	Searching for Patterns					Strategies									
1						$\stackrel{\square}{0}$	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$						$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery	安	$\begin{aligned} & \overline{\tilde{\omega}} \\ & \frac{\tilde{0}}{0} \end{aligned}$	$\begin{aligned} & \text { 읒 } \\ & \text { x } \end{aligned}$	$\begin{aligned} & \frac{5}{\circ} \\ & \frac{\pi}{0} \end{aligned}$	-	-		¢ֻّ	i	-

Topic 1 Quantities and Relationships

Understanding Quantities and Their Relationships	Identifying Quantities	Students answer questions related to two animations--one discussing dependent and independent quantities and slope in a realworld context, and the other investigating the shapes of graphs of functions which show the linear and non-linear relationships between different quantities in real-world contexts. Students study numberless graphs of functions and match the graphs to various situations.	6.6A	\checkmark							\bullet	\bullet				
	Evaluating Linear Functions	Given a function in function notation, students determine input and output values.	A.12B		\checkmark										-	
Recog	Identifying Domain and Range	Students are introduced to domain and range. They analyze the domain and range of functions in multiple representations. Students identify the domain and range of graphed functions. They identify the mathematical and contextual domain and range of functions represented by scenarios and by graphs.	A.2A A.6A A.9A	ν								\bullet				
Functions and Function Families	Identifying Key Characteristics of Graphs of Functions	Students will identify key characteristics from the graph of a function, such as the intercepts, minimum and maximum x-values, minimum and maximum y-values, domain, and range.	A.2A A.3C		ν								\bullet			
	Introduction to Function Families	Students answer questions related to an animation describing different function families (linear, quadratic, exponential, absolute value), their graphs, equations, and general characteristics. Students then investigate the graphs and characteristics of linear, exponential, quadratic, and linear absolute functions in more detail.	$\begin{gathered} \text { A. } 3 \mathrm{C} \text { A. } 7 \mathrm{~A} \text { A. } 9 \mathrm{~A} \\ \text { A. } 12 \mathrm{~A} \end{gathered}$	\checkmark							\bullet	\bullet			\bullet	

4	Searching for Patterns					Strategies									
								$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \frac{\square}{0} \\ & \hline \end{aligned}$	등			흠		鹄	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery										

Topic 2 Sequences

Topic 3 Linear Regressions

Least Squares
Regression

Exploring Linear Regression

Abstract

Students use an interactive Explore Tool to investigate linear regression functions. Students enter data related to various realworld contexts and use the Explore Tool to analyze the linear trend present in the data set, as given by the regression function Students investigate how moving the points of the data set affects the slope of the regression line, and they analyze the effect of outliers on the regression function. Students also explore Anscombe's Quartet--a group of 4 data sets which are used to show that data sets which have strikingly different graphical shapes can be described by the same linear regression function.

A.

	Searching for Patterns					Strategies								
											흔		$\stackrel{\stackrel{n}{0}}{\stackrel{\circ}{0}}$	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery									
Least Squares Regression (continued)	Using Linear Regression	Students are given a table of data and a linear regression equation that represents the line of best fit. They calculate values of the dependent variable using the linear regression equation. Students compare the values of the dependent variable from both representations, stating whether the question called for interpolation or extrapolation, and whether the linear regression answer was reasonable or not based upon the table of data. The worked example and practice problems are provided in a context.	A.4A A.4C	\checkmark									-	
Correlation	Interpreting Lines of Best Fit	Students are introduced to the terms correlation coefficient, positive association, and negative association through examples of scatter plots. They select the possible correlation coefficients for given scatter plots from a range of choices using their conceptual understanding. They complete problems in context, giving rough estimates of the value of r, stating how the estimate is reflected in the table of values, and determining whether the linear regression equation is appropriate for the data set.	A. 4 A	\checkmark										
	Correlation and Causation	In different scenarios, students use necessary and sufficient conditions to distinguish between quantities that are correlated and not correlated, and between those that are only correlated versus those that are both correlated and causally related.	A.4B	\checkmark										

