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Strategies for Solving Problems
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Physics involves a great deal of problem solving. Whether you are doing cutting-edge
research or reading a book on a well-known subject, you are going to need to solve some
problems. In the latter case (the presently relevant one, given what is in your hand right
now), it is fairly safe to say that the true test of understand something is the ability to solve
problems on it. Reading about a topic is often a necessary step in the learning process, but
it is by no means a sufficient one. The more important step is spending as much time as
possible solving problems (which is inevitably an active task) beyond the time you spend
reading (which is generally a more passive task). I have therefore included a very large
number of problems/exercises in this book.

However, if I’m going to throw all these problems at you, I should at least give you some
general strategies for solving them. These strategies are the subject of the present chapter.
They are things you should always keep in the back of your mind when tackling a problem.
Of course, they are generally not sufficient by themselves; you won’t get too far without
understanding the physical concepts behind the subject at hand. But when you add these
strategies to your physical understanding, they can make your life a lot easier.

1.1 General strategies

There are a number of general strategies you should invoke without hesitation when solving
a problem. They are:

1. Draw a diagram, if appropriate.

In the diagram, be sure to label clearly all the relevant quantities (forces, lengths,
masses, etc). Diagrams are absolutely critical in certain types of problems. For exam-
ple, in problems involving “free-body” diagrams (discussed in Chapter 3) or relativistic
kinematics (discussed in Chapter 11), drawing a diagram can change a hopelessly com-
plicated problem into a near-trivial one. And even in cases where diagrams aren’t this
crucial, they’re invariably very helpful. A picture is definitely worth a thousand words
(and even a few more, if you label things!).

2. Write down what you know, and what you are trying to find.

In a simple problem, you may just do this in your head without realizing it. But in
more difficult problems, it is very useful to explicitly write things out. For example, if
there are three unknowns that you’re trying to find, but you’ve written down only two
facts, then you know there must be another fact you’re missing (assuming that the
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problem is in fact solvable), so you can go searching for it. It might be a conservation
law, or an F = ma equation, etc.

3. Solve things symbolically.

If you are solving a problem where the given quantities are specified numerically, you
should immediately change the numbers to letters and solve the problem in terms of
the letters. After you obtain an answer in terms of the letters, you can plug in the
actual numerical values to obtain a numerical answer. There are many advantages to
using letters:

• It’s quicker. It’s much easier to multiply a g by an ` by writing them down
on a piece of paper next to each other, than it is to multiply them together on a
calculator. And with the latter strategy, you’d undoubtedly have to pick up your
calculator at least a few times during the course of a problem.

• You’re less likely to make a mistake. It’s very easy to mistype an 8 for
a 9 in a calculator, but you’re probably not going to miswrite a q for a g on a
piece of paper. But if you do, you’ll quickly realize that it should be a g. You
certainly won’t just give up on the problem and deem it unsolvable because no
one gave you the value of q!

• You can do the problem once and for all. If someone comes along and
says, oops, the value of ` is actually 2.4m instead of 2.3m, then you won’t have
to do the whole problem again. You can simply plug the new value of ` into your
final symbolic answer.

• You can see the general dependence of your answer on the various
given quantities. For example, you can see that it grows with quantities a
and b, decreases with c, and doesn’t depend on d. There is much, much more
information contained in a symbolic answer than in a numerical one. And besides,
symbolic answers nearly always look nice and pretty.

• You can check units and special cases. These checks go hand-in-hand with
the previous “general dependence” advantage. But since they’re so important,
we’ll postpone their discussion and devote Sections 1.2 and 1.3 to them.

Having said all this, it should be noted that there are occasionally times when things
get a bit messy when working with letters. For example, solving a system of three
equations in three unknowns might be rather cumbersome unless you plug in the
actual numbers. But in the vast majority of problems, it is highly advantageous to
work entirely with letters.

4. Consider units/dimensions

This is extremely important. See Section 1.2 for a detailed discussion.

5. Check limiting/special cases.

This is also extremely important. See Section 1.3 for a detailed discussion.

6. Check order of magnitude if you end up getting a numerical answer.

If you end up with an actual numerical answer to a problem, be sure to do a sanity
check to see if the number is reasonable. If you’ve calculated the distance along the
ground that a car skids before it comes to rest, and if you’ve gotten an answer of
a kilometer or a millimeter, then you know you’ve probably done something wrong.
Errors of this sort often come from forgetting some powers of 10 (say, when converting
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kilometers to meters) or from multiplying something instead of dividing (although you
should be able to catch this by checking your units, too).

You will inevitably encounter problems, physics ones or otherwise, where you don’t
end up obtaining a rigorous answer, either because the calculation is intractable, or
because you just don’t feel like doing it. But in these cases it’s usually still possible to
make an educated guess, to the nearest power of 10. For example, if you walk past a
building and happen to wonder how many bricks are in it, or what the labor cost was
in constructing it, then you can probably give a reasonable answer without doing any
severe computations. The physicist Enrico Fermi was known for his ability to estimate
things quickly and produce order-of-magnitude guesses with only minimal calculation.
Hence, a problem where the goal is to simply obtain the nearest power-of-10 estimate
is known as a “Fermi problem.” Of course, sometimes in life you need to know things
to better accuracy than the nearest power of 10 . . .

How Fermi could estimate things!
Like the well-known Olympic ten rings,
And the one hundred states,
And weeks with ten dates,
And birds that all fly with one. . . wings.

In the following two sections, we’ll discuss the very important strategies of checking
units and special cases. Then in Section 1.4 we’ll discuss the technique of solving problems
numerically, which is what you need to do when you end up with a set of equations you can’t
figure out how to solve. Section 1.4 isn’t quite analogous to Sections 1.2 and 1.3, in that
these first two are relevant to basically any problem you’ll ever do, whereas solving equa-
tions numerically is something you’ll do only for occasional problems. But it’s nevertheless
something that every physics student should know.

