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Abstract. The stochastic iterated prisoner’s dilemma is a kind of iterated

prisoner’s dilemma game where the strategies of the players are specified in
terms of cooperation probabilities. In particular, if both players use finite-

memory strategies, then the game can be modeled by a Markov chain. The

purpose of this paper is to discuss several important types of strategies related
to such a game, especially, zero-determinant strategies. In addition to a de-

scription of the results obtained by William H. Press and Freeman J. Dyson

(2012) and Ethan Akin (2013), the paper contains more details and verifica-
tions. Moreover, while the main concern is memory-one strategies, the author

gives some generalizations in the last section.
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1. A brief review of Markov process

In this section we shall give a brief review of Markov process mainly based on [1].
In particular, we focus on the discrete-time Markov chain and emphasize its long
run behavior, which will serve as a foundation for the following discussion about
the stochastic iterated prisoner’s dilemma.

Generally speaking, a Markov process {Xt} is a stochastic process such that
given its current state, the future of the process is conditionally independent of the
past history of the process. A Markov chain is a Markov process whose state
space is a finite or countable set, usually labeled by {0, 1, 2, ...}. More formally, we
give the definition of the discrete-time Markov chain:
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Definition 1.1. A discrete-time Markov chain is a stochastic process with a
finite or countable set as state space and with T = {0, 1, 2, ...} as time index set
such that it satisfies the Markov property:

Pr(Xn+1 = j|X0 = i0, ..., Xn−1 = in−1, Xn = i) = Pr(Xn+1 = j|Xn = i)

for all time points n and all possible states i0, ..., in−1, i, j. Here Pr(·) is the standard
notation for probability.

The conditional probability of Xn+1 being in state j given Xn being in state
i, Pr(Xn+1 = j|Xn = i), is called a one-step transition probability. If all
these one-step transition probabilities are independent of the time variable n, such
a Markov chain is called time-homogeneous and is said to have stationary
transition probabilities which are denoted by Pij . We restrict our attention to
this kind of Markov chains, since the process analyzed in the following sections is
of this type.

Usually, these numbers Pij are arranged in a matrix, called the one-step tran-
sition probability matrix, or just transition probability matrix:

P =


P00 P01 P02 ...
P10 P11 P12 ...
P20 P21 P22 ...
... ... ... ...

 .
A Markov process is completely determined by its transition probability matrix and
the initial state/initial distribution.

Similar to the one-step transition probabilities, we also have n-step transition
probabilities, Pr(Xm+n = j|Xm = i). For stationary Markov chains, these prob-

abilities are denoted by P
(n)
ij . Putting all of them into a matrix, one can get a

n-step transition probability matrix P(n) = [P
(n)
ij ]. There is an important re-

lation between the one-step transition probability matrix and the n-step transition
probability matrix: P(n) = P×P× ...×P︸ ︷︷ ︸

n times

= Pn.

Next we shall present some results about the long run behavior of Markov chains.

Definition 1.2. A transition probability matrix, or the corresponding Markov
chain, is called regular if there is some positive integer k such that the transition
matrix P to the power of k, Pk, has all its elements strictly positive.

Theorem 1.3. Let P be a regular transition probability matrix on a finite set of
states {0, 1, 2, ..., N}. Then there exists a limiting distribution (π0, π1, ..., πN )
such that for any states i and j, as n→∞,

P
(n)
ij → πj > 0, and, therefore,Pr(Xn = j)→ πj > 0,

where (π0, π1, ..., πN ) is the unique solution to{
πj =

∑N
k=0 πkPkj , j = 0, 1, ..., N,∑N

k=0 πk = 1.

If we let π = (π0, π1, ..., πN ), then the system of the first N + 1 equations above is
just equivalent to π = πP. Combining with π · 1 = 1, where 1 = (1, 1, ..., 1), one
can get the unique π, which has all its entries positive.
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We omit here the proof of the above theorem due to the limited space. There
are also other equivalent ways to state the theorem. The associated proofs can be
found in many materials for the stochastic process, such as [2], [3] and [4].

In some other situations, there can be no limiting distribution but there exist
so-called stationary probability distributions.

Definition 1.4. Let S = {0, 1, 2, ...} be the state space of the Markov chain and P
be the corresponding matrix. The row vector v is called a stationary probability
distribution if it satisfies

v = vP; v · 1 = 1; 0 ≤ vj ≤ 1 ∀j ∈ S.

Remark 1.5. Given any initial distribution v(0) as a row vector, then v(n+1) =
v(n)P for n = 0, 1, 2, ..., where v(k) is a row vector standing for the distribution over
states after k transitions. The distribution v in Definition 1.4 is named stationary
distribution because if Pr(X0 = i) = vi for all i ∈ S, then Pr(Xn = i) = vi for all
n = 0, 1, 2, ... and i ∈ S. This can be easily seen by noting that for n = 1:

Pr(X1 = i) =

∞∑
k=0

Pr(X0 = k) Pr(X1 = i|X0 = k) =

∞∑
k=0

vkPki = vi.

Moreover, if the limiting distribution exists, then it is the unique stationary dis-
tribution. Otherwise there can be more than one stationary distribution. For
finite-state Markov chains it turns out that there always exists some stationary
distribution v. One proof is given by the Krylov-Bogoliubov Argument, as [4] sug-
gests. The rough idea is as follows. Note that probability simplex is compact and
thus any sequence in it has a convergent subsequence, by the Bolzano-Weierstrass
property. If we consider the sequence of the so-called Cesaro averages {an}, where
an = 1

n

∑n
k=1 v(k), then it must have some subsequence {ank

} that converges to
some v. Such v can be proved to be a stationary distribution.

2. Derivation of zero-determinant strategies

In game theory, there is a typical model, called prisoner’s dilemma (PD), which
gives a mathematical description of many situations in real life. Prisoner’s dilemma
is a two-person general-sum game with following rules. Two players, X and Y,
choose their actions simultaneously without knowing the other’s choice. Two pure
strategies, cooperation (C) and defection (D), and any randomized strategies over
these two pure ones are the available strategies for both players. If both cooperate,
each will earn a reward (R). If one defects and the other cooperates, the defector will
get a larger temptation payoff (T) while the cooperator will get a smaller sucker’s
payoff (S). If both defect, each will gain a punishment payoff (P). For prisoner’s
dilemma, the values of R,T,S and P should satisfy two conditions: T > R > P > S
and 2R > T + S. The former guarantees that mutual defection is the only Nash
Equilibrium for the one-shot prisoner’s dilemma and the latter ensures mutual
cooperation to be globally optimal. Conventionally, (T,R, P, S) = (5, 3, 1, 0).

If the game is played only once or only a fixed number of times, there is no
room for the emergence of cooperation, but this is not the case when the game is
played infinitely. This is one reason why (infinitely) iterated prisoner’s dilemma
(IPD), in which the same two players meet again and again, has drawn so much
attention. There are many beautiful results related to this game. Here we introduce
a newly revealed type of strategy, called zero-determinant strategies, discovered
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by William H. Press and Freeman J. Dyson [5]. This type of strategy overturns the
traditional belief that there is no ultimatum strategy for a player to unilaterally
claim an unfair share of rewards. In their original paper [5], they presented several
impressive results with brief explanations. Here we shall follow their derivation and
supplement more details.

Before going on, we clearly state the following assumptions that we make for the
game:

(1) What a player cares about is only the long run expected payoff per round.
(2) Each player can only remember the outcome of the single previous round and

thus uses memory-one strategies. This implies that the repeated prisoner’s
dilemma game follows a four-state Markov chain. (In the Appendix A of [5], it
is shown that we can make this assumption without loss of generality in some
sense. Moreover, the game can be described as a finite-state Markov chain as
long as both players choose strategies based on finite memory, as discussed in
Section §6.)

