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ABSTRACT 

Automatic Stratigraphic Interpretation of Oil Sand wells from well logs datasets typically 

involve recognizing the patterns of the well logs. This is done through classification of the well 

log response into relatively homogenous subgroups based on eletrofacies and lithofacies. The 

electrofacies based classification involves identifying clusters in the well log response that reflect 

‘similar’ minerals and lithofacies within the logged interval. The identification of lithofacies 

relies on core data analysis which can be expensive and time consuming as against the 

electrofacies which are straight forward and inexpensive. To date, challenges of interpreting as 

well as correlating well log data has been on the increase especially when it involves numerous 

wellbore that manual analysis is almost impossible.  

This thesis investigates the possibilities for an automatic stratigraphic interpretation of an Oil 

Sand through statistical pattern recognition and rule-based (Artificial Intelligence) method. The 

idea involves seeking high density clusters in the multivariate space log data, in order to define 

classes of similar log responses. A hierarchical clustering algorithm was implemented in each of 

the wellbores and these clusters and classifies the wells in four classes that represent the 

lithologic information of the wells. These classes known as electrofacies are calibrated using a 

developed decision rules which identify four lithology -Sand, Sand-shale, Shale-sand and Shale 

in the gamma ray log data. These form the basis of correlation to generate a subsurface model. 
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1. INTRODUCTION 

The geophysical wireline log measurement acquired from the drilling of densely distributed 

wellbore in the Athabasca Oil Sands of Alberta, Canada requires expert geological knowledge 

for its interpretation. It requires manual analysis which is time consuming especially when the 

wellbores are numerous thereby making an automatic analysis more important in Oil and Gas 

exploration. Pattern recognition methods are used to identify the patterns of the wireline log 

reading from wellbore. This thesis explores the opportunity of automating the interpretation and 

analysis of well log data of gamma ray logs using a statistical pattern recognition approach.  

1.1.  Problem Statement and Motivation 

A crucial problem in oil and gas exploration industry is the interpretation of the measurement of 

the physical properties of particular underground rocks such as density, electrical resistivity, 

sound transmission, radioactivity etc. These measurements are called logs and are characteristic 

of the various rocks penetrated by the drill. However, wellbore analyses from the massive 

volume of data as a result of different types of surveys and continuous well logging are 

constantly practices in the oil and gas exploration industry. The idea of efficient techniques to 

process such large volume of data have brought about the concept of an automated technique to 

refine the data (trace editing and filtering), select the desired event types (first-break picking) or 

automated interpretation (horizon tracking) for effective geological data interpretation. These 

have been proven to be particularly interesting to apply in stratigraphic interpretation as well as 

correlation. Nikravesh and Aminzadeh (2003) explain how the mining and fusion of reservoir 

data are utilized in the soft computing techniques for intelligent reservoir characterization. Most 

existing computerized well-log interpretation systems deal with maintenance of a well-log 

database and evaluation of formation fluid, but rarely with a stratigraphic interpretation (Wu and 

Nyland 1987). Over the past two decades, geosciences have experienced developments and 

application of numerous quantitative approaches ranging from spectral to cluster analysis.  

Agterberg and Bonhan-Carter, (1990) and Agterberg and Griffiths, (1991) describes how these 

approaches have found wide application throughout geosciences and have been used for process 

simulation, modeling, mapping, stratigraphic analysis and correlation, classification and 

prediction.  
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The expert geological knowledge in the analysis and interpretation of the oil sand well logs are 

of paramount importance. However, the manual analysis can be time consuming especially when 

the well log data are obtained in a large number of densely distributed wellbores. Therefore, the 

possibilities of automating the interpretation and correlation of these well-log datasets to build a 

subsurface model are very helpful in Oil and Gas exploration. It is also possible that computer-

assisted correlations may suggest zonal matches of interest and originality that might not have 

been considered during the manual analysis. Different approaches have been explained by 

several authors ranging from statistical methods to Pattern recognition and Artificial Intelligence, 

all leading towards an automated extraction of information from signals. The term ‘signal’ is 

broadly interpreted to include well log data, waveforms, images and other survey data. This work 

will utilize the approaches of pattern recognition and artificial intelligence in an attempt to 

automatically interpret and correlate well-log datasets from Athabasca Oil Sands of Alberta, 

Canada. This area has about 250,000 wellbores and obviously is a real challenge in performing 

manual analysis.  

Sequel to the above, the sample well data set of Exeler,(2009) work and the general geological 

knowledge of Athabasca Oil Sands were utilized for  the prototypical implementation of an 

automated stratigraphic interpretation using well log data set within this Master thesis. 

1.2. Oil Sand in Athabasca 

The term Oil Sand can be defined as crude deposits which are substantially heavier (more 

viscous) than other crude oils consisting of sand, bitumen, mineral rich clays and water.  

Bitumen is a product of the oil sands that requires upgrading to synthetic crude oil or dilution 

with lighter hydrocarbons to make it transportable by pipelines and usable by refineries. Hence, 

the crude bitumen together with the reservoir rocks where it is found is known as Oil Sands 

(C&C Reservior 2007). 
 

The base of the Canadian Oil Sand Reservoir is located in the north-east Alberta which 

comprises three major deposits, illustrated in (Figure 1): the Peace River Oil Sands, the 

Athabasca Oil Sands and the Cold Lake Oil Sands. According to the Alberta Department of 

Energy (ADE, 2006) the Oil Sands deposits were evaluated to contain approximately 1.7 trillion 

barrels of bitumen in-place, of which 173 billion barrels are proven reserves that can be 
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recovered using current technology. The proven oil reserve in Alberta accounting up to 15% of 

the world reserve is second after Saudi Arabia (ADE, 2006).   

HILLS, (1974) explain that the Oil Sand formations of Northern Alberta represent a vast source 

of fossil fuel whose exploitation is of major economic importance compared to the conventional 

crude oils.  