In all of three of these sections, we’ll invoke various results derived later in the book.
For the present purposes, the derivations of these results are completely irrelevant, so don’t
worry at all about the physics behind them – there will be plenty of opportunity for that
later on! The main point here is to learn what to do with the result of a problem once
you’ve obtained it.

1.2 Units, dimensional analysis

The units, or dimensions, of a quantity are the powers of mass, length, and time associated
with it. For example, the units of a speed are length per time. The consideration of units
offers two main benefits. First, looking at units before you start a problem can tell you
roughly what the answer has to look like, up to numerical factors. Second, checking units
at the end of a calculation (which is something you should always do) can tell you if your
answer has a chance at being correct. It won’t tell you that your answer is definitely correct,
but it might tell you that your answer is definitely incorrect. For example, if your goal in a
problem is to find a length, and if you end up with a mass, then you know it’s time to look
back over your work.

“Your units are wrong!” cried the teacher.
“Your church weighs six joules – what a feature!
And the people inside
Are four hours wide,
And eight gauss away from the preacher!”
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In practice, the second of the above two benefits is what you will generally make use
of. But let’s do a few examples relating to the first benefit, because these can be a little
more exciting. To solve the three examples below exactly, we would need to invoke results
derived in later chapters. But let’s just see how far we can get by using only dimensional
analysis. We’ll use the “[ ]” notation for units, and we’ll let M stand for mass, L for
length, and T for time. For example, we’ll write a speed as [v] = L/T and the gravitational
constant as [G] = L3/(MT 2) (you can figure this out by noting that Gm1m2/r2 has the
dimensions of force). Alternatively, you can just use the mks units, kg, m, s, instead of M ,
L, T , respectively.1

Example 1 (Pendulum): A mass m hangs from a massless string of length ` (see Fig. 1.1)
m

l

g
θ

Figure 1.1

and swings back and forth in the plane of the paper. The acceleration due to gravity is g.
What can we say about the frequency of oscillations?

Solution: The only dimensionful quantities given in the problem are [m] = M , [`] = L, and
[g] = L/T 2. But there is one more quantity, the maximum angle θ0, which is dimensionless
(and easy to forget). Our goal is to find the frequency, which has units of 1/T . The only

combination of our given dimensionful quantities that has units of 1/T is
√

g/`. But we
can’t rule out any θ0 dependence, so the most general possible form of the frequency is2

ω = f(θ0)

√
g

`
, (1.1)

where f is a dimensionless function of the dimensionless variable θ0.

Remarks:

1. It just so happens that for small oscillations, f(θ0) is essentially equal to 1, so the frequency is

essentially equal to
√

g/`. But there is no way to show this by using only dimensional analysis;
you actually have to solve the problem for real. For larger values of θ0, the higher-order terms
in the expansion of f become important. Exercise 4.23 deals with the leading correction, and
the answer turns out to be f(θ0) = 1− θ2

0/16 + · · ·.
2. Since there is only one mass in the problem, there is no way that the frequency (with units of

1/T ) can depend on [m] = M . If it did, there would be nothing to cancel the units of mass and
produce a pure inverse-time.

3. We claimed above that the only combination of our given dimensionful quantities that has units

of 1/T is
√

g/`. This is easy to see here, but in more complicated problems where the correct
combination isn’t so obvious, the following method will always work. Write down a general
product of the given quantities raised to arbitrary powers (ma`bgc in this problem), and then
write out the units of this product in terms of a, b, and c. If we want to obtain units of 1/T
here, then we need

MaLb
(

L

T 2

)c

=
1

T
. (1.2)

Matching up the powers of the three kinds of units on each side of this equation gives

M : a = 0, L : b + c = 0, T : −2c = −1. (1.3)

The solution to this system of equations is a = 0, b = −1/2, and c = 1/2, so we have reproduced

the
√

g/` result. ♣

1When you check units at the end of a calculation, you will invariably be working with the kg,m,s
notation. So that notation will inevitably get used more. But I’ll use the M ,L,T notation here, because I
think it’s a little more instructive. At any rate, just remember that the letter m (or M) stands for “meter”
in one case, and “mass” in the other.

2We’ll measure frequency here in radians per second, denoted by ω. So we’re actually talking about the
“angular frequency.” Just divide by 2π (which doesn’t affect the units) to obtain the “regular” frequency in
cycles per second (Hertz), usually denoted by ν. We’ll talk at great length about oscillations in Chapter 4.
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What can we say about the total energy of the pendulum (with the potential energy measured
relative to the lowest point)? We’ll talk about energy in Chapter 5, but the only thing we
need to know here is that energy has units of ML2/T 2. The only combination of the given
dimensionful constants of this form is mg`. But again, we can’t rule out any θ0 dependence,
so the energy must take the form f(θ0)mg`, where f is some function. That’s as far as we can
go with dimensional analysis. However, if we actually invoke a little physics, we can say that
the total energy equals the potential energy at the highest point, which is mg`(1 − cos θ0).
Using the Taylor expansion for cos θ (see Appendix A for a discussion of Taylor series), we
see that f(θ0) = θ2

0/2 − θ4
0/24 + · · ·. So in contrast with the frequency result above, the

maximum angle θ0 plays a critical role in the energy.

Example 2 (Spring): A spring with spring constant k has a mass m on its end (see
Fig. 1.2). The spring force is F (x) = −kx, where x is the displacement from the equilibrium

m

k

Figure 1.2

position. What can we say about the frequency of oscillations?

Solution: The only dimensionful quantities in this problem are [m] = M , [k] = M/T 2

(obtained by noting that kx has the dimensions of force), and the maximum displacement
from the equilibrium, [x0] = L. (There is also the equilibrium length, but the force doesn’t
depend on this, so there is no way it can come into the answer.) Our goal is to find the
frequency, which has units of 1/T . The only combination of our given dimensionful quantities
with these units is

ω = C

√
k

m
, (1.4)

where C is a dimensionless number. It just so happens that C is equal to 1 (assuming that
we’re measuring ω in radians per second), but there is no way to show this by using only
dimensional analysis. Note that, in contrast with the pendulum above, the frequency cannot
have any dependence on the maximum displacement.