										Strat	egies				
	X	$15 L$				$\stackrel{\square}{0}$	¢	$\frac{0}{8}$	\bigcirc		$\stackrel{\square}{0}$				
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery	¢	$\frac{\tilde{x}}{\underline{U}}$	$\begin{aligned} & \text { 음 } \\ & \text { ய } \end{aligned}$	$\frac{\overline{0}}{0}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	릉	0	$\begin{array}{\|c\|c} \mathbb{\top} & \ddot{0} \\ \mathbb{\sim} & \ddots \end{array}$		-

Topic 1 Linear Functions

	Writing Sequences as Linear Functions	Students classify sequences as arithmetic, geometric, or neither based on their graphs. Students then determine the function family for the sequence, write an explicit formula for the sequence, and finally rewrite it in linear form.	A.12C A.12D		\checkmark										
Connecting Arithmetic	Understanding Linear Functions	Students use an interactive Explore tool to investigate linear functions in the context of a plane's ascent and descent. Students analyze the different functions' x-intercepts, y-intercepts, domains, ranges, and slopes. Students then solve problems in context by using the Explore tool and solving for the slope (rate of change of descent/ascent) and the initial height (y-intercept).	A.3B A.3C	,		\bullet						\bullet			
Linear Functions	Equal Differences Over Equal Intervals	Students watch an animation showing how steps and straight lines described by linear functions are connected. Students demonstrate that straight lines increase or decrease equal amounts over equal intervals, and they show that the average rate of change between any two points on a straight line is the same. Finally, students connect linear functions with arithmetic sequences and show that arithmetic sequences change equal amounts over equal intervals. Students learn that the common difference of an arithmetic sequence is the same as the slope of the line that is matched to the sequence.	A.3B	ν						\bullet				\bullet	
Multiple Representations of Linear Functions	Multiple Representations of Linear Equations	Students represent scenarios with linear expressions. They compare multiple representations of linear functions and determine whether a table, graph, or equation match a given scenario. Students match graphed lines and equations to given scenarios.	A. 2 C	\checkmark							\bullet				

MATHia Unit						Strategies									
						F-					$\geq \stackrel{n}{0}$		믐 으		¢
										$\stackrel{\text { D }}{\underline{D}}$	\|o ex ex		$\left. \right\rvert\,$	u	-
Comparing Linear Functions in Different Forms	Comparing Linear Functions in Different Forms	Given two linear functions in different representations -- equation, graph, table, or description -- with a contextual or noncontextual scenario, students compare the functions' slopes or y-intercepts.	A.3A		\checkmark										

Topic 2 Linear Equations and Inequalities

						Strategies									
2											$\stackrel{y}{0}$		믐 . .	$\stackrel{\sim}{6}$	¢
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery					苍	$\begin{aligned} & \text { O. ̀⿳亠口冋口 } \\ & \vdots \end{aligned}$			¢	－
Solving Linear and Literal Equations （continued）	Extending Equations to Literal Equations	Students use their knowledge of solving multi－step linear equations to solve a literal equation of the same form．	A．12E		\checkmark										
	Solving Literal Equations	Students solved literal equations with the aid of a parallel linear equation．In this workspace，the scaffolding is removed and students are responsible for solving a single literal equation．	A．12E		\checkmark										
Modeling Linear Inequalities	Graphing Inequalities with Rational Numbers	Students graph simple inequalities involving rational numbers on a number line．	7．10．B		\checkmark							\bullet			
	Solving Two－Step Linear Inequalities	Students solve linear inequalities．	A．5B		\checkmark							\bullet			