 

Figure 1. The major deposit: the Peace River Oil Sands, the Athabasca Oil Sands and the Cold 

Lake Oil Sands Adapted from (C&C Reservior 2007) 

 

In Athabasca, the area of interest for development contains thick bitumen-saturated sands which 

generally have good lateral continuity and excellent permeability. The geological formation that 

contains this bitumen is explained in section 3.2. Recovery of these bitumen (reservoir sands) 

can be done by surface mining which follows sand and clay mineral separation by warm-



14 

 

flotation (in areas where overburden thickness is less than 75 meters) and by in situ  thermal 

techniques like the steam-assisted gravity-drainage (SAGD) process especially in areas where 

the Oil Sands are deep suited.  

Generally the recovery factor for surface mining and in situ thermal techniques are estimated to 

be between 80% and 60% respectively (C&C Reservior 2007).  It is essential to note that around 

250,000 wells have been drilled in this area since 1945 which have been cored and measured 

with petrophysical wireline logging. 

1.3. Objectives 

The general objective of this thesis aims at recognizing the patterns of the available well log 

dataset (Gamma ray data) to describe and interpret the stratigraphy by automating the 

classification and possible correlation process. This is done by considering the coherent grid of 

well logs from 21 wellbores made available for the study area. This spatial data may allow in 

deriving a model of the subsurface by integrating the geological knowledge of the area. The 

analysis will focus on determination of the electrofacies of the individual wells and delineating 

the sandbodies which serve as the reservoir rock for the bitumen. In the first step, the 

geophysical log data of each individual well will be examined, analyzed and partitioned, here 

gamma ray logs, using the developed clustering algorithm. The clustering aims to classify the 

data and subsequently depict different rock types. The difference of each gamma ray data will be 

re-computed and clustered for each well in order to recognize all the hidden patterns of the log 

data, which the original log data and the first clustering fails to recognized. In the second step, 

the gamma ray log data limit of each clustered well will be computed. This will be based on the 

similarity matrix index of each well. The optimal number obtained which is explained in section 

5.2 will be utilized in determining the electrofacies of each individual wells and subsequently 

construct the lithology of each well. The whole process will be automated so that all the 

wellbores are clustered automatically and the electrofacies of each well will be generated. In the 

third step, a set of decision rules will be generated based on the mean gamma ray and the 

maximum value of gamma ray in each cluster. The idea is to automatically assign lithology 

facies in each electrofacies classification. The electrofacies and the lithology will identify the 

sand, shale and intermediate sediment. The spatial relations between the individual wells will be 

determined and integrated into the analysis process. 
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1.4. Scope of the Research 

 The thesis investigates a pattern recognition approach utilizing clustering algorithms for the 

interpretation of geological well log datasets. This approach tries to classify different rock types 

in the subsurface leading to the determination of a refined geological stratigraphy that will 

identify shale, sand and intermediate sediments from the well log dataset automatically. The 

implementation focuses on the depositional environment of the study area and this can be applied 

to different depositional environments in the future. It can be argued that the result of an 

automatic subsurface model from well log cannot replace human expertise due to the complexity 

of geological processes, but will definitely speed up the analysis process especially in large data 

sets from numerous wellbore. 

1.5. Research Hypothesis and Question 

1.5.1. Hypothesis 

The hypothesis of this study is stated as: Pattern recognition approaches based on utilizing 

clustering algorithm can be used in classifying and interpreting stratigraphic column 

geologically, which promotes synergy for well correlations.  

1.5.2. Research Questions 

In order to meet the hypothesis and objectives of this study, the following research questions 

were set. 

• Are the patterns from the well log data of the study area to recognizable?  

• How can these patterns be recognized and automatically be utilized in the subsurface 

stratigraphic interpretation? 

• Does this form the basis for correlation? 

1.6. Thesis Structure 

In this thesis the problem of pattern recognition of well log data utilizing clustering algorithm for 

the identification, classification and interpretation are considered. The reminder of the thesis is 

structured as follows:  

The second section will provide an overview of related work in the field of well log cluster 

analysis, interpretation and correlation. It will also discuss the techniques and methodology of 

pattern recognition.  In section three, the study area and general geological background will be 

discussed. These include an overview of the geological setting and environment, Petroleum 
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system and stratigraphy. Section four will explore the dataset provided for this thesis, it will 

describe the well location and spatial distribution of the wells, considering the dimension and 

resolution of the wells. In section five the methodological framework of the stratigraphic 

interpretation of oil well log data will be described. It will elaborate on the steps of clustering 

analysis and the computation processes. Section six will illustrate the prototypical 

implementation of the described methods with the statistical programming language R. The 

results will also be evaluated in this section. Lastly, the discussion and conclusion will be 

discussed in section seven. 
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2. RELATED WORKS 

The recognition of signal patterns generated during wellbore measurements is paramount in 

exploring for economically viable accumulations of hydrocarbon. Stratigraphic signals require 

analysis of its large volume of data. This enables the development of an extensive knowledge of 

its interpretation within reservoir distributions. Several techniques have been proposed and 

developed to interpret these signals (well logs) computationally, as the basis for reservoir model 

constructions from well log data. It comprises classification of logs, determination of 

electrofacies and inter-well correlation of the identified facies. 

2.1. Well Log Cluster Analysis 

A well log can be described as a record of the characteristics of rock formation against depth (see 

section 4.3 for further details). Cluster analysis starts with the partitioning of data into 

meaningful subgroups, when the number of subgroups and other information about their 

composition may be unknown. The methods range from those that are largely heuristics to more 

formal procedure based on statistical model (Fraley and Raftery, 1998).  