What can we say about the total energy of the spring? Energy has units of ML2/T 2, and
the only combination of the given dimensionful constants of this form is Bkx2

0, where B is a
dimensionless number. It turns out that B = 1/2, so the total energy equals kx2

0/2.

Remark: A real spring doesn’t have a perfectly parabolic potential (that is, a perfectly linear force),

so the force actually looks something like F (x) = −kx + bx2 + · · ·. If we truncate the series at the

second term, then we have one more dimensionful quantity to work with, [b] = M/LT 2. To form a

quantity with the dimensions of frequency, 1/T , we need x0 and b to appear in the combination x0b,

because this is the only way to get rid of the L. You can then see (by using the strategy of writing

out a general product of the variables, discussed in the third remark in the pendulum example above)

that the frequency must be of the form f(x0b/k)
√

k/m, where f is some function. We can therefore

have x0 dependence in this case. This answer must reduce to C
√

k/m for b = 0. Hence, f must be

of the form f(y) = C + c1y + c2y2 + · · ·. ♣

Example 3 (Low-orbit satellite): A satellite of mass m travels in a circular orbit just
above the earth’s surface. What can we say about its speed?

Solution: The only dimensionful quantities in the problem are [m] = M , [g] = L/T 2, and
the radius of the earth [R] = L. 3 Our goal is to find the speed, which has units of L/T . The
only combination of our dimensionful quantities with these units is

v = C
√

gR. (1.5)

It turns out that C = 1.

3You might argue that the mass of the earth, Me, and Newton’s gravitational constant, G, should be
also included here, because Newton’s gravitational force law for a particle on the surface of the earth is
F = GMem/R2. But since this force can be written as m(GMe/R2) ≡ mg, we can absorb the effects of Me

and G into g.
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1.3 Approximations, limiting cases

As with units, the consideration of limiting cases (or perhaps we should say special cases)
offers two main benefits. First, it can help you get started on a problem. If you’re having
trouble figuring out how a given system behaves, then you can imagine making, for example,
a certain length become very large or very small, and then you can see what happens to the
behavior. Having convinced yourself that the length actually affects the system in extreme
cases (or perhaps you will discover that the length doesn’t affect things at all), it will then
be easier to understand how it affects the system in general, which will then make it easier to
write down the relevant quantitative equations (conservation laws, F = ma equations, etc.),
which will allow you to fully solve the problem. In short, modifying the various parameters
and seeing the effects on the system can lead to an enormous amount of information.

Second, as with checking units, checking limiting cases (or special cases) is something
you should always do at the end of a calculation. But as with checking units, it won’t tell
you that your answer is definitely correct, but it might tell you that your answer is definitely
incorrect. It is generally true that your intuition about limiting cases is much better than
your intuition about generic values of the parameters. You should use this fact to your
advantage.

Let’s do a few examples relating to the second benefit. The initial expressions given in
each example below are taken from various examples throughout the book, so just accept
them for now. For the most part, I’ll repeat here what I’ll say later on when we work
through the problems for real. A tool that comes up often in checking limiting cases is the
Taylor series approximations; the series for many functions are given in Appendix A.

Example 1 (Dropped ball): A beach ball is dropped from rest at height h. Assume that
the drag force from the air takes the form Fd = −mαv. We’ll find in Section 3.3 that the
ball’s velocity and position are given by

v(t) = − g

α

(
1− e−αt

)
, and y(t) = h− g

α

(
t− 1

α

(
1− e−αt

))
. (1.6)

These expressions are a bit complicated, so for all you know, I could have made a typo in
writing them down. Or worse, I could have completely botched the solution. So let’s look
at some limiting cases. If these limiting cases yield expected results, then we can feel a little
more confident that the answers are actually correct.

If t is very small (more precisely, if αt ¿ 1; see the discussion following this example), then
we can use the Taylor series, e−x ≈ 1 − x + x2/2, to make approximations to leading order
in αt. The v(t) in eq. (1.6) becomes

v(t) = − g

α

(
1−

(
1− αt +

(αt)2

2
− · · ·

))

≈ −gt, (1.7)

plus terms of higher order in αt. This answer is expected, because the drag force is negligible
at the start, so we essentially have a freely falling body with acceleration g downward. For
small t, eq. (1.6) also gives

y(t) = h− g

α

[
t− 1

α

(
1−

(
1− αt +

(αt)2

2
− · · ·

))]

≈ h− gt2

2
, (1.8)
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plus terms of higher order in αt. Again, this answer is expected, because we essentially have
a freely falling body at the start, so the distance fallen is the standard gt2/2.

We can also look at large t (or rather, large αt). In this case, e−αt is essentially zero, so the
v(t) in eq. (1.6) becomes (there’s no need for a Taylor series in this case)

v(t) ≈ − g

α
. (1.9)

This is the “terminal velocity.” Its value makes sense, because it is the velocity for which the
total force, −mg −mαv, vanishes. For large t, eq. (1.6) also gives

y(t) ≈ h− gt

α
+

g

α2
. (1.10)

Apparently for large t, g/α2 is the distance (and this does indeed have units of length, because
α has units of T−1, because mαv has units of force) that our ball lags behind another ball
that started out already at the terminal velocity, −g/α.

Whenever you derive approximate answers as we just did, you gain something and you
lose something. You lose some truth, of course, because your new answer is technically
not correct. But you gain some aesthetics. Your new answer is invariably much cleaner
(sometimes involving only one term), and this makes it a lot easier to see what’s going on.