In each single round there are four possible outcomes, xy ∈ {CC,CD,DC,DD},
where x and y represent X’s and Y’s choices respectively and C and D denote
cooperation and defection. Then we can represent a memory-one strategy by a
four tuple specifying the probability of cooperation in the current round given the
outcome of the previous move: X’s strategy is p = (p1, p2, p3, p4) corresponding to
the previous outcome xy ∈ {CC,CD,DC,DD}; Y’s strategy, from his viewpoint,
is q = (q1, q2, q3, q4) given the previous outcome yx ∈ {CC,CD,DC,DD}. Note
that p2 and q3 do not correspond to the same previous outcome as X and Y look
at the game from their own views. (In fact, if we instead treat the payoff that one
gets in a round of the game as its outcome, the indices 1, 2, 3, 4 in one’s strategy
vector just correspond to his own previous payoffs R,S, T, P , which is possibly a
more consistent description.) This way of specifying strategies allows us to treat
the game as a stochastic process, and we call it stochastic iterated prisoner’s
dilemma. Furthermore, as already mentioned, this process is Markov. In the
following we shall describe the game from X’s point of view. The state space of the
Markov chain is {CC,CD,DC,DD} with the first letter representing X’s choice.

With all these at hand and keeping in mind that two players move simultaneously
in each round, we can then calculate the 16 transition probabilities and write out
the transition probability matrix for the game, denoted by P(p,q) since it is fully
determined by the two player’s strategies, p and q. For instance, the probability
of getting an outcome xy = CD given the previous outcome xy = CD equals
p2(1− q3). Then P(p,q) equals:

p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q3 p2(1− q3) (1− p2)q3 (1− p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 (1− p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)

 .
Our derivation in this section is for the case where there is a unique limiting

distribution for the Markov matrix P(p,q) defined above. Then the long run
expected payoff per round is just the payoff in the Markov limiting state. When
the Markov matrix P(p,q) has no unique limiting distribution, we can also give
similar results (see Section §5).
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According to Theorem 1.3, the limiting distribution row vector π of the Markov
matrix P = P(p,q) or any nonzero multiple w of π (in the following, we may call
w the limiting vector) should satisfy

wP = w.

If we let L := P− I4 where In is the n×n identity matrix, then the above equation
is equivalent to

wL = 0, where 0 = (0, 0, 0, 0).

Since wL = 0 has nonzero solution w, L is singular. That is, L has zero determi-
nant: det(L) = 0.

Recall Cramer’s rule:

Proposition 2.1. Let A be an n× n matrix and In be the n× n identity matrix.
Let Adj(A) denote the adjugate matrix of A, defined to be the transpose of the
cofactor matrix of A. Then Adj(A)A = det(A)In.

Applying Cramer’s rule to L, along with det(L) = 0, we get

Adj(L)L = det(L)I4 = 04,4,

where 0n,n is the n× n zero matrix. If we let Lij represent the (i, j) cofactor of L,
then Adj(L) can be expressed explicitly:

Adj(L) =


L11 L21 L31 L41

L12 L22 L32 L42

L13 L23 L33 L43

L14 L24 L34 L44

 .
For the Markov chain with a unique limiting distribution, the solution to the

equation wL = 0 (or wP = w) is unique up to a scalar factor. That is to say,
the solution space of wL = 0 is one dimensional. Since L is a 4 × 4 matrix, we
have rank(L) = 3. Therefore, Adj(L) must be a nonzero matrix. Without loss of
generality (See Remark 2.9), we may assume that the fourth row (L14,L24,L34,L44)
of Adj(L) is nonzero.

Moreover, since wL = 0 and Adj(L)L = 04,4, noting that wL = 0 has one-
dimensional solution space, we can conclude that every row of Adj(L) must be
proportional to w. Thus, w = η(L14,L24,L34,L44) for some η 6= 0.

Now we are ready to figure out a formula for the dot product of the limiting
vector w with an arbitrary four-dimensional vector f = (f1, f2, f3, f4). By the
definition of dot product, we know:

w · f = η(L14f1 + L24f2 + L34f3 + L44f4).
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Now We can thus transform L to L′ by adding column one to column two and
column three respectively:

L := P− I4

=


p1q1 − 1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q3 p2(1− q3)− 1 (1− p2)q3 (1− p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 − 1 (1− p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)− 1



⇒


p1q1 − 1 p1 − 1 (1− p1)q1 (1− p1)(1− q1)
p2q3 p2 − 1 (1− p2)q3 (1− p2)(1− q3)
p3q2 p3 (1− p3)q2 − 1 (1− p3)(1− q2)
p4q4 p4 (1− p4)q4 (1− p4)(1− q4)− 1



⇒


p1q1 − 1 p1 − 1 q1 − 1 (1− p1)(1− q1)
p2q3 p2 − 1 q3 (1− p2)(1− q3)
p3q2 p3 q2 − 1 (1− p3)(1− q2)
p4q4 p4 q4 (1− p4)(1− q4)− 1

 = L′.

Let L′ij represent the (i, j) cofactor of L′. Recall that for any matrix, if a multiple
of a column is added to another column, the determinant of the matrix remains
the same. Note that only the first three columns of L have been manipulated, so
it is easy to see Li4 = L′i4 for i = 1, 2, 3, 4. If we replace the last column of L′

by the transpose of the arbitrary four-dimensional vector f = (f1, f2, f3, f4) and
then compute the determinant of the corresponding matrix by expanding along the
fourth column, a relation between this determinant and the value of w · f will show
up:

det


p1q1 − 1 p1 − 1 q1 − 1 f1
p2q3 p2 − 1 q3 f2
p3q2 p3 q2 − 1 f3
p4q4 p4 q4 f4

 =f1L′14 + f2L′24 + f3L′34 + f2L′44

=L14f1 + L24f2 + L34f3 + L44f4 =
1

η
(w · f).

The formula derived above is summarized as a proposition:

Proposition 2.2. Suppose P is the transition matrix for a Markov chain with
limiting distribution. Assume the fourth row of Adj(L) is nonzero. Let w be the
limiting row vector, possibly without normalization. That is, w is a vector satisfying
wP = w. Then for any four-dimensional vector f = (f1, f2, f3, f4), there exists
some η 6= 0 that depends on w only, such that the following equation holds:

w · f = ηD(p,q, f),whereD(p,q, f) := det


p1q1 − 1 p1 − 1 q1 − 1 f1
p2q3 p2 − 1 q3 f2
p3q2 p3 q2 − 1 f3
p4q4 p4 q4 f4

 .
This result is very interesting because the determinant D(p,q, f) has a peculiar

feature: its second column (p1 − 1, p2 − 1, p3, p4)T only depends on X’s strategy
p = (p1, p2, p3, p4); its third column (q1 − 1, q3, q2 − 1, q4)T only depends on Y’s
strategy q = (q1, q2, q3, q4). For convenience, we denote the transposes of the second
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column and third column by p̃ and q̂, respectively:

p̃ := (p1 − 1, p2 − 1, p3, p4), q̂ := (q1 − 1, q3, q2 − 1, q4).

Since the exact limiting distribution vector π has its components sum to 1, π =
w
w·1 . Recall that we describe the state space of the process as xy ∈ {CC,CD,DC,DD}.
The corresponding payoff vectors for X and Y are SX = (R,S, T, P ) and SY =
(R, T, S, P ), respectively. Therefore the expected payoff per round under the lim-
iting distribution of the Markov chain, sX and sY , are:

sX = π · SX =
w

w · 1
· SX =

w · SX

w · 1
=
ηD(p,q,SX)

ηD(p,q,1)
=
D(p,q,SX)

D(p,q,1)
,(2.3)

sY = π · SY =
w

w · 1
· SY =

w · SY

w · 1
=
ηD(p,q,SY)

ηD(p,q,1)
=
D(p,q,SY)

D(p,q,1)
,(2.4)

where 1 = (1, 1, 1, 1). Note that the denominator, D(p,q,1), in the above expres-
sions cannot be zero under the assumption that the Markov chain has a unique
limiting distribution. This can be seen by recalling that w is a nonzero multiple
of the limiting distribution π which has all entries non-negative with sum one and
D(p,q,1) equals to w · 1 which is just the sum of all entries of w.