Euzen, et al.,(2010) utilizes a method in seeking high density areas (clusters) in the multivariate 

space log data, in order to define classes of similar log responses thereby determining and 

classifying electrofacies. This was applied to develop unconventional gas prospect in the Upper 

Mannville incised valley fills of the Western Canadian Sedimentary Basin. Performing an 

electrofacies zonation based on attempt to identify clusters of log values coming from similarity 

level with the same characteristics has been carried out in the works of Wolff and Pelissier-

Combescure, (1982); Delfiner, et al., (1987); Lim, et al., (1997); Lee, et al., (2002) and Lim, 

(2003). They attempt to utilize all available wireline log data set, which was against the 

conventional norms of using only one log, often resistivity log or gamma ray log. These logs data 

sets are corrected and are selectively reduced via a procedure known as principal component 

analysis. The first principal component computed which is a dimensionless log containing the 

largest common part of variances of the input logs was clustered. The clustering attempts to 

reduce the input log to a set of clusters which are meaningful and each cluster can be related to a 

specific geological facies.  

Gill, et al., (1993) Partitioned a suite of well logs into geologically meaningful zones by a 

proposed numerical multivariate clustering. Zones and logfacies were discriminated by 

hierarchical clustering algorithm that defined clusters so that within-cluster dispersion is 
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minimal. Lee, et al., (2002) proposed a hierarchical agglomerative clustering technique known as 

Model-based clustering to classify log data. The author noted a better performance than single-

link (nearest neighbor) and k-mean clustering which often fail to identify groups that are either 

overlapping or of varying sizes and shapes 

An automated pattern classification of well log data through different neural and non-neural 

techniques such as self-organize vector quantization to categorize lithological profile and 

determine electrofacies have been proposed by (Hassibi, et al., 2003). Vector quantization is an 

unsupervised clustering technique based on distance functions within Euclidean space.  

2.2. Well log Correlation  

After the clustering and electrofacies determination or zonation of well logs, logs can be 

correlated to build a geological model. These correlations are generally done manually (Schaefer, 

2005). However, different methodologies have been proposed to automate this process 

(Gradstein et al., 1985; Tipper, 1988; Olea, 1994; Hassibi et al., 2003).      

Conventional method that utilizes mathematical correlation in the space and frequency domains 

is reviewed in (Hoyle, 1986).  Olea (1994) developed a rule based Expert Systems for automated 

correlation. The same approach was proposed by Lim et al., (1999) in their rule-based inference 

program in correlating zones between wells. Wu and Nyland (1987) applied dynamic sequence 

matching by coding sequence into lithofacies.  

Exeler, (2009) Proposed a topological approach for the interpretation of geological well log data 

by integrating geological knowledge and well topology into an automatic classification and 

correlation process. Hassibi et al., (2003) performed similarity characterization of reservoir via 

pattern recognition approach which delineates dominant reservoir compartmentalization. Lateral 

continuity correlation of logs was performed by an Expert System.  

2.3. The Theory of Pattern Recognition 

Pavlidis, (1977) defines pattern recognition as involving the identification of particular structures 

which a given object is composed of. These objects are inspected for “recognition” process 

which turns into classification (Friedman and Kandel, 1999). Pattern class reflects a set of 

patterns that have in common some similar characteristics. To recognize a pattern, one can use a 

model such as self-organizing networks (Kohonen, 1997) or fuzzy c-means techniques (Bezdek, 

1981; Jang and Gulley, 1995). Self-organizing networks and fuzzy c-means techniques can learn 
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to recognize the topology, patterns, or seismic objects and their distribution in a specific set of 

information.   

The science of pattern recognition is concerned with three major issues (Pao, 1989). 

• The appropriate description of objects, physical or conceptual, in terms of representation 

space;  

• The specification of an interpretation space; and  

• The mapping from representation space into interpretation space  

Furthermore, pattern recognition sciences can be exemplified as follows: 

a. Classification: This tries to assign input values to one of a given set of classes. It 

implements a procedure that learns to classify new instances based on learning from a 

training dataset of instances with correct classes. Commonly known as supervised 

classification. The corresponding unsupervised procedure is known as Clustering which 

involves grouping of data into classes or finite set of categories according to their 

similarity relations.  

b. Regression: This assigns a real-valued output to each input  

c. Sequence labeling: This assigns a class to each member of a sequence of values (for 

example, part of speech tagging which assigns a part of speech to each word in an input 

sentence); and 

d. Parsing: This assigns an input sentence a parse tree describing the syntactic structure of 

the sentence. 

From a broad perspective, pattern recognition techniques can be classified into two major 

categories—the conventional approach and the artificial intelligence (AI) based approach. 

Conventional techniques are based upon two major methodologies known as statistical and 

structural pattern recognition (Nandhakumar, and Aggarwal, 1985).  

2.3.1. Statistical Pattern Recognition 

A statistical Pattern Recognition scheme provides for the classification of the signal into one of a 

finite number of classes for each of which a multivariate probability distribution function is 

assumed to exist, especially when the various distribution functions of the classes are known. 

The method tries, in most cases, to model the class distributions and also to find a discriminant 

function that minimizes the classification error. Modeling class distribution is based by two 

approaches: 
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i. Supposing that the class distribution comes from a known family of distributions 

ii. Letting the data from the class distributions. 

These approaches are categorized under parametric and non parametric method as explained in 

(Duda and Hart, 1996).  

It is essential to note that a statistical classifier must be able to evaluate risk associated with 

every classification which measures the probability of misclassification.  

The Bayes classifier based on Bayes formula from probability theory minimizes the total 

expected risk (Friedman and Kandel, 1999). The distribution function may be known a priori or 

it may be estimated from a training datasets.  A classifier uses the feature values evaluated for a 

particular signal to assign the signal to a class. Typically, the classifier is designed with the 

criterion of minimizing the Bayesian error probability, or a cost measure based upon it. There are 

some exceptions to this which is termed template matching. Nandhakumar and Aggarwal, (1985) 

explain how the data being examined and the template that is being used are considered to be 

vectors, which utilizes a metric (e.g. the Euclidean norm) in measuring the similarity, or 

distance, between the two vectors.  Statistical Pattern Recognition techniques are domain 

independent in that the algorithms can easily be transported to different domains provided that 

some encoded heuristics are followed. 