In the above example, it actually makes no sense to look at the limit where t is small or
large, because t has dimensions. Is a year a large or small time? How about a hundredth of a
second? There is no way to answer this without knowing what problem you’re dealing with.
A year is short on the time scale of galactic evolution, but a hundredth of a second is long
on the time scale of a nuclear process. It makes sense only to look at the limit of a small
(or large) dimensionless quantity. In the above example, this quantity is αt. The given
constant α has units of T−1, so 1/α sets a typical time scale for the system. It therefore
makes sense to look at the limit where t ¿ 1/α (that is, αt ¿ 1), or where t À 1/α (that
is, αt À 1). In the limit of a small dimensionless quantity, a Taylor series can be used
to expand an answer in powers of the small quantity, as we did above. We sometimes get
sloppy and say things like, “In the limit of small t.” But you know that we really mean, “In
the limit of some small dimensionless quantity that has a t in the numerator,” or, “In the
limit where t is much smaller that a certain quantity that has the dimensions of time.”

Remark: As mentioned above, checking special cases tells you that either (1) your answer is
consistent with your intuition, or (2) it’s wrong. It never tells you that it’s definitely correct. This
is the same as what happens with the scientific method. In the real world, everything comes down
to experiment. If you have a theory that you think is correct, then you need to check that its
predictions are consistent with experiments. The specific experiments you do are the analog of
the special cases you check after solving a problem; these two things represent what you know
is true. If the results of the experiments are inconsistent with your theory, then you need to go
back and fix your theory, just as you would need to go back and fix your answer. If, on the other
hand, the results are consistent, then although this is good, the only thing it really tells you is
that your theory might be correct. And considering the way things usually turn out, the odds are
that it’s probably not actually correct, but rather the limiting case of a more correct theory (just
as Newtonian physics is a limiting case of relativistic physics, which is a limiting case of quantum
field theory, etc.). That’s how physics works. You can’t prove anything, so you learn to settle for
the things you can’t disprove.

Consider, when seeking gestalts,
The theories that physics exalts.
It’s not that they’re known
To be written in stone.
It’s just that we can’t say they’re false. ♣
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When making approximations, how do you know how many terms in the Taylor series
to keep? In the example above, we used e−x ≈ 1 − x + x2/2. But why did we stop at the
x2 term? The honest (but slightly facetious) answer is, “Because I had already done this
problem before writing it up, so I knew how many terms to keep.” But the more informative
(although perhaps no more helpful) answer is that before you do the calculation, there’s
really no way of knowing how many terms to keep. So you should just keep a few and see
what happens. If everything ends up canceling out, then this tells you that you need to
repeat the calculation with another term in the series. For example, in eq. (1.8), if we had
stopped the Taylor series at e−x ≈ 1− x, then we would have obtained y(t) = h− 0, which
isn’t very useful, since the general goal is to get the leading-order behavior in the parameter
we’re looking at (which is t here). So in this case we’d know we’d have to go back and
include the x2/2 term in the series. If we were doing a problem in which there was still no
t (or whatever variable) dependence at that order, then we’d have to go back and include
the −x3/6 term in the series. Of course, you could just play it safe and keep terms up to,
say, fifth order. But that’s invariably a poor strategy, because you’ll probably never in your
life have to go out that far in a series. So just start with one or two terms and see what
it gives you. Note that in eq. (1.7), we actually didn’t need the second-order term, so we
in fact could have gotten by with only e−x ≈ 1− x. But having the extra term here didn’t
end up causing much heartache.

After you make an approximation, how do you know if it’s a “good” one? Well, just
as it makes no sense to ask if a dimensionful quantity is large or small without comparing
it to another quantity, it makes no sense to ask if an approximation is “good” or ”bad”
without stating the accuracy you want. In the above example, if you’re looking at a t value
for which αt ≈ 1/100, then the term we ignored in eq. (1.7) is smaller than gt by a factor
αt/2 ≈ 1/200. So the error in on the order of 1%. If this is enough accuracy for whatever
purpose you have in mind, then the approximation is a good one. If not, it’s a bad one, and
you should add more terms in the series until you get your desired accuracy.

The results of checking limits generally fall into two categories. Most of the time you
know what the result should be, so this provides a double-check on your answer. But
sometimes an interesting limit pops up that you might not expect. Such is the case in the
following examples.

Example 2 (Two masses in 1-D): A mass m with speed v approaches a stationary mass
M (see Fig. 1.3). The masses bounce off each other elastically. Assume that all motion takes

v Mm

Figure 1.3

place in one dimension. We’ll find in Section 5.6.1 that the final velocities of the particles are

vm =
(m−M)v

m + M
, and vM =

2mv

m + M
. (1.11)

There are three special cases that beg to be checked:

• If m = M , then eq. (1.11) tells us that m stops, and M picks up a speed v. This is fairly
believable (and even more so for pool players). And it becomes quite clear once you
realize that these final speeds certainly satisfy conservation of energy and momentum
with the initial conditions.

• If M À m, then m bounces backward with speed ≈ v, and M hardly moves. This
makes sense, because M is basically a brick wall.

• If m À M , then m keeps plowing along at speed ≈ v, and M picks up a speed of
≈ 2v. This 2v is an unexpected and interesting result (it’s easier to see if you consider
what’s happening in the reference frame of the heavy mass m), and it leads to some
neat effects, as in Problem 5.23.
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Example 3 (Circular pendulum): A mass hangs from a massless string of length `.
Conditions have been set up so that the mass swings around in a horizontal circle, with the
string making a constant angle θ with the vertical (see Fig. 1.4). We’ll find in Section 3.5

m

l

g
θ

Figure 1.4

that the angular frequency, ω, of this motion is

ω =

√
g

` cos θ
. (1.12)

As far as θ is concerned, there are two limits we should definitely check:

• If θ → 90◦, then ω →∞. This makes sense; the mass has to spin very quickly to avoid
flopping down.

• If θ → 0, then ω →
√

g/`, which is the same as the frequency of a standard “plane”
pendulum of length ` (for small oscillations). This is a cool result and not at all obvious.
(But once we get to F = ma in Chapter 3, you can convince yourself why this is true
by looking at the projection of the force on a given horizontal line.)

