26,36], (ii)
water depth (AC.2) [8,26,36], (iii) electrical energy demand (AC.3), (iv) distance from ports (with water
depth >10 m in terms of draft requirements) (AC.4) [36], (v) distance from high voltage electricity grid
(AC.5) [8,9,12], (vi) distance from Marine Protected Areas (AC.6) [12–14] (vii) distance from military
exercise areas (firing fields and exercise locations) (AC.7). It is worth to note that “electrical energy
demand” and “distance from military exercise areas (firing fields and exercise locations)” have not
been used before as AC for the siting of OWFs.

6.2. Prioritisation of AC

The prioritization of AC is based on a suitably designed questionnaire, which was sent via e-mail
to an EG on siting of RES, and, more specifically, of OWFs. The group consists of forty experts from
universities, institutes, research centers and companies around the world (USA, Europe, and Asia).
These experts were carefully selected, considering the different backgrounds of the participants, so
that their distinct opinions reflect different strategic orientations of the present RES siting problem
and in order to emphasize the complexity of such siting problems. Out of the forty questionnaires
sent out, seven were successfully completed, and were answered by professors, experienced scientific
researchers and spatial analysts of RES from various European countries (Greece, Spain, Italy, The
Netherlands, etc.). The experts prioritized the selected criteria in the questionnaires based on their
own high experience and their own different preferences; the majority of the experts have over seven
years of experience on such topics. Figure 2 presents the final prioritization of the AC. The consistency
ratio calculated by Microsoft Project Server reached 100%.

Figure 2. Relevant weights of assessment criteria (AC).

6.3. Portfolio Analysis

This particular step involves the actual selection process, where all project proposals are examined
in conjunction with the AC and economic restrictions. More specifically, the portfolio analysis arrives
at a prioritization of the project proposals, depending on their performance in relation to the AC. Thus,
if a project has a major impact on several parallel AC, it is placed high on the priority list and receives
a high strategic value score.

In this paper, the portfolio analysis is carried out using Microsoft Project Server software and
include the following main steps: (i) input of AC in the library of the influencing factors, (ii) input of
all projects (OWFs) and of their estimated total investment cost in the project center, (iii) assessment of
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the strategic impact of each OWF, based on the particular features of the projects related to the specific
AC using a 5-point scale (Table 2), (iv) input of the relevant weight of each AC (Figure 2) according to
the EG and (v) creation of scenarios based on economic restrictions (50%, 60%, and 75% of the total
portfolio).

Table 2. Scaling of AC.

AC
Scaling

None (0) Low (1) Moderate (3) Strong (6) Extreme (9)

AC.1 <6 6–7 7–8 8–9 >9
AC.2 >100 >65 50–65 35–50 20–35
AC.3 0 0–5 5–10 10–15 >15
AC.4 0 15–25 25–35 35–45 45–55
AC.5 >500 Up to 500 Up to 400 Up to 300 Up to 200
AC.6 >100 >75 60–75 45–60 30–45
AC.7 0 0–20 20–40 40–60 60–80

7. Results and Discussion

7.1. Strategic Planning Vision and Mission

The Strategic Planning vision and mission involves a clear constant declaration of purpose that
describes the values and priorities of the country, as regards the implementation of OWFs and it is
addressed to several different stakeholders, people or groups that are directly or indirectly linked to the
implementation of the proposed Strategic Plan. In this paper the vision/mission is defined as follows:

“To acquire national energy independence, by considering sustainable development as well as
social responsibility and acceptance as a top priority. The main strategic goal is to promote integrated
solutions for the siting, technical characteristics and decision-making issues of OWFs”.