Wu and Nyland (1987) explain that stratigraphic interpretation begins with zonations and zone 

correlation in which the statistical algorithms are utilized and the major interpretation is based 

upon maximum cross-correlation of zones in two wells. This supports the explanations of Huang 

and Williamson (1994) which affirm that the quantitative approaches applied in geosciences in 

analyzing log datasets are statistical in nature. Its application has permitted systematic, rapid and 

objective analysis and processing of dataset.  

2.3.2. Structural Pattern Recognition 

Structural Pattern Recognition schemes are based on defining primitives (substructure 

relationships) and identifying allowable structures. It represents an attitude rather than a specific 

set of procedures which involves the following processes (Nandhakumar and Aggarwal, 1985): 

• identifying and extracting morphs1 (segmentation, symbol designation);  

                                                           
1
 Morphs is a Greek word Morphe which means shape or form 
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• identifying relationships between morphs in allowable structures (defining the 

syntax/semantics);  

• designing an algorithm for recognizing the occurrence of a structure of morphs in terms 

of the derived relationships (designing a parsing strategy)  

It is essential to note that a signal may be considered to be made up of an arrangement of morphs 

(-segements of specific shapes like parabolas, straight lines etc) and the final goal of a structural 

pattern recognition is the detection of structures. 
 

2.3.3. Artificial Intelligence 

Artificial Intelligence (AI) is seen as a collection of advanced computing techniques developed 

to solve problems that humans can easily solve but are very difficult for conventional computing 

techniques (Baker, 1989) and also the development of computational models of intelligent 

behavior, including both its cognitive and perceptual aspect (Duda and Shortliffe 1983). It 

involves the description of abstract concepts (represented by several/ hierarchical levels of 

abstraction) and the recognition of instances of the signals (Nandhakumar and Aggarwal, 1985). 

Researchers from different disciplines have been attracted to this study. They have considered 

the fascinating power of the brain formed by very simple cells called neurons in controlling body 

action, processing signals, making decision, and information storage. A neuron can therefore be 

said to be a specialized cell capable of processing the incoming information and conducting it to 

the next neuron. Kandel, et al.,(1991) and Nicholls, et al., (1992) explained in details the 

processing phase. The idea of copying the brain and neuron forms the basis of AI and is 

pioneered by the works of McCulloch and Pitts, (1943); Pitts and  McCulloh, (1947), Rosenblatt, 

(1958)  and Hebb, (1949).   

It is essential to note that Artificial-intelligence researchers have tried also to cast the visual 

perception problems in the domains of symbolic representation, symbolic structures, and 

symbolic processes to facilitate the symbolic representation of arbitrary objects and the 

relationships among them. This has resulted to the broad division of Artificial Intelligence into 

two basic categories: 

a.  Rule-based (expert) systems  

b. Adaptive (neural) systems 
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2.3.3.1. Rule-based (expert) systems 

This is commonly known as knowledge-based, which involves reasoning. Reasoning, however, 

involves drawing inferences from information, provided that data are in an appropriate 

representation scheme. The reasoning procedures work as programs manipulating data 

syntactically to deduce new programs following pre-specified rules of inferences. Hence, the 

computer programs formulated this way exhibit what is generally considered as intelligent 

behavior. This type of computer software system is called a rule-based system (Startzman, et al., 

1987). This author also noted its successful application in many areas, including computer 

configuration, diagnosis of infectious diseases, mineral deposits prospecting, log interpretation, 

and drilling-mud consultation. 

2.3.3.2. Adaptive (neural) system 

Artificial neural systems, or neural networks, are physical cellular systems that can acquire, 

store, and use experiential knowledge. The knowledge is in the form of stable states or mapping, 

embedded in networks that can be recalled in response to the presentation of cues. Hence, unlike 

a digital, sequential computer with a central processor that can address an array of memory 

locations, neural networks store knowledge in the overall state of the network after it has reached 

some equilibrium condition (stable state), thereby storing not in a particular location 

(Mohaghegh, et al., 1996).  Neural networks have pattern recognition and adaptability as its 

proven strong points. The essence of pattern recognition is the concurrent processing of a body 

of information, all of which are available at the same time (Mohaghegh, S., et al 1996)   

 

The geological application of Artificial Intelligence introduced in the work of (Simann and 

Aminzadeh, 1989) have recorded success to the numerous challenges posed in the quantitative 

analysis and interpretation of geological data and had since been further developed. 

 Wu and Nyland (1987) state that a computerized well-log stratigraphic interpretation system 

based on artificial intelligence can be seen as two steps, contact recognition and interval 

identification which considers geologic environment for effective interpretation. The system 

(well-log interpretation using artificial intelligence techniques) developed by Wu and Nyland is 

illustrated in Figure 2 indicating how the results can perform.  
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          Figure 2 A schematic of the design of Artificial Intelligence in well-log interpretation 

          Adapted from (Wu and Nyland 1987)    

                                                                

In this study, Statistical Pattern recognition and Rule-based system (Artificial Intelligence) 

methods will be used. This is because of the nature of the sample data.  

Secondly, statistical pattern recognition allows a priori geologic knowledge to be inserted into 

the algorithm. 
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3. THE STUDY AREA 

This section describes the sedimentary environment of deposition, the general geological setting, 

and the sequence stratigraphic framework of Athabasca Oil Sand where the exploration is done 

through drilling sizeable quantities of densely distributed wellbores. The output of the drilling 

amounts to large datasets that requires quantitative analysis.   

Sequel to the objective set for this thesis which explores the concepts of an automated 

interpretation of well log data from Athabasca Oil Sand through pattern recognition, the detailed 

knowledge of the geology is significant for the interpretation approach described in section 5.   

3.1. The Sedimentary Environment and General Geological Setting 

A sedimentary Environment describes the combination of physical, chemical and biological 

processes associated with the deposition of a particular type of sediment. It also describes the 

rock type formation after lithification if the sediment is preserved in the rock record.  

The Sedimentary environment can be divided into various classes which includes alluvial fans, 

rivers and flood plains, marginal-marine (deltas, alongshore sand bodies), and marine (shelf, 

submarine fans, turbidite sequences) (see figure 10). According to Hassibi et al., (2003) deep 

marine environments are mostly formed by turbidity flows and its facies especially those 

comprising fan channels and lobes, constitute some important hydrocarbon reservoirs worldwide. 