In the above examples, we checked limiting and special cases of answers that were correct
(I hope!). This whole process is more useful (and a bit more fun, actually) when you check
the limits of an answer that is incorrect. In this case, you gain the unequivocal information
that your answer is wrong. But rather than leading you into despair, this information is
in fact something you should be quite happy about, considering that the alternative is to
carry on in a state of blissful ignorance. Once you know that your answer is wrong, you can
go back through your work and figure out where the error is (perhaps by checking limits at
various stages to narrow down where the error could be). Personally, if there’s any way I’d
like to discover that my answer is garbage, this is it. At any rate, checking limiting cases
can often save you a lot of trouble in the long run. . .

The lemmings get set for their race.
With one step and two steps they pace.
They take three and four,
And then head on for more,
Without checking the limiting case.

1.4 Solving differential equations numerically

Solving a physics problem often involves solving a differential equation. A differential equa-
tion is one that involves derivatives (usually with respect to time, in our physics problems)
of the variable you’re trying to solve for. The differential equation invariably comes about
from using F = ma, and/or τ = Iα, or the Lagrangian technique we’ll discuss in Chapter
6. For example, consider a falling body. F = ma gives −mg = ma, which can be written as
−g = ÿ, where a dot denotes a time derivative. This is a rather simple differential equation,
and you can quickly guess that y(t) = −gt2/2 is a solution. Or, more generally with the
constants of integration thrown in, y(t) = y0 + v0t− gt2/2.

However, the differential equations produced in some problems can get rather compli-
cated, so sooner or later you will encounter one that you can’t solve exactly (either because
it’s in fact impossible to solve, or because you can’t think of the appropriate clever trick).
Having resigned yourself to not getting the exact answer, you should ponder how to obtain
a decent approximation to it. Fortunately, it’s easy to write a short program that will give
you a very good numerical answer to your problem. Given enough computer time, you can
obtain any desired accuracy (assuming that the system isn’t chaotic, but we won’t have to
worry about this for the systems we’ll be dealing with).
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We’ll demonstrate the procedure by considering a standard problem, one that we’ll solve
exactly and in great depth in Chapter 4. Consider the equation,

ẍ = −ω2x. (1.13)

This is the equation for a mass on a spring, with ω =
√

k/m. We’ll find in Chapter 4 that
the solution can be written, among other ways, as

x(t) = A cos(ωt + φ). (1.14)

But let’s pretend we don’t know this. If someone comes along and gives us the values of
x(0) and ẋ(0), then it seems that somehow we should be able to find x(t) and ẋ(t) for any
later t, just by using eq. (1.13). Basically, if we’re told how the system starts, and if we
know how it evolves, via eq. (1.13), then we should know everything about it. So here’s how
we find x(t) and ẋ(t).

The plan is to discretize time into intervals of some small unit (call it ε), and to then
determine what happens at each successive point in time. If we know x(t) and ẋ(t), then
we can easily find (approximately) the value of x at a slightly later time, by using the
definition of ẋ. Similarly, if we know ẋ(t) and ẍ(t), then we can easily find (approximately)
the value of ẋ at a slightly later time, by using the definition of ẍ. Using the definitions of
the derivatives, the relations are simply

x(t + ε) ≈ x(t) + εẋ(t),
ẋ(t + ε) ≈ ẋ(t) + εẍ(t). (1.15)

These two equations, combined with (1.13), which gives us ẍ in terms of x, allow us to
march along in time, obtaining successive values for x, ẋ, and ẍ.4

Here’s what a typical program might look like.5 (This is a Maple program, but even if
you aren’t familiar with this, the general idea should be clear.) Let’s say that the particle
starts from rest at position x = 2, and let’s pick ω2 = 5. We’ll use the notation where x1
stands for ẋ, and x2 stands for ẍ. And e stands for ε. Let’s calculate x at, say, t = 3.

x:=2: # initial position
x1:=0: # initial speed
e:=.01: # small time interval
for i to 300 do # do 300 steps (ie, up to 3 seconds)
x2:=-5*x: # the given equation
x:=x+e*x1: # how x changes, by definition of x1
x1:=x1+e*x2: # how x1 changes, by definition of x2
end do: # the Maple command to stop the do loop
x; # print the value of x

This procedure won’t give the exact value for x, because x and ẋ don’t really change
according to eqs. (1.15). These equations are just first-order approximations to the full

4Of course, another expression for ẍ is the definitional one, analogous to eq. (1.15), involving the third
derivative. But this would then require knowledge of the third derivative, and so on with higher derivatives,
and we would end up with an infinite chain of relations. An equation of motion such as eq. (1.13) (which
in general could be an F = ma, τ = Iα, or Euler-Lagrange equation) relates ẍ back to x (and possibly ẋ),
thereby creating an intertwined relation among x, ẋ, and ẍ, and eliminating the need for an infinite and
useless chain.

5We’ve written the program in the most straightforward way, without any concern for efficiency, because
computing time isn’t an issue in this simple system. But in more complex systems that require programs
for which computing time is an issue, a major part of the problem solving process is developing a program
that is as efficient as possible.
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Taylor series with higher-order terms. Said differently, there is no way the above procedure
can be exactly correct, because there are ambiguities in how the program can be written.
Should line 5 come before or after line 7? That is, in determining ẋ at time t + ε, should
you use the ẍ at time t or t + ε? And should line 7 come before or after line 6? The point
is that for very small ε, the order doesn’t matter much. And in the limit ε → 0, the order
doesn’t matter at all.

If we want to obtain a better approximation, we can just shorten ε down to .001 and
increase the number of steps to 3000. If the result looks basically the same as with ε = .01,
then we know we pretty much have the right answer. In the present example, ε = .01
yields x ≈ 1.965 after 3 seconds. If we set ε = .001, then we obtain x ≈ 1.836. And if we
set ε = .0001, then we get x ≈ 1.823. The correct answer must therefore be somewhere
around x = 1.82. And indeed, if we solve the problem exactly, we obtain x(t) = 2 cos(

√
5 t).