Also notice that the expected payoff for a player (Equations (2.3) and (2.4))
depends linearly on his/her own payoff vector. As a consequence, we can perform
linear combination of the expected payoffs of the two players:

αsX + βsY + γ =
D(p,q, αSX + βSY + γ1)

D(p,q,1)
.(2.5)

Equation (2.5) is the key to establish the following crucial proposition:

Proposition 2.6. It is possible for both players to choose some strategies to uni-
laterally enforce a linear relation between their expected payoffs. More precisely,
for some (not all) values of α, β and γ, if X can choose a strategy satisfying
p̃ = (p1 − 1, p2 − 1, p3, p4) = αSX + βSY + γ1, or if Y can choose a strategy
satisfying q̂ = (q1 − 1, q3, q2 − 1, q4) = αSX + βSY + γ1, then regardless of the
opponent’s strategy, a linear relation between the expected payoffs of the two players
in the limiting state will hold:

αsX + βsY + γ = 0.(2.7)

Proof. Based on what we have derived, the proof is straightforward. Recall that if
a matrix has two columns identical or proportional, its determinant is zero. Also
recall that D(p,q, αSX + βSY + γ1) has its second column fully controlled by X.
So if X chooses a satisfying p̃ = (p1 − 1, p2 − 1, p3, p4) = αSX + βSY + γ1, then
the second and the fourth column of D(p,q, αSX + βSY + γ1) will be identical
and thus D(p,q, αSX + βSY + γ1) = 0, no matter what the values of the other

two columns are. This implies αsX + βsY + γ = D(p,q,αSX+βSY+γ1)
D(p,q,1) = 0. X can

enforce this relation without considering Y’s strategy. A similar argument can be
used to prove that Y has such a power as well by choosing a strategy satisfying
q̂ = (q1 − 1, q3, q2 − 1, q4) = αSX + βSY + γ1. �

Definition 2.8. Zero-determinant (ZD) strategies refer to the strategies de-
scribed in Proposition 2.6.
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Remark 2.9. If we assume some other row, instead of the fourth row, of Adj(L)
is nonzero and therefore use that row to express w, we can get similar results
as Proposition 2.2 with the only possible difference being the exact expression of
D(p,q, f). But we can still have two columns be p̃T and q̂T defined above in the
expression of D(p,q, f). Equations (2.3) and (2.4) also hold and we can still define
the same zero-determinant strategies as in Proposition 2.6.

Notice that to be feasible, strategies p and q of X and Y respectively should have
all components between zero and one, which means that it could be the case that for
some α, β and γ there is no zero-determinant strategy feasible for X and/or Y. Even
so, there indeed exist feasible zero-determinant strategies. For instance, if we take
the conventional values (T,R, P, S) = (5, 3, 1, 0), then X can unilaterally enforce a
linear relation 1

16sX −
1
8sY + 1

8 = 0 by adopting the memory-one zero-determinant

strategy p = ( 15
16 ,

1
2 ,

7
16 ,

1
16 ). Note that the linear relation 1

16sX −
1
8sY + 1

8 = 0 is
equivalent to sX − 2sY + 2 = 0.

Moreover, we can use the same argument to derive zero-determinant strategies
for any iterated 2 × 2 games: suppose X has two strategies X1, X2 and Y has
two strategies Y1, Y2. X and Y may have different pure strategies. Then for a
single round, there are four possible outcomes {X1Y1, X2Y1, X2Y1, X2Y2}. Suppose
the corresponding payoff vectors for X and Y are SX = (x1, x2, x3, x4) and SY =
(y1, y2, y3, y4), respectively, then their expected payoffs in the limiting state will
have exactly the same expressions as Equations (2.3) and (2.4). Equation (2.5) and
Proposition 2.6 also hold without any changes.

In the following we still limit our attention to iterated prisoner’s dilemma.

3. Discussion on special kinds of zero-determinant strategies

In this section we shall study some special kinds of zero-determinant strategies
derived in Section §2 more carefully, as [5] did. There are mainly two key applica-
tions of zero-determinant strategies: (1) a player using zero-determinant strategies
can unilaterally set the opponent’s expected payoff to a value within a certain
range; (2) a player using zero-determinant strategies can demand a larger share of
the total payoffs over the mutual defection value. In this case the zero-determinant
strategies are called, according to Press and Dyson [5], extortionate strategies.

We assume that X knows the zero-determinant strategies and our analysis is
from X’s point of view.

3.1. Determine the opponent’s expected payoff unilaterally. According to
Proposition 2.6, a player using zero-determinant strategy can unilaterally enforce
a linear relation between the expected payoffs, as shown in Equation (2.7). In
particular, we can take α = 0 in Equation (2.7). More specifically, if X uses a
strategy such that p̃ = βSY + γ1, then βsY + γ = 0, i.e. sY = − γβ , which is

absolutely determined by X’s strategy p = (p1, p2, p3, p4) and independent of Y’s
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strategy q = (q1, q2, q3, q4). We can also solve the desired strategy explicitly:

p̃ ≡ (p1 − 1, p2 − 1, p3, p4) = βSY + γ1,

⇔(p1 − 1, p2 − 1, p3, p4) = β(R, T, S, P ) + γ(1, 1, 1, 1),

⇒β =
−(1− p1)− p4

R− P
, γ =

(1− p1)P + p4R

R− P
,

⇒p2 =
p1(T − P )− (1 + p4)(T −R)

R− P
, p3 =

(1− p1)(P − S) + p4(R− S)

R− P
.

Therefore, the desired strategy is

p =

(
p1,

p1(T − P )− (1 + p4)(T −R)

R− P
,

(1− p1)(P − S) + p4(R− S)

R− P
, p4

)
.(3.1)

This strategy is feasible if and only if pi ∈ [0, 1] for all i = 1, 2, 3, 4. By solving four
inequalities 0 ≤ pi ≤ 1 simultaneously, we see that the strategy in (3.1) is feasible
if and only if

p1 ∈
[
max

{
T −R
T − P

, 1− R− P
P − S

}
, 1

]
,

p4 ∈
[
0,min

{
T − P
T −R

p1 − 1, 1− (2− p1)(P − S)

R− S

}]
.

Intuitively, for the strategy in (3.1) to be feasible, p1 should be large and p4 should
be small and thus p2 is large and p3 is small.

Under X’s strategy in (3.1), Y’s expected payoff is given by

sY = −γ
β

=
(1− p1)P + p4R

(1− p1) + p4
.

In this case, sY is actually a weighted average of the mutual-defection payoff (P) and
the mutual-cooperation payoff (R). Since 0 ≤ p1, p4 ≤ 1, the range of values of Y’s
expected payoff that can be determined unilaterally by X is [P,R]. If p1 = 1, p4 6= 0,
then sY = R. If p4 = 0, p1 6= 1, then sY = P . For other values of p1 and p4 such
that p is feasible, Y’s score will be between P and R. Note that we must have
p1 6= 1 or p4 6= 0 to calculate sY . p1 = 1 and p4 = 0 in (3.1) imply p = (1, 1, 0, 0)
which is not a valid zero-determinant strategy and will be discussed in a moment.

3.2. Unable to set one’s own payoff. It seems that X should have the ability
to unilaterally set his/her own long run payoff as well by using zero-determinant
strategies. Indeed, if we set β = 0 in Equation (2.7), then X’s expected payoff is
sX = − γ

α . The desired strategy should satisfy p̃ = αSX + γ1:

p̃ = (p1 − 1, p2 − 1, p3, p4) = αSX + γ1,

⇔(p1 − 1, p2 − 1, p3, p4) = α(R,S, T, P ) + γ(1, 1, 1, 1),

⇒α =
−(1− p1)− p4

R− P
, γ =

(1− p1)P + p4R

R− P
,

⇒p2 =
(1 + p4)(R− S)− p1(P − S)

R− P
, p3 =

−(1− p1)(T − P )− p4(T −R)

R− P
.

It is obvious that p3 ≤ 0. Also, since (1 + p4)(R − S) − p1(P − S) − (R − P ) =
(1− p1)(P −S) + p4(R−S) ≥ 0, we know p2 ≥ 1. Hence, there is only one feasible
solution in this case, i.e. p = (p1, p2, p3, p4) = (1, 1, 0, 0). If X uses this strategy,
then the second column of L′ has all elements to be zero and thereforeD(p,q, f) = 0
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for any vector f , so the denominators of Equations (2.3) and (2.4) are zero and hence
we cannot use Proposition 2.6 directly in this case, In essence, this is because there
is no unique limiting distribution for the game if p = (p1, p2, p3, p4) = (1, 1, 0, 0).
On the other hand, using this strategy means that X will either always cooperate
or always defect. As a result, X cannot control his/her long run payoff because it
is influenced by Y’s strategy.