It is important to note that heterogeneities are bound to occur in turbidite reservoirs which can be 

as a result of the lobes to the source material. The nature of sand lobes determines the vertical 

and horizontal variations in the sequence thereby making sand continuity and lateral correlation 

an important issue.  

 

The Athabasca Oil Sands Area is located in the Western Canada Sedimentary Basin, north-east 

Alberta Canada (Figure 1, Section 1.2). The area is one of the several bitumen-producing areas 

that occur along the eastern margin of the western Canada Sedimentary basin (C&C Reservoir, 

2007). The Western Canada Sedimentary Basin (WCSB) covers an area of 1, 400,000 Km
2
 and 

stretches from the Proterozoic crystalline basement of the Canadian Shield in the north-east to 

the Cordilleran fold-thrust belt in the south-west. According to Alberta Geological Survey, 

WCSB can be divided into two distinct parts, reflecting sedimentation in two profoundly 

different tectonic settings.  

i) The carbonate rocks dominated Paleozoic to Jurassic platformal succession 
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ii) The clastic rocks dominated overlying mid-Jurassic to Paleocene foreland basin 

succession 

The former was deposited on the stable craton adjacent to the ancient (dominantly passive) 

margin of North America while the later was formed during active margin orogenic evolution of 

the Canadian Cordillera. This explains the three phases of the geological history of the Western 

Canada Sedimentary Basin (WCSB) according to (C&C Reservoirs, 2007) which includes the 

following: :  

1.  Cratonic platform (Precambrian-Middle Jurassic) 

2.  Retro-arc foreland basin (Middle Jurassic-Eocene) 

3.  Intracratonic basin (Eocene-present).  

During the Precambrian to Middle Jurassic, the WCSB lay on the western flank of the North 

American continent as part of the cratonic platform. Price (1994) stated that the WCSB was 

affected by block faulting and volcanism associated with subduction beneath an oceanic volcanic 

arc lying outboard of the continental margin during the Lower Paleozoic period and in this phase 

clastic detritus came mainly from the east. The Antler Orogeny in the USA was linked to the 

basin’s extension and rapid subsidence in the late Devonian-Early Mississippian. In the middle 

Jurassic, Columbian Orogeny occurred as a result of eastward subduction resulting in regional 

angular unconformity. It is essential to note that the locus of maximum subsidence migrated 

north-east as the accretionary prism prograded eastward onto the flank of the continental craton. 

An episode of crustal extension in the Eocene in the Cordillera marked the transition to the 

present-day intracratonic tectonic regime. From the Eocene onward, the WCSB was 

progressively uplifted, with as much as 1 km of uplift occurring by the Quaternary (C&C 

Resevior, 2007). The basin contains a wedge of Middle Proterozoic to Eocene sediments that 

pinches out into the Canadian Shield and thickens to >6 km adjacent to the thrust front in SW 

Alberta (Wright et al., 1994).  

3.2. Petroleum System and Stratigraphy 
 

The Pre-Cretaceous regional angular unconformity of Athabasca lies below the Lower 

Cretaceous (Aptian-Albian) Mannville Group deposit (Fig. 3A). The north-northwest trending 

regional valley was created as a result of the dissolution of salt in the Elk Point Group and 

collapse of carbonates in the overlying Beaverhill Lake Group within the subcropping Middle 

Devonian section which accompanied erosional downcutting of the unconformity surface  
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(Figures 3 and 4). This valley is commonly called the Main Valley which bordered to the west by 

a carbonate-cored anticline, known as the Athabasca Anticline and served as a major feature in 

the Athabasca area in the Early Cretaceous (figure 5). During a marine transgression in which the 

Boreal Sea invaded the Alberta Basin from the north-west, sediments of the Lower Mannville 

Group (Aptian McMurray Formation) were deposited in the erosional valley. At this moment, 

the Alberta Basin was bounded on the west by the rising Cordillera and continental sediments 

eroded from this mountain chain entered the Main Valley from the south, beyond the southern 

terminus of the Athabasca Anticline (figure 5). Above the unconformity surface, fluvial channel-

fill sandstones of the lower McMurray Formation were directly deposited by the river flowing 

northward along the valley axis. 

As the sea level rises, the Upper Mannville Group (Wabiskaw Member of the Clearwater 

Formation) was deposited above the McMurray Formation which was covered by upper 

Clearwater marine shales.  The great majority of bitumen in the Athabasca area is entrapped in 

the McMurray/ Wabiskaw interval. The Clearwater shales are overlain by marine 

shelf/shoreface, delta-front and delta-plain deposits of the Grand Rapids Formation, which 

comprises the upper portion of the Mannville Group and consists of multiple prograding deltaic 

cycles topped by marine flooding surfaces. (C&C Reservoir, 2007). 

Figure 3A depicts the bitumen generation of Athabasca from the Devonian-Mississippian 

Exshaw Shale, which occurs beneath the regional angular unconformity that underlies the 

Mannville section. The Exshaw was deposited on an anoxic marine shelf containing Type II 

kerogen with TOC values of 10-20% and hydrocarbon indices of 400-600. During the uplift and 

uncapped episode in the mid-Tertiary, hydrocarbon expulsion ceased. However, most bitumen 

trapped in the Athabasca migrated out of basin as oil and entered shallow stratigraphic and 

structural traps in the Late Cretaceous-Paleocene Laramide deformation. The oil was 

subsequently water-washed and biodegraded to form bitumen.  