7.2. Identification of Suitable Areas

For identifying marine areas suitable for OWFs’ siting in Greece the 13 exclusion criteria,
EC.1~EC.13, (Table 1) are taken into account. Figure 3a–d show indicatively the developed for this
purpose thematic maps of the exclusion criteria corresponding to: (a) wind velocity (EC.2), (b) marine
protected areas (EC.11), wildlife refuges and migration corridors (EC.12), (c) water depth (EC.3) and
(d) seismic hazard zones (EC.5). By creating, editing, and managing three different linear models with
the use of geoprocessing tools in the ‘ModelBuilder’ in ArcGIS software, the SA for OWFs’ siting in
the Greek marine environment emerge and are shown in Figure 4. Specifically, applying the referred
models, all prohibited and unsuitable areas erased of the map, according to the limitations that defined
on Stg 2.

The number of SA is sixteen (16). Certain very small sites, less than 2.5 km2, are not taken into
account, since the installation of wind turbines in these small areas does not fulfill any financial purpose.
Among the exclusion criteria considered, the water depth and the lack of a high voltage electricity grid
represent the two most limiting factors. More specifically, with regard to latter exclusion criterion, there
are very few high voltage centers of 400 kV in the south of the country, which are actually situated close
to the shore. It should be also noted that for all SA, the water depth is larger than 50 m, advocating the
use of floating support structures.
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Figure 3. Thematic maps of: (a) wind velocity (EC.2), (b) marine protected areas (EC.11), wildlife
refuges and migration corridors (EC.12), (c) water depth (EC.3) and (d) seismic hazard zones (EC.5).

7.3. Identification of Suitable Areas

The mapping of the 16 OWFs is carried out, using the ‘Advanced Editor Tools’ in ArcGIS, and the
exact number of 5 MW wind turbines is calculated, along with the capacity of each OWF (Table 3).
Indicatively, the micro-siting configuration of OWF15 and OWF4 is presented in Figure 5.
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Figure 4. Suitable areas for OWFs siting in Greece.

Table 3. Basic features of the 16 OWFs.

No. Name of OWF Location Area (km2)
Wind Turbine

Support Structure 1
Project

Capacity (MW)

1 “Eolos” Southeast of Euboea 677.43 TLB and Hywind 4310
2 “Aphrodite” Southwest of Thasos 552.07 TLB and Hywind 3500

3 “Poseidon” Southeast of Euboea/North of
Andros 542.6 TLB and Hywind 3430

4 “Apollo”
Southeast of

Thasos/Northwest of
Samothrace

477.46 TLB 3095

5 “Zeus” Southeast of Euboea 125.63 TLB and Hywind 785
6 “Hera” South of Hydra 110.29 TLB and Hywind 680
7 “Ares” East of Hydra 104.46 TLB and Hywind 600
8 “Athena” Southeast of Euboea 82.03 Hywind 485
9 “Hephaestus” Northeast of Volos 46.79 Hywind 280

10 “Demeter” Northwest of Lefkada/West of
Preveza 42.7 Hywind 270

11 “Dionysus” Southeast of Euboea/North of
Andros 30.94 Hywind 205

12 “Hestia” Northwest of Skyros 22.71 Hywind 150

13 “Hermes” Northeast of Euboea/South of
Skopelos 15.6 Hywind 100

14 “Nemesis” North of Volos 6.9 TLB 50
15 “Artemis” East of Thasos 4.81 TLB 45
16 “Persephone” East of Poros 4.45 TLB 40

Total Portfolio OWFs EEZ of Greece 2846.87 TLB and Hywind 18,025
1 TLB is considered for water depths 50–200 m, while Hywind for water depths 200–500 m (see Section 4.2).
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Figure 5. Micro-siting configuration of OWF15 and OWF4.

According to European Network of Transmission System Operators for Electricity [65], the net
electricity generating capacity of Greece was in total 16,392.43 MW for 2017 and specifically the amount
of 8220.02 MW was produced from RES (25.33% from onshore wind energy, 29.78% from solar energy,
0.73% from biomass energy, 41.35% from renewable hydro energy and 2.81% from other renewable
energy sources) and the amount of 8172.41 MW was produced from non-RES. Consequently, with
the development and the implementation of the proposed strategic plan, the results from the applied
methodology reveal that 45.34% of the electrical energy produced from all the projects in the above
table would suffice for the country to achieve energy independence.