Plugging in t = 3 gives x ≈ 1.822.
This is a wonderful procedure, but it shouldn’t be abused. It’s nice to know that we

can always obtain a decent numerical approximation if all else fails. But we should set our
initial goal on obtaining the correct algebraic expression, because this allows us to see the
overall behavior of the system. And besides, nothing beats the truth. People tend to rely a
bit too much on computers and calculators nowadays, without pausing to think about what
is actually going on in a problem.

The skill to do math on a page
Has declined to the point of outrage.
Equations quadratica
Are solved on Math’matica,
And on birthdays we don’t know our age.
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1.5 Problems

Section 1.2: Units, dimensional analysis

1.1. Escape velocity *
As given below in Exercise 1.9, show that the escape velocity from the earth is v =√

2GMe/R, up to numerical factors. You can use the fact that the form of Newton’s
gravitation force law implies that the acceleration (and hence overall motion) of the
particle doesn’t depend on its mass.

1.2. Mass in a tube *
A tube of mass M and length ` is free to swing by a pivot at one end. A mass m
is positioned inside the (frictionless) tube at this end. The tube is held horizontal
and then released (see Fig. 1.5). Let η be the fraction of the tube that the mass has

M

l

m

Figure 1.5
traversed by the time the tube becomes vertical. Does η depend on `?

1.3. Waves in a fluid *
How does the speed of waves in a fluid depend on its density, ρ, and “Bulk Modulus,”
B (which has units of pressure, which is force per area)?

1.4. Vibrating star *
Consider a vibrating star, whose frequency ν depends (at most) on its radius R, mass
density ρ, and Newton’s gravitational constant G. How does ν depend on R, ρ, and
G?

1.5. Damping **
A particle with mass m and initial speed V is subject to a velocity-dependent damping
force of the form bvn.

(a) For n = 0, 1, 2, . . ., determine how the stopping time depends on m, V , and b.

(b) For n = 0, 1, 2, . . ., determine how the stopping distance depends on m, V , and
b.

Be careful! See if your answers make sense. Dimensional analysis gives the answer
only up to a numerical factor. This is a tricky problem, so don’t let it discourage you
from using dimensional analysis. Most applications of dimensional analysis are quite
straightforward.

Section 1.3: Approximations, limiting cases

1.6. Projectile distance *
A person throws a ball (at an angle of her choosing, to achieve the maximum distance)
with speed v from the edge of a cliff of height h. Assuming that one of the following
quantities is the maximum horizontal distance the ball can travel, which one is it?
(Don’t solve the problem from scratch, just check special cases.)

gh2

v2
,

v2

g
,

√
v2h

g
,

v2

g

√
1 +

2gh

v2
,

v2

g

(
1 +

2gh

v2

)
,

v2/g

1− 2gh
v2

. (1.16)
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Section 1.4: Solving differential equations numerically

1.7. Two masses, one swinging **
Two equal masses are connected by a string that hangs over two pulleys (of negligible
size), as shown in Fig. 1.6. The left mass moves in a vertical line, but the right mass is

m

r

m

Figure 1.6

free to swing back and forth in the plane of the masses and pulleys. It can be shown
(see Problem 6.4) that the equations of motion for r and θ (labeled in the figure) are

2r̈ = rθ̇2 − g(1− cos θ),

θ̈ = −2ṙθ̇

r
− g sin θ

r
. (1.17)

Assume that both masses start out at rest, with the right mass making an initial angle
of 10◦ = π/18 with the vertical. If the initial value of r is 1m, how much time does it
take for it to reach a length of 2 m? Write a program to solve this numerically. Use
g = 9.8m/s2.
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1.6 Exercises

Section 1.2: Units, dimensional analysis

1.8. Pendulum on the moon

If a pendulum has a period of 3 s on the earth, what would its period be if it were
placed on the moon? Use gM/gE ≈ 1/6.

1.9. Escape velocity *
The escape velocity on the surface of a planet is given by

v =

√
2GM

R
, (1.18)

where M and R are the mass and radius of the planet, respectively, and G is Newton’s
gravitational constant. (The escape velocity is the velocity needed to refute the “What
goes up must come down” maxim, neglecting air resistance.)

(a) Write v in terms of the average mass density ρ, instead of M .
(b) Assuming that the average density of the earth is four times that of Jupiter, and

that the radius of Jupiter is 11 times that of the earth, what is vJ/vE?

1.10. Downhill projectile *
A hill is sloped downward at an angle θ with respect to the horizontal. A projectile
of mass m is fired with speed v0 perpendicular to the hill. When it eventually lands
on the hill, let its velocity make an angle β with respect to the horizontal. Which of
the quantities θ, m, v0, and g does the angle β depend on?

1.11. Waves on a string *
How does the speed of waves on a string depend its mass M , length L, and tension
(that is, force) T?

1.12. Vibrating water drop *
Consider a vibrating water drop, whose frequency ν depends on its radius R, mass
density ρ, and surface tension S. The units of surface tension are (force)/(length).
How does ν depend on R, ρ, and S?

Section 1.3: Approximations, limiting cases

1.13. Atwood’s machine *
Consider the “Atwood’s” machine shown in Fig. 1.7, consisting of three masses andm1

m2

m3

Figure 1.7

three frictionless pulleys. It can be shown that the acceleration of m1 is given by (just
accept this):

a1 = g
3m2m3 −m1(4m3 + m2)
m2m3 + m1(4m3 + m2)

, (1.19)

with upward taken to be positive. Find a1 in the following special cases:

(a) m2 = 2m1 = 2m3.
(b) m1 much larger than both m2 and m3.
(c) m1 much smaller than both m2 and m3.
(d) m2 À m1 = m3.
(e) m1 = m2 = m3.
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1.14. Cone frustum *
A cone frustum has base radius b, top radius a, and height h, as shown in Fig. 1.8.

h

b

a

Figure 1.8
Assuming that one of the following quantities is the volume of the frustum, which one
is it? (Don’t solve the problem from scratch, just check special cases.)