 

The occurrences of bitumen in three reservoir rocks of Athabasca have been identified in the 

Lower Cretaceous McMurray, Wabiskaw Grand Rapids deposits and the Devonian 

Grosmont/Nisku deposit. The heavy viscous oil is contained in a shallow stratigraphic-type trap 

formed by the McMurray Formation and the overlying Wabiskaw Member of the Clearwater 

Formation, both of Early Cretaceous age.  
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The Lower McMurray fluvial succession is preserved mostly parallel with lows on the sub-

Cretaceous unconformity, and contains mainly bottom water. Figure 3 shows the development 

such as the in-situ projects going on in these areas. Flach and Hein, (2001) described the  Joslyn 

Creek in-situ project which target bitumen in Lower McMurray braided river-sand reservoirs 

where the reservoir comprise sand-dominated, channeland- bar complexes, having high 

porosities and permeability, high interconnectivity and lacking internal barriers or baffles 

 The overlying Upper McMurray succession is a transgressive systems tract that contains some 

of the richest bitumen reservoirs within the Athabasca deposit, hosted mainly within 

amalgamated or stacked estuarine channel-and-point bar complexes. These reservoirs include 

thick (up to 58-m) estuarine channel sands with no laterally extensive shale breaks. 

In summary, the Cretaceous McMurray Formation of the Athabasca Oil Sands was deposited on 

the eastern, low-accommodation side of the foreland-basin. Reservoirs, 10–90 m thick, occur in 

tidally influenced meandering point-bar and tidal-bar deposits. The reservoir occurs at depths of 

0 to 400 m a combination of structural-stratigraphic trap by viscous immobility, depositional 

pinchout, and subtle anticlinal closure (C&C Resevior, 2007). 

The sediments were mainly derived from exposed craton to the east and northeast with the 

minimum sediment burial and early oil migration resulting in 30–35% porosity and multi-Darcy 

permeability.  The variation of the reservoir and the bitumen parameters are identical.  

According to Norsk Geologisk Forening, microbial biodegraded bitumen of Athabasca varies 

from 6–8º API gravity with greater than 1,000,000 cP viscosity, which can also vary by an order 

of magnitude over 50 m vertical and 1 km laterally. However, the shale layers (mud plugs), 

extensive tidal flat or muds on laterally accreting point bars posses a manageable challenge to 

bitumen development.  The oil source is likely Mississippian shale of the Exshaw Formation (see 

Fig. 4) from the underlying passive margin succession, which reached maturity during foreland 

basin compression. Work by others suggests that the Exshaw oil may have been generated and 

emplaced ~ 112 Ma ago, just after deposition of the McMurray Formation.. 
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Figure 3 – (A) SW-NE schematic structural cross section showing distribution of Athabasca, 

Wabasca and Peace River oil sand in the Lower Cretaceous Mannville Group and their 

relationship to subcropping bitumen-impregnated carbonates of the Grosmont/Nisku deposit in 

the Devonian Woodbend Group. Section line shown below (Cutler, 1982). (B) Major bitumen 

and heavy oil of Alberta. The Grosmont/Nisku deposit partly subcrops beneath the western 

portion of the McMurray/Wabiskaw deposit (Hallam et al., 1989)   
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Figure 4 Lower Cretaceous stratigraphy of Alberta, showing unconformable relationship of the 

Cretaceous section to the underlying Paleozoic section. Adapted from (Keith et al., 1988) 

 
 

Figure 5 Depth-structure map drawn on pre-Cretaceous unconformity, Alberta, Canada.                                                           
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Table 1 shows the percentages of bitumen reserve represented as 68% and 32% respectively, 

contained in the Lower Cretaceous sandstone of the Mannville Group and the underlying 

Devonian carbonate of the Grosmont and Nisku formation.  The Mannville Group of Athabasca 

oil Area comprises, in ascending order, the Aptian McMurray Formation, the Albian Clearwater 

Formation and the Albian Grand Rapids Formation.  The McMurray is dominated by 

fluvial/coastal-plain sandstones and the Clearwater by marine-shelf shales and was deposited 

directly upon a Cretaceous angular unconformity underlain by Paleozoic carbonate rock (Figure 

3) (C&C Resevior, 2007). Wabiskaw Member directly overlies the McMurray Formation which 

comprises a thin interval of marginal-marine glauconitic sandstones and shales. Hence, in the oil 

sand of the Lower Cretaceous Manville Group, 94% of the bitumen reserves occurred in the 

McMurray/Wabiskaw deposit while the remaining 6% are found in the Grand Rapid reservoir. 

 

Table 1 In-place reserve for Canada’s bitumen deposits (Alberta Energy and Utilities Board, 

2006) 
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Figure 6 Response of gamma ray to different depositional environment (Modified from Tsai-Bao 

Kuo. 1986). 

 

 

Athabasca deposit is hosted within fluvial, estuarine, and marginal marine deposits of the Lower 

Cretaceous Wabiskaw-McMurray succession (Hein and Cotterill, 2006). Figure 6 shows 

different response of gamma ray to different depositional environment. It essential to note that 

different depositional environment have different characteristic log response and the higher the 

gamma ray units the sandy the signature.  

 

Flach and Mossop (1985) describe the stratigraphic pattern of the northern portion of the 

Athabasca Oil Sand Area has the McMurray Formation divided into lower, middle and upper 

members. The thickness of the lower member is between 0-60m with an overall fining-upward 

profile and consists of medium- to coarse-grained sands, arranged in 5-10 m thick, fining-upward 

packages, interbedded with carbonaceous mudstones and thin coals that are common near the top 

(Figure 7). The middle members is approximately 40m thick and consist of channel facies and 

off-channel facies and the upper member between 15-30m thick and is composed of bioturbated, 
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argillaceous sand and shales that are local truncated by channel-fills. Some sand intervals near 

the top of the upper member were interpreted as marine offshore bars (Figure 7B) 

Figure 8 describes the detailed interpretation of a gamma log. Thus, this thesis will explore the 

possibilities of recognizing the signature of the sand bodies (sand intervals) with different grain 

size and also shale intervals (which are more laterally extensive) from the given gamma ray 

datasets in order to investigate the connections. This will enable the complete stratigraphic 

interpretation and correlation.   
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Figure 7 – N-S (A) and W-E (B) stratigraphic cross-sections of the McMurray 

Formation/Wabiskaw Member in the Athabasca Oil Sands surface mineable area. McMurray 

Formation is dominated by fluvial and estuarine deposits. Marine influence becomes more 

important upwards, with shallow-marine facies developed in the Wabiskaw Member. Adapted 

from (C&C Resevior, 2007) 
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Figure 8 An automated interpretation of gamma log. Adapted from (Wu and Nyland 1987) 
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4. STUDY DATA  

This section provides a brief description of the sample data available from the study area. These 

sample dataset were used to test the electrofacies determination/ interpretation approach of this 

thesis. The well logging techniques utilized in the wells of the study area are also described in 

this section.   