3.3. Demand an extortionate share. By adopting zero-determinant strategies,
it is also possible for X to get a pre-specified extortionate share of the total amount
above the mutual defection payoffs in the long run, as we now elucidate.

We can express the linear relation (2.7) using another form:

sX − P = χ(sY − P ),(3.2)

where χ ≥ 1 is called extortion factor. We may also multiply both sides by
another nonzero parameter, φ, which is used to ensure the feasibility of the strategy,
and move the right hand side to the left:

φ[sX − P − χ(sY − P )] = 0.

To enforce such a linear relation, by Proposition 2.6, what X needs to do is just
choose a strategy satisfying

p̃ = φ[SX − P1− χ(SY − P1)].(3.3)

That is,

p1 = 1− φ(χ− 1)(R− P ), p2 = 1− φ[(P − S) + χ(T − P )],(3.4)

p3 = φ[(T − P ) + χ(P − S)], p4 = 0.(3.5)

Such a strategy is feasible for any χ and sufficiently small φ. Given the value of χ,

0 ≤ pi ≤ 1, i = 1, 2, 3, 4,

⇔ 0 < φ ≤ min

{
1

(P − S) + χ(T − P )
,

1

χ(P − S) + (T − P )

}
.

Using this strategy, called extortionate strategy, X is able to get an extortionate
share, but the absolute amount of payoff for X still depends on Y’s strategy. Since
the payoffs for X and Y are subject to the linear relation (3.2), it is clear that X’s
and Y’s payoff will be maximized at the same time. If Y always cooperates, that
is, if Y uses the strategy q = (1, 1, 1, 1), then in each round of the game X can get
more, compared with the case where Y has a possibility to defect.(In fact, no matter
what strategy X uses, he can get the maximum payoff achievable by his strategy if
he is facing a ”silly” player who cooperates all the time unconditionally.) In other
words, if X uses the extortionate strategy, then Y can maximize his own payoff by
cooperating all the time, which also maximizes X’s payoff and even gives X more
than Y himself. To get an expression for this maximum payoff of X, we can use the
formula obtained in Section §2. Note that with p̃ = φ[SX−P1−χ(SY −P1)] and
q = (1, 1, 1, 1), we have:

D(p,q,SX) = −Tφ(χ− 1)(R− P )−Rφ[(T − P ) + χ(P − S)],

D(p,q,SY) = −Sφ(χ− 1)(R− P )−Rφ[(T − P ) + χ(P − S)],

D(p,q,1) = −φ(χ− 1)(R− P )− φ[(T − P ) + χ(P − S)].
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Therefore, X’s maximum payoff by using the extortionate strategy and and Y’s
maximum payoff when facing an extortionate player are given by

sX =
D(p,q,SX)

D(p,q,1)
=
P (T −R) + χ[R(P − S) + T (R− P )]

(T −R) + χ(R− S)
,

sY =
D(p,q,SY)

D(p,q,1)
=
R(T − S) + (χ− 1)P (R− S)

(T −R) + χ(R− S)
.

A special case is χ = 1, which means that X chooses a strategy to make both
players have the same expected payoff that has maximum R. χ = 1 corresponds to
the strategy p = (1, 0, 1, 0), the famous Tit-for-tat strategy.

Remark 3.6. A natural question here is what will happen if both players use ex-
tortionate strategies, that is, what will happen if both players are trying to earn a
larger share of the total amount above the mutual defection payoffs. It is obvious
that it is impossible for both players to get a larger share simultaneously, but it is
certainly allowed for both players to choose any strategies that they want. Suppose
X chooses an extortionate strategy p such that sX−P = χ1(sY −P ) and Y chooses
an extortionate strategy q such that sY −P = χ2(sX−P ), where χ1 ≥ 1 and χ2 ≥ 1.
Then, p̃ = φ1[SX − P1− χ1(SY − P1)]; q̂ = φ2[SY − P1− χ2(SX − P1)]; φ1 and
φ2 are nonzero parameters such that the strategies are feasible. More explicitly, as
given by (3.4) and (3.5),

p = (1− φ1(χ1 − 1)(R− P ), 1− φ1[(P − S) + χ1(T − P )], φ1[(T − P ) + χ1(P − S)], 0),

q = (1− φ2(χ2 − 1)(R− P ), 1− φ2[(P − S) + χ2(T − P )], φ2[(T − P ) + χ2(P − S)], 0).

Under the two strategies, the payoffs for both players satisfy{
sX − P = χ1(sY − P ),
sY − P = χ2(sX − P ).

When χ1 and χ2 are not equal to 1 at the same time, the only solution is sX =
sY = P . A reasonable explanation comes from the observation that both p4 and q4
are zero. This means that once the two players defect at the same time in a round
of the game, both will defect forever, resulting in the long run expected payoff for
each of them to be P . This result implies that if both players want to extort the
other, then neither of them can get more than P on average in the long run.

When χ1 = 1 as well as χ2 = 1, then certainly we have sX = sY .

4. Further discussion on games with zero-determinant players

Now we shall present more properties of zero-determinant strategies derived in
Section §2 and also discuss the situation where both players use zero-determinant
strategies, based on the results in [6]. For convenience, we shall normalize the
payoffs T,R, P, S. It does no harm if they are added by a same number or multiplied
by a same positive number. As a consequence, without changing the structure of
the game, we can assume that (i) T = 1, S = 0; (ii) 0 < P < R, 12 < R < 1. Then
the payoff vectors in a single game become SX = (R, 0, 1, P ) and SY = (R, 1, 0, P ).

We begin by considering that X is a player using a zero-determinant strategy such
that p̃ = (p1− 1, p2− 1, p3, p4) = αSX + βSY + γ1 = α(R, 0, 1, P ) + β(R, 1, 0, P ) +
γ(1, 1, 1, 1). For the strategy to be feasible, the values of α, β and γ should satisfy
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that so-called sign constraints:

p1 − 1 = (α+ β)R+ γ ≤ 0, p2 − 1 = β + γ ≤ 0,

p3 = α+ γ ≥ 0, p4 = (α+ β)P + γ ≥ 0,

and the so-called size constraints that the absolute value of each entry of p̃ is at
most 1.

Lemma 4.1. If p̃ = αSX +βSY +γ1 satisfies the sign constraints, then α+β ≤ 0
and γ ≥ 0. Moreover, α+ β = 0 if and only if γ = 0.

Proof. Consider the four inequalities under the sign constraints. Subtracting the
fourth from the first gives (α + β)(R − P ) ≤ 0. Since R > P , α + β ≤ 0. The
fourth inequality then implies γ ≥ 0 since P > 0. Using the first and the fourth
again gives that α+ β = 0 if and only if γ = 0. �

According to this Lemma, if α+β = 0, then γ = 0, and vice versa. α+β = γ = 0
gives a strategy p = (1, 1 − α, α, 0), which is a mixture of two common strategies
Tit-for-tat, p = (1, 0, 1, 0), and Repeat, p = (1, 1, 0, 0). This strategy will also be
mentioned in the next section. Excluding this, we can assume that γ > 0 and thus
α+ β < 0. Since now γ 6= 0, we can define

α =
α

γ
, β =

β

γ
.

Then p̃ = γ(αSX + βSY + 1), and the sign constraints become

−P−1 ≤ α+ β ≤ −R−1, β ≤ −1 ≤ α.

Definition 4.2. Define ZDSstrip to be the set {(x, y) : −P−1 ≤ x + y ≤
−R−1, y ≤ −1 ≤ x}.

Any (α, β) ∈ ZDSstrip and sufficiently small γ > 0 give a feasible zero-determinant
strategy p.

Lemma 4.3. Suppose (α, β) ∈ ZDSstrip and α + β = −Z−1. Then we have
−β ≥ max(1, |α|), and furthermore, −β = |α| if and only if α = β = −1. Suppose
(a, b) ∈ ZDSstrip. Then D := βb− αa ≥ 0 with D = 0 if and only if α = β = a =
b = −1. Note that (−1,−1) ∈ ZDSstrip if and only if 0 < P ≤ 1

2 .