Topic 3 Systems of Equations and Inequalities

	Exploring Constant Change					Strategies									
2												흘		$\begin{aligned} & \frac{n}{0} \\ & \stackrel{y y}{0} \\ & \stackrel{y}{0} \end{aligned}$	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery										
Graphing Linear Inequalities in Two Variables (continued)	Graphing Linear Inequalities in Two Variables	Students graph and solve linear inequalities in two variables graphically by determining the correct half-planes for the solution sets.	A.3D		\checkmark										
Graphing a System of Linear	Systems of Linear Inequalities	Students determine the intersections between two inequalities, graph the inequalities, and shade the regions representing the solutions and their intersections.	A.3H		\checkmark							-			
	Interpreting Solutions to Systems of Inequalities	Students will learn how to interpret solutions to systems of inequalities.	A.3H	\checkmark								\bullet			

	Investigating Growth and Decay					Strategies									
）						$\stackrel{\square}{5}$	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$						
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery	安	\％	$\begin{aligned} & \bar{o} \\ & \stackrel{\bar{x}}{㐅 ⿸ 丆 口} \end{aligned}$	$\begin{array}{\|l\|} \hline \overline{⿳ 亠 二 口 匕 匕} \\ \stackrel{0}{0} \\ \hline \end{array}$	－	－	a	¢0 ¢	i	－

Topic 1 Introduction to Exponential Functions

CARNEGI三

3 Investigating Growth and Decay

	Investigating Growth and Decay					Strategies									
5						$\stackrel{\square}{0}$	気	$\begin{aligned} & \frac{\curvearrowleft}{0} \\ & \hline \text { O } \end{aligned}$	$\begin{aligned} & \stackrel{\varrho}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{0}{0}$	$\stackrel{\sim}{0}$		끈 ․ㅡㄴ		
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery	交	$\begin{aligned} & \text { U } \\ & \frac{\pi}{0} \end{aligned}$	$\begin{aligned} & \frac{0}{\square} \\ & \text { ய } \end{aligned}$	$\begin{aligned} & \stackrel{\Gamma}{0} \\ & \stackrel{\text { Wo }}{0} \end{aligned}$	$\stackrel{\text { co }}{\text { ¢ }}$	¢	a	¢	－	－

Topic 2 Using Exponential Equations

3 Investigating Growth and Decay

5	！Vescorn	๑®				\bigcirc	을	$\frac{0}{0}$	茴			${ }^{\circ}$		告	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery	¢	N	$\begin{aligned} & \frac{0}{0} \\ & \underset{\sim}{x} \end{aligned}$	$\begin{aligned} & \frac{\overline{0}}{2} \\ & \frac{\pi}{0} \end{aligned}$						
Solving Exponential Equations （continued）	Modeling Equations with a Starting Point Other Than 1	Students use exponential equations with a y－intercept other than 1 to model scenarios． They answer questions by completing a table of values and graphing corresponding points of the exponential function．	A．9C A．9D		\checkmark							－		\bullet	
	Solving Exponential Equations Using a Graph	Students write the equation for an exponential function（with a dilation，vertical shift，or horizontal shift）from a contextual scenario．Students then use a graph to determine the solution to the equation for a given dependent value，and interpret the solution in context．	A．9C A．9D		ν							－			
Modeling Using Exponential Functions	Relating the Domain to Exponential Functions	Students determine the domain of exponential functions．Scenarios are provided， and in light of the context，two factors must be considered：the lowest and highest values for the independent variable and the types of numbers that make sense for the independent variable．Several examples are provided to model the process of selecting an appropriate domain prior to students completing problems independently．	A．9A	ν										\bullet	
	Exploring Exponential Regression	Students use an interactive Explore Tool to investigate exponential regression functions． They enter data related to various real－ world contexts and use the Explore Tool to determine the exponential regression equation．Students interpret the parameters of the regression equation in the context of the data and investigate how moving the points of the data set affects those parameters．They use a regression equation to make predictions based on interpolation and extrapolation，determining which prediction is more accurate and why．	A．9E	\checkmark		\bullet									

	Maximizing and Minimizing					Strategies									
T									$\begin{aligned} & \text { n } \\ & \text { O} \\ & \text { O} \\ & \text { 응 } \\ & \frac{\square}{0} \end{aligned}$			-		$\stackrel{\stackrel{\varrho}{0}}{\stackrel{y}{0}}$	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery										