4.1. The Sample Data Set 

The sample dataset available for this study are the well logs of Gamma ray, Dipmeter and 

Azimuth. It is provided from 21 wellbores from the study area, with the down-hole penetration 

(depth) varying between 75 and 101 meters. The depth values were adjusted to a common 

reference level and hence remain a relative depth representation. The log of each wells are read 

approximately at every 10cm down-hole in which the readings of gamma radiation, the azimuth 

and the dip are recorded. However, for the purpose of this study, only the dataset of gamma ray 

were utilized after an extensive discussion with an expert geologist from Shell International 

Exploration and Production, The Netherlands. 

4.2.  Well Distribution 

The sample data is unevenly distributed of the sample dataset in an area of about 15Km
2
(Figure 

9). The distance between two adjacent wells varies to a large extent between 300 and 2000 

meters. The sample dataset were georeferenced in a UTM projection based on WGS84, given the 

well location in a metric Cartesian coordinate system (Exeler, 2009). It is essential to note that 

the coordinates represented in this thesis are not original absolute coordinates, instead it shows 

relative positions and the original coordinates were changed for anonymity reasons.   

4.3. Well logging  

A well log is simply described as a recording of characteristics of rock formation against depth. 

It is carried out for reservoir characterizations where measurements of the physical properties of 

surrounding rocks are with a sensor located in a borehole are recorded (Telford et al., 1990). The 

principal aims of these tasks include the following 

a. Identification of geological formations 

b. Identification of fluid formation in the pores 

c. Evaluation of the production capabilities of a reservoir formation. 
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Figure 9 Relative well locations of the sample data. Adapted from Exeler, (2009) 

 

The geological investigation of formation thickness (Lithology), porosity, permeability, 

saturation water and hydrocarbon usually combines about five well logging such as Electrical 

resisitivity logging, Radioactive logging (Gamma ray and density logging), Auxiliary logging 

(Includes sonic logging), Dipmater logging, Azimuth logging etc. (Telford et al., 1990). The 

changes which are projected on a well log imply that well log signals are function of sedimentary 

patterns. Figure 10 depicts a sedimentary pattern. It shows a 3D model that indicates the 

development of a submarine fan and the variation of sedimentation in different location. For the 

purpose of this work, well log data of Gamma ray, Dipmeter log and Azimuth log were provided.  
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Figure 10  3D model of a sub marine fan. (Adapted from Shanmugam et al., 1988) 

4.3.1. Gamma ray logging 

Gamma radiation is used for qualitative evaluation of shaliness or clay content of a formation by 

measuring the natural radioactivity of the formation adjacent to the wellbore. Shale emits more 

gamma radiation than non shale sediments such as shale free- sandstones and carbonates because 

its gamma ray reading is high, since the concentration of radioactive material is high. Gamma 

ray logs are used in identifying lithologies, correlating formations and calculating volumes of 

shale. It is recorded in a relative scale using American Petroleum Institute (API) units. Figure 8 

and 11 show an interpretation of gamma ray log. 
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Figure 11 Interpretation of a gamma ray log. Adapted from Exeler, (2009) 

 

 

Figure 12 Azimuth and dip angles in a ripple structure deposited by channel flow. Adapted from 

Exeler, (2009) 
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4.3.2. Dip and Azimuth 

Dipmeter logging tools records high-resolution conductivity curves from multiple pads pressing 

against the borehole wall (Baker, 1989).  Dipmeter tools determine the structural dip and azimuth 

in wells with an accuracy of plus or minus two. Dipmeter logs have a high vertical resolution of 

3 to 5 cm with the depth of investigation is approximately 1 cm. Figure 12 describes the azimuth 

and dip angles as it concerns the study area. 
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5. METHODOLOGICAL FRAMEWORK FOR THE STRATIGRAPHIC 

INTERPRETATION OF WELL LOG DATA 

The stratigraphic interpretation procedures of the well log data applied to this thesis is described 

in the flow chart of figure 13. The first two steps examine the individual wellbore. The 

explanation of the processes and the logic behind applications is explained below.   

 

5.1. Recognition of Lithofacies and Electrofacies 

Recognition of lithofacies is a common practice in drilled wells where suitable well logs and 

core samples are available. Pattern recognition techniques such as hierarchical and k-means 

cluster analysis can be used for classifying well log data into discrete classes. The automation of 

well log correlation using both multivariate statistical techniques including principal component 

analysis (PCA) and rule based system for efficient and reliable pattern recognition for well-to-

well correlation can be established. Lim, (2003) used the first principal component log, since it 

has the largest common part of variance of all available well log data. 

The key to an automated interpretation of pattern is to explore the logic of human interpreters 

and follow this logic in designing the computer software. Correlation (of wireline logging data) 

is also based on the large set of subjective rules for pattern recognition that aims to represent 

human logical processes. Following the foregoing, statistical pattern recognition methods was 

utilized in this work. This is based on numerical computation procedures (mathematical 

calculation) in identification of patterns.  

The advantages of this approach are that (Nikravesh, et al., 2003; Lim, 2003). 