Proof. (α, β) ∈ ZDSstrip means that (α, β) satisfies the sign constraints −P−1 ≤
α+β ≤ −R−1 and β ≤ −1 ≤ α. Since α+β = −Z−1, Z satisfies P ≤ Z ≤ R. Then
α + β = −Z−1 and Z ≥ P > 0 imply −β = α + Z−1 > α. On the other hand, by
the sign constraints, −β ≥ 1 ≥ −α and thus −β = −α if and only if α = β = −1.
Combining these we prove the first half of the lemma. For (a, b) ∈ ZDSstrip, we
also have −b ≥ |a| ≥ 0, which means that D := βb−αa ≥ (−β)(−b)−|α||a| ≥ 0 and
the equality holds if and only if −β = |α| and −b = |a|, that is, using the first half
of the lemma, if and only if α = β = a = b = −1. Note that (−1,−1) ∈ ZDSstrip
if and only if −P−1 ≤ −2 ≤ −R−1. Our condition for R, 1

2 < R < 1, makes

−R−1 ≥ −2 always hold. Hence, (−1,−1) ∈ ZDSstrip if and only if −P−1 ≤ −2,
namely, 0 < P ≤ 1

2 . �
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Proposition 4.4. Suppose X uses a feasible zero-determinant strategy p such that
p̃ = γ(αSX + βSY + 1). Let α+ β = −Z−1 ∈ [P,R]. Then for any strategy q used
by Y, the long run expected payoffs to X and Y, sX and sY , satisfy

αZ(sX − sY ) = sY − Z.(4.5)

Let κ = αZ
1+αZ , then for any strategy q used by Y,

κ(sX − Z) = sY − Z.(4.6)

Also, κ < 1 and κ has the same sign as α.

Proof. If p̃ = γ(αSX +βSY +1), then according to Proposition 2.6, sX and sY are
subject to the linear relation

αsX + βsY + 1 = 0.(4.7)

So αZsX + βZsY + Z = 0. Then αZsX + (−Z−1 − α)ZsY + Z = 0 because
β = −Z−1 − α. After rearranging the terms, we get Equation (4.5).

For a feasible zero-determinant strategy p, β ≤ −1 < 0, which implies α =
−Z−1 − β > −Z−1 and thus 1 + αZ > 1 − Z−1Z = 0 since Z ≥ P > 0. So
κ = αZ

1+αZ has the same sign as α and κ = αZ
1+αZ = 1 − 1

1+αZ < 1. Dividing both

sides of Equation (4.5) by (1 + αZ) and rearranging the terms, we get Equation
(4.6). �

Next we consider what will happen if both players use zero-determinant strate-
gies. We begin by looking at Y’s zero-determinant strategy q. Proposition 2.6 shows
that q should be of the form such that q̂ = (q1−1, q3, q2−1, q4) = bSX +aSY + g1
for some numbers a, b and g. Then a, b and g are subject to sign constraints and
size constraints as well, similar to those for X’s strategy p. Y’s version of Lemma
4.1 is:

Lemma 4.8. If q̂ = (q1 − 1, q2, q3 − 1, q4) = bSX + aSY + g1 satisfies the sign
constraints, then a+ b ≤ 0 and g ≥ 0. Moreover, a+ b = 0 if and only if g = 0.

We exclude the case g = 0 as before and focus on the case g > 0 and thus
a + b < 0. Then we can define b = b

g and a = a
g . Then q̂ = g(bSX + aSY + 1),

where b and a satisfy the sign constraints: −P−1 ≤ a+ b ≤ −R−1 and b ≤ −1 ≤ a.
This means that (a, b) should lie in exactly the same feasible set as X’s (α, β), that
is, (a, b) ∈ ZDSstrip. Any (a, b) ∈ ZDSstrip and sufficiently small g > 0 also give
a feasible zero-determinant strategy q.

Y’s version of Proposition 4.4 is:

Proposition 4.9. Suppose Y uses a feasible zero-determinant strategy q such that
q̂ = g(bSX + aSY + 1). Let a+ b = −Z−1 ∈ [P,R]. Then for any strategy p used
by X, the long run expected payoffs to X and Y, sX and sY , satisfy aZ(sY − sX) =
sX − Z. Let κ = aZ

1+aZ , then for any strategy p used by X, κ(sY − Z) = sX − Z.
Also, κ < 1 and κ has the same sign as a.

The next proposition serves as a summary of what will happen in a game of two
zero-determinant players.

Proposition 4.10. Suppose X use a zero-determinant strategy with p̃ = γ(αSX +
βSY + 1) and Y uses a zero-determinant strategy with q̂ = g(bSX + aSY + 1).
Let α + β = −Z−1X and a + b = −Z−1Y ; ZX , ZY ∈ [P,R]. sX and sY are the long
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run expected payoffs to X and Y, respectively. Then, (i) ZX = ZY if and only if
sX = sY , and in this case ZX = ZY = sX = sY ; (ii) sY > sX if and only if
ZX > ZY ; (iii) If ZX > ZY , we have the following: α > 0 ⇒ ZX > sY > sX ;

α = 0 ⇒ ZX = sY > sX ;
α < 0 ⇒ sY > ZX > sX ;

 a > 0 ⇒ sY > sX > ZY ;
a = 0 ⇒ sY > sX = ZY ;
a < 0 ⇒ sY > ZY > sX .

Proof. Proposition 2.6 shows that X’s strategy with p̃ = γ(αSX + βSY + 1) leads
to αsX + βsY + 1 = 0 while Y’s strategy with q̂ = g(bSX + aSY + 1) leads to
bsX + asY + 1 = 0. If they both use such strategies, then sX and sY will satisfy
the two equations, αsX +βsY + 1 = 0 and bsX + asY + 1 = 0, simultaneously. One
singular case is that D := βb−αa = 0, which, by Lemma 4.3, happens if and only if
α = β = a = b = −1. In this case, both strategies are the same and thus both have
the same expected payoff: sX = sY = 1

2 , and ZX = ZY = sX = sY = 1
2 , which is

consistent with part (i). Otherwise D = βb− αa > 0. For this general case,

sX = D−1(a− β), sY = D−1(α− b),(4.11)

⇒ sY − sX = D−1[(α+ β)− (a+ b)] = D−1(Z−1Y − Z
−1
X ).(4.12)

We can further verify that sX , sY ∈ [0, 1] as it should be, by the following argument.
For feasible strategies p̃ and q̂, (α, β) and (a, b) are in the ZDSstrip. So a ≥ −1 ≥ β
and thus sX = D−1(a−β) ≥ 0. On the other hand, since 0 < P ≤ ZX , ZY ≤ R < 1,
we have −β = α + Z−1X > α + 1 ≥ 0 and −b = a + Z−1Y > a + 1 ≥ 0. Note that

−b−1 ≥ 0. So a(α+1) ≤ (−b−1)(−β) = (b+1)β and thus 0 ≤ a−β ≤ βb−αa = D.
This implies sX ≤ 1. Hence sX ∈ [0, 1]. Similarly sY ∈ [0, 1].

(a) On the one hand, if ZX = ZY , then (4.12) implies sX = sY . On the other
hand, according to Proposition 4.4 and Proposition 4.9, we see that sX and sY
satisfy αZX(sX−sY ) = sY −ZX and aZY (sY −sX) = sX−ZY simultaneously.
So if sX = sY , then sX = sY = ZX = ZY . (i) is true.

(b) Observing that D > 0 and sY − sX = D−1(Z−1Y − Z
−1
X ), (ii) is true.

(c) From (ii), assuming ZX > ZY implies sY > sX , i.e. sX − sY < 0. Since
αZX(sX − sY ) = sY − ZX and ZX ≥ P > 0, sY − ZX and α have opposite
signs. Hence, α > 0 ⇒ ZX > sY > sX and α = 0 ⇒ ZX = sY > sX . When
α < 0, then sY > ZX . To compare sX and ZX in this case, we use Equation
(4.6) in Proposition 4.4. sX and sY are linked by κX(sX − ZX) = sY − ZX .
α < 0 implies κX < 0, so sX − ZX and sY − ZX have opposite signs. Since
sY > ZX , sX < ZX . This completes the first half of (iii). A similar argument
applies to the second half if we use the relation aZY (sY − sX) = sX −ZY and
κY (sY − ZY ) = sX − ZY instead.