πh

3
(a2 + b2),

πh

2
(a2 + b2),

πh

3
(a2 + ab + b2),

πh

3
· a4 + b4

a2 + b2
, πhab. (1.20)

1.15. Landing at the corner *
A ball is thrown at an angle θ up to the top of a cliff of height L, from a point a
distance L from the base, as shown in Fig. 1.9. Assuming that one of the following

θ

L

v

L

0

Figure 1.9

quantities is the initial speed required to make the ball hit right at the edge of the
cliff, which one is it? (Don’t solve the problem from scratch, just check special cases.)
√

gL

2(tan θ − 1)
,

1

cos θ

√
gL

2(tan θ − 1)
,

1

cos θ

√
gL

2(tan θ + 1)
,

√
gL tan θ

2(tan θ + 1)
. (1.21)

1.16. Projectile with drag **
Consider a projectile subject to a drag force F = −mαv. If it is fired with speed v0

at an angle θ, it can be shown that the height as a function of time is given by (just
accept this here; it’s one of the tasks of Exercise 3.53)

y(t) =
1
α

(
v0 sin θ +

g

α

)(
1− e−αt

)
− gt

α
. (1.22)

Show that this reduces to the usual projectile expression, y(t) = (v0 sin θ)t− gt2/2, in
the limit of small α. What exactly is meant by “small α”?

Section 1.4: Solving differential equations numerically
1.17. Pendulum **

A pendulum of length ` is released from the horizontal position. It can be shown that
the tangential F = ma equation is (where θ is measured with respect to the vertical)

θ̈ = −g sin θ

`
. (1.23)

If ` = 1m, and g = 9.8m/s2, write a program to show that the time it takes the
pendulum to swing down through the vertical position is t ≈ 0.592 s. This happens
to be about 1.18 times the (π/2)

√
`/g ≈ 0.502 s it would take the pendulum to swing

down if it were released from very close to the vertical (this is 1/4 of the standard
period of 2π

√
`/g for a pendulum). It also happens to be about 1.31 times the√

2`/g ≈ 0.452 s it would take a mass to simply freefall a height `.

1.18. Distance with damping **
A mass is subject to a damping force proportional to its velocity, which means that
the equation of motion takes the form ẍ = −Aẋ, where A is some constant. If the
initial speed is 2 m/s, and if A = 1 s−1, how far has the mass traveled at 1 s? 10 s?
100 s? You should find that the distance approaches a limiting value.
Now assume that that mass is subject to a damping force proportional to the square of
its velocity, which means that the equation of motion now takes the form ẍ = −Aẋ2,
where A is some constant. If the initial speed is 2 m/s, and if A = 1m−1, how far
has the mass traveled at 1 s? 10 s? 100 s? How about some larger powers of 10? You
should find that the distance keeps growing, but slowly like the log of t. (The results
for these two forms of the damping are consistent with the results of Problem 1.5.)
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1.7 Solutions

1.1. Escape velocity

It is tempting to use the same reasoning as in the low-orbit satellite example in Section 1.2.
This reasoning gives the same result, v = C

√
gR = C

√
GMe/R, where C is some number

(it turns out that C =
√

2). Although this solution yields the correct answer, it isn’t quite
rigorous, in view of the footnote in the low-orbit satellite example. Because the particle isn’t
always at the same radius, the force changes, so it isn’t obvious that we can absorb the Me

and G dependence into one quantity, g, as we did with the orbiting satellite. Let us therefore
be more rigorous with the following reasoning.

The dimensionful quantities in the problem are [m] = M , the radius of the earth [R] = L,
the mass of the earth [Me] = M , and Newton’s gravitational constant [G] = L3/MT 2. These
units for G follow from the gravitational force law, F = Gm1m2/r2. If we use no information

other than these given quantities, then there is no way to arrive at the speed of C
√

GMe/R,
because for all we know, there could be a factor of (m/Me)

7 in the answer. This number is
dimensionless, so it wouldn’t mess up the units.

If we want to make any progress in this problem, we have to use the fact that the gravitational
force takes the form of GMem/r2. This then implies (as was stated in the problem) that
the acceleration is independent of m. And since the path of the particle is determined by
its acceleration, we see that the answer can’t depend on m. We are therefore left with the
quantities G, R, and Me, and you can show that the only combination of these quantities
that gives the units of speed is v = C

√
GMe/R.

1.2. Mass in a tube

The dimensionful quantities are [g] = L/T 2, [`] = L, [m] = M , and [M ] = M . We want
to produce a dimensionless number η. Since g is the only constant involving time, η cannot
depend on g. This then implies that η cannot depend on `, which is the only length remaining.
Therefore, η depends only on m and M (and furthermore only on the ratio m/M , since we
want a dimensionless number). So the answer to the stated problem is, “No.”

It turns out that you have to solve the problem numerically if you actually want to find η
(see Problem 8.5). Some results are: If m ¿ M , then η ≈ 0.349. If m = M , then η ≈ 0.378.
And if m = 2M , then η ≈ 0.410.

1.3. Waves in a fluid

We want to make a speed, [v] = L/T , out of the quantities [ρ] = M/L3, and [B] = [F/A] =
(ML/T 2)/(L2) = M/(LT 2). We can play around with these quantities to find the com-
bination that has the correct units, but let’s do it the no-fail way. If v ∝ ρaBb, then we
have

L

T
=

(
M

L3

)a (
M

LT 2

)b

. (1.24)

Matching up the powers of the three kinds of units on each side of this equation gives

M : 0 = a + b, L : 1 = −3a− b, T : −1 = −2b. (1.25)

The solution to this system of equations is a = −1/2 and b = 1/2. Therefore, our answer

is v ∝
√

B/ρ. Fortunately, there was a solution to this system of three equations in two
unknowns.