In order to keep the total investment costs (e.g., operation and maintenance costs) to minimum
and to deploy the suitable marine sites to maximum, the large OWF projects (e.g., OWF1, OWF2)
should not be separated into smaller projects. It is suggested that the referred large projects should be
implemented in phases, such as ‘Gode Wind OWF’ in Germany (Project Capacity: 582 MW) [66,67].

7.4. Investment Cost of OWFs

According to [39], CAPEX of offshore 5 MW wind turbines with a TLB platform and Hywind
platform, located at a distance of 200 km from the port and at a water depth of 200 m, are estimated
equal to 3.537 × 106 €/MW and 3.807 × 106 €/MW respectively. Moreover, it has been shown in [1] that
an increase of 10% in water depth or of the distance from the shore will lead to an increase of 1% of
investment costs, related mainly to installation and grid connection costs, as well as support structure
costs (including installation). By using this rule-of-thumb and considering the aforementioned values
of CAPEX per MW as a basis for CAPEX calculations, the CAPEX of OWFs for a given water depth
and distance from shore are finally estimated. For example, for a 5 MW wind turbine with a TLB
floating platform installed at a water depth of 100 m and at a distance of 50 km from the shore, CAPEX
is estimated equal to 3.095 × 106 €/MW (a 12.5% reduction of the 3.537 × 106 €/MW base value has
been assumed, due to decrease of both water depth and distance from the shore). Regarding OPEX
and DECEX, these quantities are expressed as percentages of CAPEX and of total investment cost
respectively, as explained in Sections 5.2 and 5.3 above. Table 4 includes the total investment cost of the
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16 OWFs, which is used as input in the portfolio analysis. The proposed projects, shown in Tables 3
and 4, could be financed by European Investment Bank (EIB), as the EIB Board (2015) approved support
for strategic infrastructure investment totaling nearly € 7 billion for new OWFs in the UK and Belgian
coasts [68]. Moreover, the proposed OWF projects could be financial supported by both private (e.g.,
Greek private banks) and public funds (e.g., Greek public bank).

Table 4. Investment cost and OWFs’ characteristics in relation to the AC.

A/A Investment Cost
(€)

AC.1
(m/s)

AC.2
(m)

AC.3
(%)

AC.4
(km)

AC.5
(km)

AC.6
(km)

AC.7
(km)

OWF1 27.255 × 109 9–9.5 50–500 73.79 47.5 47.0 33.5 22.5
OWF2 20.858 × 109 7–7.5 100–500 59.92 51.5 62.0 30.0 46.5
OWF3 22.173 × 109 9–9.5 150–500 58.72 90.5 47.5 42.0 42.0
OWF4 17.283 × 109 7–8 50–150 52.99 98.0 72.5 28.5 40.5
OWF5 5.092 × 109 9–9.5 150–500 13.44 73.0 29.5 24.5 42.0
OWF6 4.375 × 109 8–8.5 150–500 11.64 52.0 54.5 51.0 4.5
OWF7 3.573 × 109 8–8.5 100–500 10.27 45.0 25.0 34.5 4.0
OWF8 3.338 × 109 9–9.5 450–500 8.30 69.0 57.0 51.5 48.5
OWF9 1.799 × 109 7–7.5 200–400 4.79 85.0 47.0 31.0 32.5
OWF10 1.720 × 109 7.5–8 250–500 4.62 34.0 31.0 29.0 69.5
OWF11 1.382 × 109 9–9.5 150–500 3.51 92.5 29.0 24.0 19.5
OWF12 962.336 × 106 8.5–9.5 300–400 2.57 35.0 81.0 17.5 48.0
OWF13 664.512 × 106 8–8.5 350–500 1.71 39.0 29.5 20.5 77.0
OWF14 272.904 × 106 6–6.5 50–100 0.86 98.5 40.5 19.5 47.5
OWF15 246.342 × 106 7–7.5 50–150 0.77 70.5 46.0 22.5 25.5
OWF16 219.871 × 106 8–8.5 100–200 0.68 30.0 22.0 28.5 0.5

7.5. Results of Portfolio Analysis

The characteristics of all OWFs in relation to the AC required as input in the portfolio analysis are
presented in Table 4.