�

5. Good strategies and strategies of Nash type

In this section we are going to introduce some other strategy concepts in the sto-
chastic iterated prisoner’s dilemma, including agreeable strategies, firm strategies,
good strategies and strategies of Nash type. These concepts are proposed by Ethan
Akin in [6]. As is the case for the stochastic iterated prisoner’s dilemma, both
players, X and Y, specify their strategies in terms of cooperation probabilities, as a
result of which there will be a probability distribution v = (v1, v2, v3, v4) over the
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set of outcomes {CC,CD,DC,DD} in a round of the game. Again, the first letter
represents X’s choice and we still index these four states by 1, 2, 3, 4. v satisfies
v · 1 = 1 and vi ∈ [0, 1] for i = 1, 2, 3, 4. With X’s payoff vector SX = (R,S, T, P )
and Y’s payoff vector SY = (R, T, S, P ) corresponding to the four outcomes, the
expected payoffs to X and Y with respect to the distribution v, denoted by sX and
sY , are given by the dot products:

sX = v · SX, sY = v · SY.

Remember that R,T,S and P satisfy two conditions: T > R > P > S and 2R >
T + S.

Proposition 5.1. Suppose v = (v1, v2, v3, v4) is a distribution. Then, sY − sX =
(T−S)(v2−v3), which implies sY = sX if and only if v2 = v3. Moreover, sX+sY ≤
2R and the following statements are equivalent: (i) sX + sY = 2R; (ii) v1 = 1; (iii)
sX = sY = R.

Proof. The proposition can be proved easily by using sY − sX = v · SY − v · SX =
(v2 − v3)(T − S), sX + sY = v · SY + v · SX = 2v1R + (v2 + v3)(T + S) + 2v4P ,
T > R > P > S and 2R > T + S. �

In the following our discussion is still limited to memory-one strategies. Then
exactly the same as in the previous sections, X’s strategy is p = (p1, p2, p3, p4)
and Y’s strategy, from his viewpoint, is q = (q1, q2, q3, q4). Notice that the same
strategy for X and Y are described by the same probability vector. We still look
at the game from X’s perspective. Let v be a stationary vector associated with the
Markov process of the game. v always exists, according to Remark 1.5. sX and sY
are the expected payoffs to X and Y respectively under the stationary distribution
v.

Definition 5.2. A strategy p is agreeable if p1 = 1 and is firm if p4 = 0.

Example 5.3. The strategies, Tit-for-tat p = (1, 0, 1, 0) and Repeat p = (1, 1, 0, 0),
are both agreeable and firm. The extortionate strategy in Section §3.3 is firm.

Definition 5.4. A memory-one strategy for X is good if (i) it is agreeable; (ii)
for any strategy of Y and any associated stationary distribution, sY ≥ R implies
sX = sY = R. A memory-one strategy is of Nash type if (i) it is agreeable; (ii)
for any strategy of Y and any associated stationary distribution, sY ≥ R implies
sY = R.

By definition, a good strategy is of Nash type but the converse is not true.

Example 5.5. Repeat = (1, 1, 0, 0) is agreeable but not of Nash type and not good:
if both players use Repeat and the outcome of the first round is xy = CD, then
sY = T and sX = S because the same outcome will always occur.

Definition 5.6. Let e12 = (1, 1, 0, 0). The X Press-Dyson vector p̃ = (p̃1, p̃2, p̃3, p̃4)
of a strategy p of X is defined to be p̃ := p−e12, which is just the transpose of the
second column of the matrix L′ in Section §2.

Since the determinant of the matrix whose four columns are SX = (R,S, T, P ),
SY = (R, T, S, P ), 1 = (1, 1, 1, 1) and e23 = (0, 1, 1, 0) respectively is equal to
−2(R − P )(T − S) that is nonzero, SX = (R,S, T, P ),SY = (R, T, S, P ),1 =
(1, 1, 1, 1) and e23 = (0, 1, 1, 0) form a basis for R4. Hence we can write p̃ as
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a linear combination of SX = (R,S, T, P ),SY = (R, T, S, P ),1 = (1, 1, 1, 1) and
e23 = (0, 1, 1, 0): p̃ = αSX + βSY + γ1 + δe23 for some α, β, γ, δ.

Proposition 5.7. Suppose X uses a strategy p with X Press-Dyson vector p̃ and
Y uses a strategy that leads to a sequence of distributions {v(n), n = 1, 2, ...} with
v(k) representing the distribution over the states in the kth round of the game. Let
v be an associated stationary distribution. Then,

lim
n→∞

1

n

n∑
k=1

(v(k) · p̃) = 0, and therefore v · p̃ = 0.

Proof. The probability that X cooperates in the nth round, denoted by v
(n)
12 , is

v
(n)
12 = v

(n)
1 + v

(n)
2 = v(n) · e12. The probability that X cooperates in the (n+ 1)th

round, denoted by v
(n+1)
12 , is v

(n+1)
12 = v(n) · p. Thus,

v
(n+1)
12 − v(n)12 = v(n) · p− v(n) · e12 = v(n) · (p− e12) = v(n) · p̃.

This implies v
(n+1)
12 − v(1)12 =

∑n
k=1(v

(k+1)
12 − v(k)12 ) =

∑n
k=1(v(k) · p̃).

Since 0 ≤ v(k)12 ≤ 1 for any k,

lim
n→∞

1

n

n∑
k=1

(v(k) · p̃) = lim
n→∞

1

n
(v

(n+1)
12 − v(1)12 ) = 0.

For the stationary distribution v that is the limit of some subsequence of the Cesaro
averages { 1n

∑n
k=1 v(k)}, the continuity of the dot product implies v · p̃ = 0.

�

Corollary 5.8. Suppose X uses a strategy p having X Press-Dyson vector p̃ =
αSX+βSY+γ1+δe23 and Y uses any strategy q. Let v be a stationary distribution
of the Markov process of the game. Denote v23 = v · e23 = v2 + v3. Then the long
run expected payoffs per round, sX and sY , satisfy the following linear equation,
called Press-Dyson Equation,

αsX + βsY + γ + δv23 = 0.(5.9)

Proof. According to Proposition 5.7, we have 0 = v · p̃ = αv · SX + βv · SY + γv ·
1 + δv · e23 = αsX + βsY + γ + δv23. �

In particular, if we take δ = 0, then under the stationary state, using strategy
p̃ = αSX + βSY + γ1 can unilaterally enforce a linear relation αsX + βsY + γ = 0
between the expected payoffs of the opponent and oneself. Such a strategy is just
the same as the zero-determinant strategy obtained in Section §2 using Press and
Dyson’s argument, but here v is a stationary distribution and is not necessarily to
be the unique limiting distribution that may not exist. Hence, zero-determinant
strategies exist in a general Markov process of the game that has a stationary
distribution v.

The next theorem is about the the necessary and sufficient condition for an
agreeable strategy to be of Nash type or to be good.

Theorem 5.10. Let p = (p1, p2, p3, p4) be an agreeable strategy but not Repeat, i.e.
p1 = 1 but p 6= (1, 1, 0, 0). The non-Repeat agreeable strategy p is of Nash type if
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and only if it satisfies the following two inequalities:

T −R
R− S

p3 ≤ 1− p2 and
T −R
R− P

p4 ≤ 1− p2.

The non-Repeat agreeable strategy p is good if and only if both inequalities above
are strict.

For convenience, we still normalize the payoffs T,R, P, S from now on. We
assume that (i) T = 1, S = 0; (ii) 0 < P < R, 12 < R < 1. The payoff vectors in
a single round are SX = (R, 0, 1, P ) and SY = (R, 1, 0, P ). Then Theorem 5.10 is
equivalent to the following:

Theorem 5.11. Consider the normalized stochastic iterated prisoner’s dilemma.
Let p = (p1, p2, p3, p4) be an agreeable strategy but not Repeat, i.e. p1 = 1 but
p 6= (1, 1, 0, 0). The non-Repeat agreeable strategy p is of Nash type if and only if
it satisfies the following two inequalities:

1−R
R

p3 ≤ 1− p2 and
1−R
R− P

p4 ≤ 1− p2.(5.12)

The non-Repeat agreeable strategy p is good if and only if both inequalities above
are strict.