Topic 1 Introduction to Quadratic Functions

CARNEGI三

	Maximizing and Minimizing					Strategies									
4												$\begin{aligned} & \text { 힐 } \\ & \hline \end{aligned}$		-	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery										
Key Characteristics of Quadratic Functions	Recognizing Quadratic Functions from Tables	Students recall first differences and are introduced to second differences. They calculate and analyze the first and second differences of linear and quadratic functions, comparing the values to the equations and graphs of the functions. Students then determine first and second differences in a table of values and identify the function represented by the table.	A.7B	\checkmark										\bullet	
	Identifying Properties of Quadratic Functions	Students differentiate among general form, factored form, and vertex form of a quadratic function. They learn the characteristics of the graph that are visible from each form: y-intercept from general form, x-intercepts from factored form, and vertex from vertex form, and practice identifying these characteristics from the algebraic representations. The axis of symmetry is introduced as an aid in graphing, and students determine the vertex and axis of symmetry from the vertex form and factored form of a quadratic function. They use the concept of symmetry to determine an additional point that lies on a parabola. Lastly, students identify whether a parabola is concave up or down based upon the sign of the x-squared term when the function is written in any form.	A.7A	\checkmark							\bullet			\bullet	
Transformations of Quadratic Functions	Vertically Translating Quadratic Functions	Students vertically shift graphs of quadratic functions. They use verbal descriptions, graphs, and algebraic representations.	A.7C		\checkmark							-			
	Horizontally Translating Quadratic Functions	Students horizontally shift graphs of quadratic functions. They use verbal descriptions, graphs, and algebraic representations.	A.7C		\checkmark							\bullet			
	Reflecting and Dilating Quadratic Functions using Graphs	Students reflect and dilate graphs of quadratic functions. They use verbal descriptions, graphs, and algebraic representations.	A.7C		\checkmark							\bullet			
	Transforming Quadratic Functions Using Tables	Given a table of values and a table of transformed values, students determine how the basic quadratic function was transformed to create the new function.	A.7C		\checkmark							\bullet			

	Maximizing and Minimizing					Strategies									
4												흔		$\begin{aligned} & \frac{N}{0} \\ & \stackrel{y}{0} \\ & \stackrel{y}{\omega} \end{aligned}$	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery										
Transformations of Quadratic Functions (continued)	Multiple Transformations of Quadratic Functions	Given a representation of a transformed function, students determine how the basic quadratic function was transformed to create the new function.	A.7C		\checkmark							\bullet			
Forms of Quadratics	Converting Quadratics to General Form	Students convert quadratic equations to general form from either factored form or vertex form.	A.6B		\checkmark										
	Converting Quadratics to Factored Form	Students convert quadratic equations to factored form from either general form or vertex form.	$\begin{gathered} \text { A. } 10 \mathrm{~A} \text { A. } 10 \mathrm{~B} \\ \text { A. } 10 \mathrm{E} \end{gathered}$		\checkmark										
	Converting Quadratics to Vertex Form	Students convert quadratic equations to vertex form from either factored form or general form.	A. 10 D		\checkmark										
Sketching and Comparing Quadratic Functions	Comparing Increasing Linear, Exponential, and Quadratic Functions	Students use graphs and tables to observe that an increasing exponential function will eventually exceed an increasing linear or quadratic function. They determine the average rate of change for a linear, quadratic, and exponential function over different intervals. Students compare an increasing linear, quadratic, and exponential model in context to determine that the exponential model has the best output over time.	A. 10 E	\checkmark										\bullet	
	Sketching Quadratic Functions	Sketch a quadratic function given factored, standard or vertex form	A.7A		\checkmark							\bullet			
	Comparing Quadratic Functions in Different Forms	Given two quadratic functions in different representations -- equation, graph, table, or description -- with a contextual or noncontextual scenario, students compare the functions' y-intercepts, zeros, absolute maximums/minimums, or rates of change over a specific interval.	A.7A		\checkmark										