By taking into account the relevant weights of the AC (Figure 2) and the data of Table 4, the
portfolio analysis is implemented. Table 5 presents the prioritization of the project portfolio based on
the calculated strategic value. The implementation of the whole portfolio achieves a strategic value of
100%, since all proposed projects are implemented, and the investment cost of the whole portfolio
amounts to 111.214 × 109 €.

Table 5. Strategic value of portfolio projects.

Ranking OWF Strategic Value (%)

1 OWF3 8.46
2 OWF1 8.17
3 OWF5 7.75
4 OWF16 7.44
5 OWF8 7.27
6 OWF7 7.2
7 OWF6 6.69
8 OWF13 6.35
9 OWF11 6.13
10 OWF4 5.84
11 OWF10 5.58
12 OWF2 5.45
13 OWF15 4.84
14 OWF12 4.69
15 OWF14 4.11
16 OWF9 4.03
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Next, three possible scenarios for the implementation of portfolio projects are examined. The first
scenario corresponds to an investment of 50% of the total portfolio (i.e., 55.607 × 109 €), the second one
to an investment of 60% of the total portfolio (i.e., 66.729 × 109 €), while the third one to an investment
of 75% of the total portfolio (i.e., 83.411 × 109 €). By implementing the first scenario, eleven OWFs with
a 70.08% total strategic value can be realized including OWF3, OWF5, OWF16, OWF8, OWF7, OWF13,
OWF11, OWF4, OWF15, OWF12, and OWF14 (in descending order). Most of these OWFs are located
Southeast of Euboea (OWF3, OWF5, OWF8, OWF11, Figure 4) and in the Northern Aegean (OWF4,
OWF14, OWF15). The total investment cost of these eleven OWFs is equal to 55.207 × 109 €. On the
other hand, in the case of the second scenario, the following twelve OWFs with a 76.92% strategic value
and a total investment cost of 66.181 × 109 € are implemented (Figure 4): OWF3, OWF1, OWF16, OWF8,
OWF7, OWF6, OWF13, OWF11, OWF10, OWF15, OWF12, and OWF14 (in descending order). Finally,
the third scenario leads to the implementation of the following fourteen OWFs with 87.79% strategic
value: OWF3, OWF5, OWF16, OWF8, OWF7, OWF6, OWF13, OWF11, OWF4, OWF10, OWF2, OWF15,
OWF12, and OWF14 (in descending order). The total investment cost of these projects amounts to
82.160 × 109 €, while most of these OWFs are located Southeast of Euboea (OWF3, OWF5, OWF8,
OWF11, Figure 4) and in the Northern Aegean (OWF2, OWF4, OWF14, OWF15).

It is worth noting that any of the three scenarios selected for implementation will be particularly
beneficial for the country, since the strategic value of all scenarios is over 70%, and national energy
independence is ensured. The optimum choice naturally is the implementation of the whole portfolio,
since this entails a strategic value of 100% and all strategic goals of this plan are reached. However,
such an investment would be particularly costly. Therefore, the second scenario is recommended for
implementation, since it requires a little less than 60% of the total investment capital, while, at the
same time, it fully satisfies the vision and mission of the present strategic plan (i.e., national energy
independence).