Proof. In the normalized game, SX = (R, 0, 1, P ) and SY = (R, 1, 0, P ). Under
stationary state v = (v1, v2, v3, v4), sY = v ·SY = v1R+ v2 + v4P . Also recall that
by definition, if a strategy is good, then it is of Nash type, but converse is not true.
If a strategy is not of Nash type, then it is not good.

First of all, if p2 = 1, then p = (1, 1, p3, p4). If Y uses strategy q = (0, 0, 0, 1),
then v = (0, 1, 0, 0) is a stationary vector associated with this game. Under this
stationary state, sX = 0 and sY = 1 > R, so no matter what p3 and p4 are,
p = (1, 1, p3, p4) is not of Nash type and thus not good. On the other hand, p2 = 1
gives no solution to the inequalities (5.12) except p3 = p4 = 0, i.e. p = (1, 1, 0, 0),
which has been excluded by our assumptions in the theorem.

Therefore, we just need to consider p2 ∈ [0, 1). Notice that because p1 = 1, using
Proposition 5.7 and p̃1 = p1 − 1 = 0 gives v2p̃2 + v3p̃3 + v4p̃4 = 0, that is,

(1− p2)v2 = v3p3 + v4p4.(5.13)

Since sY −R = (v1R+v2+v4P )−(v1+v2+v3+v4)R = v2(1−R)−v3R−v4(R−P )
and 1− p2 > 0,

sY ≥ R ⇔ v2(1−R) ≥ v3R+ v4(R− P ),

⇔ (1− p2)v2(1−R) ≥ (1− p2)v3R+ (1− p2)v4(R− P ),

⇔ (v3p3 + v4p4)(1−R) ≥ (1− p2)v3R+ (1− p2)v4(R− P ),

⇔ [p3(1−R)− (1− p2)R]v3 ≥ [(1− p2)(R− P )− p4(1−R)]v4.

Let A = p3(1−R)− (1− p2)R and B = (1− p2)(R−P )− p4(1−R), then sY ≥ R
if and only if Av3 ≥ Bv4 (and obviously sY = R if and only if Av3 = Bv4). The
inequalities (5.12) are the same as A ≤ 0 and B ≥ 0, so what we need to prove now
is: (i) the necessary and sufficient condition for a non-Repeat agreeable strategy to
be of Nash type is A ≤ 0 and B ≥ 0; (ii) the necessary and sufficient condition for
a non-Repeat agreeable strategy to be good is A < 0 and B > 0. By considering
the signs of A and B and discussing them case by case, we can prove the two claims
simultaneously.
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(i) A > 0: Suppose against X’s strategy p = (1, p2, p3, p4), Y uses strategy
q = (0, 1, 1, 1). Then (in the long run) it is impossible to get the outcome
xy = DD, so v4 = 0. Also, q1 = 0 implies v1 < 1; p2 < 1 and A =
p3(1 − R) − (1 − p2)R > 0 imply p3 > 0. Using Equation (5.13) here gives
(1− p2)v2 = v3p3, which implies v2, v3 > 0 (otherwise v2 = v3 = 0⇒ v1 = 1,
contradiction!). So Av3 > 0 = Bv4, which means sY > R. Therefore, p is not
Nash and thus not good.

(ii) A = 0, B > 0: Then Av3 ≥ Bv4 if and only if v4 = 0. When v4 = 0,
Av3 = 0 = Bv4 and thus sY = R. So p is Nash. On the other hand, if Y uses
strategy q = (0, 1, 1, 1), then similar to case (i), we have v4 = 0 and v1 < 1.
By Proposition 5.1, sX +sY < 2R, and since sY = R, sX < R. Hence, though
p is Nash, p is not good.

(iii) A = 0, B = 0: Then ∀q, Av3 = 0 = Bv4. So ∀q, sY = R, which means p is
Nash. On the other hand, if Y uses some strategy with q1 < 1, then v1 < 1.
By Proposition 5.1, sX + sY < 2R and since sY = R, sX < R. Hence, though
p is Nash, p is not good.

(iv) A ≤ 0, B < 0: Suppose against X’s strategy p = (1, p2, p3, p4), Y uses strategy
q = (0, 0, 0, 0). Then (in the long run) it is impossible to get the outcome
xy = DC, so v3 = 0. Also, q1 = 0 implies v1 < 1; p2 < 1 and B =
(1−p2)(R−P )−p4(1−R) < 0 imply p4 > 0. Using Equation (5.13) here gives
(1− p2)v2 = v4p4, which implies v2, v4 > 0 (otherwise v2 = v4 = 0⇒ v1 = 1,
contradiction!). So Av3 = 0 > Bv4, which means sY > R. Therefore, p is not
Nash and thus not good.

(v) A < 0, B = 0: Then Av3 ≥ Bv4 if and only if v3 = 0. When v3 = 0,
Av3 = 0 = Bv4 and thus sY = R. So p is Nash. On the other hand, if Y uses
strategy q = (0, 0, 0, 0), then similar to case (iv), we have v3 = 0 and v1 < 1.
By Proposition 5.1, sX +sY < 2R, and since sY = R, sX < R. Hence, though
p is Nash, p is not good.

(vi) A < 0, B > 0: Then Av3 ≥ Bv4 if and only if v3 = v4 = 0. Using Equation
(5.13) here gives (1− p2)v2 = v3p3 + v4p4 = 0. Since p2 < 1, v2 = 0 and thus
v1 = 1 − v2 − v3 − v4 = 1. So sY ≥ R implies v1 = 1, which, by Proposition
5.1, implies sX = sY = R. This means that p is good and thus Nash.

All possible cases have been considered above and therefore we complete the proof.
�

Corollary 5.14. Consider the normalized stochastic iterated prisoner’s dilemma.
Let p = (p1, p2, p3, p4) be an agreeable strategy but not Repeat. Suppose p has X
Press-Dyson vector p̃ = αSX + βSY + γ1 + δe23, (α, β, γ, δ) 6= (0, 0, 0, 0). The
strategy p is of Nash type if and only if it satisfies the following:

max(δ,
δ

2R− 1
) ≤ α.

The strategy p is good if and only if the inequality above is strict.

Proof. In the normalized game, SX = (R, 0, 1, P ) and SY = (R, 1, 0, P ). Thus,
p̃ = (p̃1, p̃2, p̃3, p̃4) = αSX + βSY + γ1 + δe23 = ((α+ β)R + γ, β + γ + δ, α+ γ +
δ, (α+ β)P + γ). For an agreeable strategy, p̃1 = p1− 1 = 0, i.e. (α+ β)R+ γ = 0,
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so β = −α− γ
R . Then,

(1− p2) = −p̃2 = −(β + γ + δ) = α+
1−R
R

γ − δ,

p3 = p̃3 = α+ γ + δ, p4 = p̃4 = (α+ β)P + γ =
R− P
R

γ.

Hence, the inequalities in (5.12) are equivalent to 1−R
R (α+ γ + δ) ≤ α+ 1−R

R γ − δ
and 1−R

R−P
R−P
R γ ≤ α + 1−R

R γ − δ. After simplification they become δ
2R−1 ≤ α and

δ ≤ α. Then it is clear that this corollary is just a special version of Theorem
5.11. �

For completeness, we also state the general version of the above corollary:

Corollary 5.15. Consider the prisoner’s dilemma without normalizing the payoffs.
Let p = (p1, p2, p3, p4) be an agreeable strategy but not Repeat. Suppose p has X
Press-Dyson vector p̃ = αSX + βSY + γ1 + δe23, (α, β, γ, δ) 6= (0, 0, 0, 0). The
strategy p is of Nash type if and only if it satisfies the following:

max(
δ

T − S
,

δ

2R− (T + S)
) ≤ α.

The strategy p is good if and only if the inequality above is strict.

6. Generalization to memory-n strategies

We have so far focused on memory-one strategies that make the game a Markov
process. Though in the Appendix A of [5] it is shown that assuming that players
use memory-one strategies will not lose generality to a certain extent, it would be
better if we can figure out what will happen if players use strategies based on longer
memory. In fact, in a stochastic iterated prisoner’s dilemma where, by definition,
the strategies are specified in terms of cooperation probabilities, as long as both
players use finite-memory strategies, then the game can be modeled by a Markov
process and the idea of zero-determinant strategies applies as well.