Maximizing and Minimizing

Topic 2 Solving Quadratic Equations

	Maximizing and Minimizing					Strategies									
						\%						"흔		$\frac{\stackrel{y}{0}}{\stackrel{0}{0}}$	
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery										
Representing Solutions to Quadratic Equations	Making Sense of Roots and Zeros	Students experiment with patterns relating two lines and the parabola that is generated by the product of their two linear functions. The first pattern solidifies the fact that the two expressions are factors of the quadratic function. The second pattern guides students to the Zero Product Property, an underpinning for determining the zeros of a quadratic function written in factored form.	A.7B	\checkmark											
	Factoring using Difference of Squares	Students factor quadratic expressions using difference to two squares.	A.10F		\checkmark										
Solutions to Quadratic Equations in Vertex Form	Using Properties of Equality to Solve Quadratic Equations	Students use the Properties of Equality to solve quadratic equations in the form $y=a x^{2}$, $y=a x^{2}+d, y=a(x-c)^{2}$, and $y=a(x-c)^{2}+d$ where a, c, and d are constants.	A.8A		\checkmark										
Factoring and Completing the Square	Introduction to Factoring	Students are introduced to factoring trinomials first using factor tables. They analyze patterns in the operations of binomial factors. Students factor the GCF from quadratic expressions. They practice factoring quadratic trinomials with and without first factoring out a GCF. Students then use factoring as a method to solve a quadratic equation.	A.10E	\checkmark										-	
	Factoring Trinomials with Coefficients of One	Students factor quadratic trinomials with a coefficient of one.	A.10E		\checkmark										
	Factoring Trinomials with Coefficients Other than One	Students factor quadratic trinomials with a coefficient other than one.	A.10E		\checkmark										
	Factoring Quadratic Expressions	Students factor quadratic expressions using all known factoring methods.	A.10D		\checkmark										
	Solving Quadratic Equations by Factoring	Students solve quadratic equations by factoring and applying the zero-product property.	A.8A		\checkmark										

	Maximizing and Minimizing					Strategies									
4											$\stackrel{n}{0}$		은 으	\cong	¢
MATHia Unit	MATHia Workspace	Overview	TEKS	Concept Builder	Mastery					$\stackrel{\text { © }}{\underline{⿺}}$	-		¢	0	¢
Factoring and Completing the Square (continued)	Problem Solving Using Factoring	Students create quadratic equations to represent mathematical and real-world situations. They then factor these equations and determine zeros to reveal different structures and quantities that can help them relate quantities and solve problems.	A.8A	\checkmark											
	Completing the Square	Students analyze a worked example of a quadratic function in general form being written in vertex form through the process of completing the square. They then practice completing the square using polynomials and area models before filling in unknown values in trinomials that create perfect square trinomials. Finally, students are shown the algebraic method of changing a quadratic function in general form to vertex form by completing the square. They use the algebra shown to determine the axis of symmetry and vertex of quadratic functions in general form.	A.8A	\checkmark											
	Problem Solving Using Completing the Square	Students use the method of Completing the Square to convert quadratic equations to vertex form in order to solve real-world problems in different situations by revealing maxima of quadratic functions.	A.8A	\checkmark											
The Quadratic Formula	Deriving the Quadratic Formula	Students use the completing the square method to determine the roots of a given quadratic equation. They then analyze the method of completing the square for any quadratic equation in general form from which the Quadratic Formula is derived. They practice using the Quadratic Formula to calculate the roots of quadratic equations in general form.	A.8A												
	Solving Quadratic Equations	Students solve quadratic equations by using factoring or the quadratic formula.	A.8A		\checkmark										
Modeling Quadratic Data	Using Quadratic Models	Students use equations of quadratic regression models, the solver, and graphs to answer questions.	A.6C A.8B		\checkmark							\bullet		\bullet	