Through the strategic planning performed, it has been proven that the combination of GIS with
Microsoft Project Server software can, therefore, be seen as a powerful tool for solving complex
siting and decision-making issues of OWFs. Moreover, the GIS-Microsoft Project Server integration
could be used as an excellent tool for displaying the results in useful maps and, also, in practical
portfolio selection scenarios. The proposed methodological approach is essential, as it could be utilized
efficiently and easily from academics, scientific researchers, renewable energy planners, developers,
government agencies, consultants, and potential investors for the efficient and sustainable exploitation
of the offshore wind potential and the relevant deployment of OWFs at different spatial planning
scales. The need and the importance of such a strategic planning increase significantly over time, as the
increasing population and improving living standards produce an increment on the energy demand.
The present study could be further extended with a field investigation analysis of the proposed OWF
sites, in order to verify their overall appropriateness. Thus, future work could include a thorough
individual assessment of the proposed sites in conjunction with field investigation, in order to make the
final selection/prioritization of sites for OWFs installation. Finally, it would be interesting to consider
the utilization of energy storage systems in the proposed strategic plan for improving the penetration
of RES into the electricity supply mix and maximizing the reliability of the OWF projects regardless
weather conditions.

8. Conclusions

The present paper aims at the development of an integrated strategic planning methodology for
OWFs in Greece, where portfolio analysis is used for the first time in relation to the siting of RES. More
specifically, it focuses on a strategic plan that will ensure national energy independence for 25 years
following its partial implementation, with significant economic, socio-political and environmental
benefits for Greece.

A total of twenty criteria (exclusion and assessment) are employed for the siting of OWFs, which
almost fully cover the economic, socio-political, technical and environmental issues that are related
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to such installations and applications. The majority of the criteria are in line with the international
literature; however, there are also criteria proposed and applied for the first time in relation to
siting issues, such as “seismic hazard zones” (exclusion criterion—on RES issues) and “electrical
energy demand” (assessment criterion—on RES issues). In addition, “landscape protection/visual and
acoustic disturbance” criterion is introduced, facilitating the combined use of two, relevant, previously
suggested siting criteria (“distance from shore” and “visual and acoustic impacts”).

Wind turbines of 5 MW capacity are taken into account, while the types of support structures
selected are the TLB for depths of 50–200 m and the Hywind for depths of 200–500 m. For each OWF
the precise mapping of the wind turbines is carried out by setting specific in-between distances in
directions parallel and perpendicular to the prevailing wind direction. Then, the total investment cost
for each project is calculated by estimating CAPEX, OPEX and DECEX.

In order to perform the portfolio analysis, the seven selected AC are evaluated by an EG. The
highest weight is assigned to the “wind velocity” and “distance from high voltage electricity grid”
criteria. Therefore, according to different expert participants the strategic policy orientation of the
current plan focuses on the technical and economic dimension of the planning issue, based on the own
high-experience. Next, the strategic impact of each OWF is evaluated on each AC and three different
management scenarios are realized involving economic restrictions (investing 50%, 60%, and 75% of
the total portfolio). After the application of the economic restrictions on the three scenarios, 11, 12 and
14 OWF projects are respectively selected for implementation. In all three scenarios, OWF3 presents
the highest strategic value out of the selected projects and OWF14 the lowest, while the commonly
selected projects in all 3 portfolios are OWF7, OWF8, OWF11, OWF12, OWF13, OWF14, OWF15, and
OWF16. It is worth noting that, in all three cases, the energy independence of the country is achieved.
The second scenario is recommended for implementation, since it requires less than 60% of the total
investment capital and fully satisfies the vision and mission of the present strategic plan, which ensures
national energy independence.

The proposed strategic planning for OWFs in Greece serves as a guide for the development of
OWFs in Greece, according to criteria that are based on: (i) the special characteristics of the study area
and the individual characteristics of each suitable site, (ii) the relevant provisions of the SFSPSD-RES,
(iii) indisputable global experience, (iv) experts’ opinion and (v) on extensive international literature
review, which specializes on such topics. For this reason, the present paper does not simply recommend
certain sites for the installation of OWFs, but areas that have been examined according to several
parameters within a broader field of study, which is based on a guideline with clear strategic goals.
Consequently, the current strategic planning framework can bridge important gaps between research,
development and implementation on the complex RES siting and development issues. The relevant
methodology includes distinct stages and can be applied in relation to various study areas and diverse
spatial planning scales.
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