To illustrate this point, we consider the case where both players are memory-two.
That is, their strategies are based on the outcomes of the previous two rounds. For
the general cases, the state space can be very large but we can still manipulate
them in a similar way.

Denote the sequence of outcomes in the game by {Un, n = 1, 2, ...} where Un ∈
{CC,CD,DC,DD} with the first letter representing X’s choice. It seems that
using a memory-two strategy means that given the current outcome, the next out-
come still depends on the previous outcome, so the process alone is not Markov.
This is true, but there is a way to make it Markovian. The trick is to consider
instead a new process, denoted by {Vn, n = 1, 2, ...}, such that each state of it de-
scribes the outcome of the previous round and the outcome of the current round.
Given the current state which is specified by the outcome of the previous round
and the outcome of the current round, then the future states will be condition-
ally independent of the past states because the strategies are memory-two, so this
is a Markov process. Since for a single round there are 4 possible outcomes, for
two rounds there will be 4 × 4 = 16 possible situations. and thus the state space
of {Vn} contains 16 elements. If we use the symbol EXEY /FXFY to represent
a state where the outcome of the previous round is EXEY and the outcome of
the current round is FXFY and EX , EY , FX , FY ∈ {C,D}, then the state space is
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{CC/CC,CC/CD,CC/DC,CC/DD,CD/CC,CD/CD,CD/DC,CD/DD,
DC/CC,DC/CD,DC/DC,DC/DD,DD/CC,DD/CD,DD/DC,DD/DD}. X’s
strategy is p = (p1, p2, ..., p16) corresponding to the previous state EXEY /FXFY ∈
{CC/CC,CC/CD,CC/DC,CC/DD, ...,DD/CC,DD/CD,DD/DC,DD/DD}. Y
considers how to play the game from his own view point, so his strategy is q =
(q1, q2, ..., q16) corresponding to the previous state EY EX/FY FX ∈ {CC/CC,
CC/CD,CC/DC,CC/DD, ...,DD/CC,DD/CD,DD/DC,DD/DD}. In this way
the same vector gives the same strategy to X and Y. As before, we shall analyze
the game from X’s perspective and use the state space of the form EXEY /FXFY .
Corresponding to this space, X’s strategy is p = (p1, p2, ..., p16) and Y’s strategy is
q = (q1, q3, q2, q4, q9, q11, q10, q12, q5, q7, q6, q8, q13, q15, q14, q16). We can then write
the transition matrix P = P(p,q). Note that Pr(Vn+1 = GXGY /HXHY |Vn =
EXEY /FXFY ) = 0 if GXGY 6= FXFY , so in each row of the matrix there will be
at most four nonzero elements. The transition matrix P is:

p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1) ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... (1− p4)(1− q4)

p5q9 p5(1− q9) (1− p5)q9 (1− p5)(1− q9) ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... (1− p8)(1− q12)

p9q5 p9(1− q5) (1− p9)q5 (1− p9)(1− q5) ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... (1− p12)(1− q8)

p13q13 p13(1− q13) (1− p13)q13 (1− p13)(1− q13) ... 0
0 0 0 0 ... 0
0 0 0 0 ... 0
0 0 0 0 ... (1− p16)(1− q16)



.

As in Section §2, we consider the case where the process has a unique limiting
distribution π = (π1, π2, ..., π16). Then,

lim
n→∞

Pr(Un = CC) = π1 + π5 + π9 + π13,

lim
n→∞

Pr(Un = CD) = π2 + π6 + π10 + π14,

lim
n→∞

Pr(Un = DC) = π3 + π7 + π11 + π15,

lim
n→∞

Pr(Un = DD) = π4 + π8 + π12 + π16.

Hence, the long run expected payoffs to both players are given by

sX =R(π1 + π5 + π9 + π13) + S(π2 + π6 + π10 + π14)

+ T (π3 + π7 + π11 + π15) + P (π4 + π8 + π12 + π16) = π · SX,

sX =R(π1 + π5 + π9 + π13) + T (π2 + π6 + π10 + π14)

+ S(π3 + π7 + π11 + π15) + P (π4 + π8 + π12 + π16) = π · SY,

where SX = (R,S, T, P,R, S, T, P,R, S, T, P,R, S, T, P ),

SY = (R, T, S, P,R, T, S, P,R, T, S, P,R, T, S, P ).
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Similar to the memory-one case, we can manipulate L := P − I16 by adding
one column to another two respectively to get a matrix with some columns solely
depending on p and some columns solely depending on q. For instance, if the
nonzero row of Adj(L) that we use to express the limiting vector w is one of
the Row 4, 8, 12 and 16, then to get the similar key determinant as D(p,q, f)
in Proposition 2.2, we can add the Column k of L to Column k + 1 and k + 2
respectively for k = 1, 5, 9, 13, without changing the the value of the (i, j) cofactor
of L for i = 1, 2, ..., 16 and j = 4, 8, 12, 16. Then the transposes of the related
columns become:

Column 2 : p̃2 = (p1 − 1,−1, 0, 0, p5, 0, 0, 0, p9, 0, 0, 0, p13, 0, 0, 0);

Column 6 : p̃6 = (0, p2, 0, 0,−1, p6 − 1, 0, 0, 0, p10, 0, 0, 0, p14, 0, 0);

Column 10 :p̃10 = (0, 0, p3, 0, 0, 0, p7, 0,−1,−1, p11, 0, 0, 0, p15, 0);

Column 14 :p̃14 = (0, 0, 0, p4, 0, 0, 0, p8, 0, 0, 0, p12,−1,−1, 0, p16);

Column 3 : q̂3 = (q1 − 1, 0,−1, 0, q9, 0, 0, 0, q5, 0, 0, 0, q13, 0, 0, 0);

Column 7 : q̂7 = (0, q3, 0, 0,−1, q11,−1, 0, 0, q7, 0, 0, 0, q15, 0, 0);

Column 11 :q̂11 = (0, 0, q2, 0, 0, 0, q10, 0,−1, 0, q6 − 1, 0, 0, 0, q14, 0);

Column 15 :q̂15 = (0, 0, 0, q4, 0, 0, 0, q12, 0, 0, 0, q8,−1, 0,−1, q16).

Then the desired D(p,q, f) that derived from L is a just a matrix (i) composed
of these columns; (ii) with another column of L replaced by the transpose of an
arbitrary vector f = (f1, f2, ..., f16); (iii) with the remaining seven columns being
the same as L. Then similar to Proposition 2.2 and Equations (2.3) and (2.4), if
w is a nonzero multiple of π, we have w · f = ηD(p,q, f) for some η 6= 0 only

depending on w, sX = D(p,q,SX)
D(p,q,1) and sY = D(p,q,SY)

D(p,q,1) . Hence, Equation (2.5) hold

as well. To enforce this linear relation αsx + βsY + γ = 0, one needs to choose
a strategy such that D(p,q, αSX + βSY + γ1) = 0. Such a strategy, if feasible,
is a generalized version of the zero-determinant strategy discussed in the previous
sections.

To see whether the feasible generalized zero-determinant strategies indeed exist,
we try to find it for X. To make D(p,q, αSX + βSY + γ1) = 0 equal to zero, X
should choose p such that ap̃2 + bp̃6 + cp̃10 + dp̃14 = αSX + βSY + γ1 for some
a, b, c, d. That is,

(α+ β)R+ γ = a(p1 − 1) = ap5 − b = ap9 − c = ap13 − d,
αS + βT + γ = −a+ bp2 = b(p6 − 1) = bp10 − c = bp14 − d,
αT + βS + γ = cp3 = cp7 = cp11 = cp15,

(α+ β)P + γ = dp4 = dp8 = dp12 = dp16.

The above equations can give a solution of p, expressed in terms of a, b, c, d in
addition to R,S, T, P, α, β and γ. Then it is possible to choose some suitable values
for a, d, c, d such that pi ∈ [0, 1], ∀i = 1, 2, ...16. Then this is a feasible strategy. As
an example, if we take the conventional values (T,R, P, S) = (5, 3, 1, 0), then X can
unilaterally enforce a linear relation sX − 2sY + 2 = 0 by adopting the memory-
two strategy p = ( 11
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similar to the memory-one case, there may not be any feasible zero-determinant
strategies for some values of α, β and γ. In other words, a player can enforce some
but not all linear relations of the long run expected payoffs.
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