1.4. Vibrating star

We want to make a frequency, [ν] = 1/T , out of the quantities [R] = L, [ρ] = M/L3, and
[G] = L3/(MT 2). These units for G follow from the gravitational force law, F = Gm1m2/r2.
As in the previous problem, we can play around with these quantities to find the combination
that has the correct units, but let’s do it the no-fail way. If ν ∝ RaρbGc, then we have

1

T
= La

(
M

L3

)b
(

L3

MT 2

)c

. (1.26)



1.7. SOLUTIONS I-17

Matching up the powers of the three kinds of units on each side of this equation gives

M : 0 = b− c, L : 0 = a− 3b + 3c, T : −1 = −2c. (1.27)

The solution to this system of equations is a = 0, and b = c = 1/2. Therefore, our answer is
ν ∝ √

ρG. So it turns out that there is no R dependence.

Remark: Note the difference in the given quantities in this problem (R, ρ, and G) and the ones in

Exercise 1.12 (R, ρ, and S). In this problem with the star, the mass is large enough so that we can

ignore the surface tension, S. And in Exercise 1.12 with the drop, the mass is small enough so that

we can ignore the gravitational force, and hence G. ♣
1.5. Damping

(a) The constant b has units [b] = [Force][v−n] = (ML/T 2)(T n/Ln). The other quantities
are [m] = M and [V ] = L/T . There is also n, which is dimensionless. You can show
that the only combination of these quantities that has units of T is

t = f(n)
m

bV n−1
, (1.28)

where f(n) is a dimensionless function of n.

For n = 0, we have t = f(0) mV/b. This increases with m and V , and decreases with b,
as it should.

For n = 1, we have t = f(1) m/b. So we seem to have t ∼ m/b. This, however, cannot
be correct, because t should definitely grow with V . A large initial speed V1 requires
some nonzero time to slow down to a smaller speed V2, after which time we simply
have the same scenario with initial speed V2. So where did we go wrong? After all,
dimensional analysis tells us that the answer does have to look like t = f(1) m/b, where
f(1) is a numerical factor. The resolution to this puzzle is that f(1) is infinite. If we
worked out the problem using F = ma, we would encounter an integral that diverges.
So for any V , we would find an infinite t. 6

Similarly, for n ≥ 2, there is at least one power of V in the denominator of t. This
certainly cannot be correct, because t should not decrease with V . So f(n) must likewise
be infinite for all of these cases.

The moral of this exercise is that sometimes you have to be careful when using dimen-
sional analysis. The numerical factor in front of your answer nearly always turns out to
be of order 1, but in some strange cases it turns out to be 0 or ∞.

Remark: For n ≥ 1, the expression in eq. (1.28) still has relevance. For example, for n = 2,

the m/(V b) expression is relevant if you want to know how long it takes to go from V to some

final speed Vf . The answer involves m/(Vf b), which diverges as Vf → 0. ♣
(b) You can show that the only combination of the quantities that has units of L is

` = g(n)
m

bV n−2
, (1.29)

where g(n) is a dimensionless function of n.

For n = 0, we have ` = g(0) mV 2/b. This increases with V , as it should.

For n = 1, we have ` = g(1) mV/b. This increases with V , as it should.

For n = 2 we have ` = g(2) m/b. So we seem to have ` ∼ m/b. But as in part (a), this
cannot be correct, because ` should definitely depend on V . A large initial speed V1

requires some nonzero distance to slow down to a smaller speed V2, after which point
we simply have the same scenario with initial speed V2. So, from the reasoning in part
(a), the total distance is infinite for n ≥ 2, because the function g is infinite.

6The total time t is actually undefined, because the particle never comes to rest. But t does grow with
V , in the sense that if t is defined to be the time to slow down to some certain small speed, then t grows
with V .
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Remark: Note that for integral n 6= 1, t and ` are either both finite or both infinite. For

n = 1, however, the total time is infinite, whereas the total distance is finite. This situation

actually holds for 1 ≤ n < 2, if we want to consider fractional n. ♣

1.6. Projectile distance

All of the possible answers have the correct units, so we’ll have to figure things out by looking
at special cases. Let’s look at each choice in turn:

gh2

v2
: Incorrect, because the answer shouldn’t be zero for h = 0. Also, it shouldn’t grow

with g. And even worse, it shouldn’t be infinite for v → 0.

v2

g
: Incorrect, because the answer should depend on h.

√
v2h

g
: Incorrect, because the answer shouldn’t be zero for h = 0.

v2

g

√
1 +

2gh

v2
: Can’t rule this out, and it happens to be the correct answer.

v2

g

(
1 +

2gh

v2

)
: Incorrect, because the answer should be zero for v → 0. But this expression

goes to 2h for v → 0.

v2/g

1− 2gh
v2

: Incorrect, because the answer shouldn’t be infinite for v2 = 2gh.

1.7. Two masses, one swinging

As in Section 1.4, we’ll write a Maple program. We’ll let q stand for θ, and we’ll use the
notation where q1 stands for θ̇, and q2 stands for θ̈. Likewise for r. We’ll run the program
for as long as r < 2. As soon as r exceeds 2, the program will stop and print the value of the
time.

r:=1: # initial r value

r1:=0: # initial r speed

q:=3.14/18: # initial angle

q1:=0: # initial angular speed

e:=.001: # small time interval

i:=0: # i counts the number of time steps

while r<2 do # run the program until r=2

i:=i+1: # increase the counter by 1

r2:=(r*q1^2-9.8*(1-cos(q)))/2: # the first of the given eqs

r:=r+e*r1: # how r changes, by definition of r1

r1:=r1+e*r2: # how r1 changes, by definition of r2

q2:=-2*r1*q1/r-9.8*sin(q)/r: # the second of the given eqs

q:=q+e*q1: # how q changes, by definition of q1

q1:=q1+e*q2: # how q1 changes, by definition of q2

end do: # the Maple command to stop the do loop

i*e; # print the value of the time

This yields a time of t = 8.057 s. If we instead use a time interval of .0001 s, we obtain
t = 8.1377 s. And a time interval of .00001 s gives t = 8.14591 s. So the correct time must be
somewhere around 8.15 s.