• It can be applied in all depositional environments,   

• It can be more helpful for obtaining more reliable correlation results for complex 

geologic formation 

• It has the capability of dealing with probability and uncertainty of data due to fuzziness  

The geological information that is meaningful can be derived by selecting, weighting and 

combining a set of logs which give rise to a set electrofacies that can be correlated with 

geological facies for a better understanding.   
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An electrofacies is defined as the set of log responses which characterizes a bed and permits it to 

be distinguished from others (Serra and Abbott, 1982). In log-analysis applications, an 

electrofacies is used typically as an indicator of lithology and depositional environment (Wolff 

and Pelissier-Combescure, 1982; Anxionnaz, Delfiner, and Delhomme, 1990). Electrofacies 

zonation is based on the attempt to identify clusters of log values coming from levels with 

similar characteristics. The importance of electrofacies characterization in reservoir description 

and management has been widely recognized as this kind of data partitioning is to simplify a 

complex data set into some homogeneous and simple subgroups and to produce a better 

correlation between dependents and independents within distinct subgroups for further 

petrophysical properties regression (Lee and Datta-Gupta, 1999).  The electrofacies 

determination procedure which is based on cluster analysis of well logs used in this study is 

summarized by the flow chart in figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Flow Chart of electrofacies determination 

 

 

Data Processing and Preprocessing of well logs 

Cluster Analysis of Well Logs 

Zonation of Well Logs 

Descriptive Statistical Analysis of the well 

log data 

Electrofacies Determination 
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5.2. Cluster Analysis of well logs 

The provided well data comprise the readings of gamma radiation, azimuth and dip taken at 

about every 10cm of the total well depth. This makes the reading too detailed that sediment 

classification has the tendencies of overlapping. However, samples with similar logs responses 

need to be identified. This identification is done using a clustering algorithm that can operate on 

log traces. 

 Cluster Analysis, also called data segmentation, relates to grouping or segmenting a collection 

of objects (observations, individuals, cases, or data rows) into subsets or "clusters", such that 

those within each cluster are more closely related to one another than objects assigned to 

different clusters. The purpose of cluster analysis is to look for similarities/dissimilarities 

between data points in order to group them into classes. In multi-dimensional space logs, the 

distance between data points is a measure of their dissimilarities. Samples with similar log 

responses will tend to form clusters, separated by areas with a lower density of points. The points 

are close due to the similarity of log their response. The idea is to ascribe to each level of the 

well the group or cluster to which it belongs. Statistical theory provides two types of approach 

(Gnanadesikan, 1977). 

One approach is “classification” (normally called “discriminant analysis”). The groups are 

specified in a lithofacies database and then each depth level is assigned to the correct group by 

use of an appropriate discriminant function. This method has a merit of being fully automatic as 

the interpretation work is done once. Meanwhile, correct definition of the database is very 

important for achieving good results  

The second approach which was used here is to determine the clusters or groups from the data in 

each well. This “clustering” has a merit of letting the data “speak for themselves” and reveals 

their subtle differences. However, geologic interpretation of the cluster must be repeated each 

time. There are two major methods of clustering algorithm used in identification of log responses 

which usually can follow either a hierarchical or relocation strategy (one in which observation 

are relocated among tentative clusters).  

Relocation methods move observations iteratively from one group to another, starting from an 

initial partition. The number of groups has to be specified in advance and typically does not 

change during the course of the iteration (Fraley and Raftery 1998).  
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K-means clustering is the most common relocation method.  Conversely, hierarchical clustering 

which uses some heuristic criteria like single link (nearest neighbour), complete link (farthest 

neighbour), average link or maximum-likelihood as explained in section 5.2.2.1 was utilized and 

is described below. This have prove successful in earth sciences application and well log analysis 

as recorded in the works Delfiner, et al.,(1987); Lim, et al., (1997) and Lim, (2003).   

5.2.1. Hierarchical Clustering 

This is an approach to clustering based on the representation of data as a hierarchy of clusters 

nested over set-theoretic inclusion or measured characteristics. It is mainly used as a tool for 

partitioning. However, the data are not partitioned into a particular cluster in a single step, but a 

series of X partitions takes place, which may run from a single C cluster containing all objects to 

clusters each containing a single object. Thus, when there are X cases this involves X-1 clustering 

steps or fusions, exemplified into partitions as X cluster, X-1 cluster, X-2 clusters…..and Xth in 

which all samples forms into one cluster. It can be said that at level Z, in the sequence, the 

number of clusters, C = X – Z + 1.  Thus, level one corresponds to X clusters and level X to one 

(Duda and Hart, 1973). The key components of hierarchical clustering analysis is the repeated 

calculation of distance measures between objects, and between clusters once objects begin to be 

grouped into clusters. It is also not limited to a pre-determined number of clusters and can 

display similarity of samples across a wide range of scale. Hierarchical Clustering is sub-divided 

into two types- agglomerative and divisive methods. They construct their hierarchy in the 

opposite direction possibly yielding different results. (Figure 14) 

Figure 14 Distinction between Agglomerative and Decisive techniques 

 



44 

 

5.2.1.1. Agglomerative (bottom up, Clumping) Method 

This procedures start with x singleton clusters which proceed by series of merging two nearest 

clusters of the x objects into groups at each step. It is particularly common in the natural sciences 

and will be utilized here. 

5.2.1.2. Divisive (top bottom, Splitting) 

This procedures start with all of the sample in one cluster which separate/ split a cluster in two 

distant parts, starting from universal cluster containing all entities.  

 

Hierarchical clustering may be represented by a two dimensional diagram known as dendrogram 

or clustering tree (Figure 15) which illustrates the fusions or divisions made at each successive 

stage of the analysis. Figure 15 shows a simple dendrogram of 10 samples, indicating at level 

one a singleton cluster. At level two, samples X5 and X6 are grouped together to form a cluster 

which stays together at all the subsequent levels. It is important to note that in order to measure 

the similarity between clusters; the dendogram is usually drawn up to scale to show the similarity 

between the clusters that are grouped, thereby making the similarity values to be mostly used in 

determining if the groupings are natural or forced. Level one to eight may be considered natural 

while between level eight and nine indicates that the clusters are forced due to large reduction in 

similarity value (Figure 15)  

 

Figure 15 A simple dendrogram for hierarchical clustering 

Agglomerative clustering are commonly used than the divisive methods due to its computation 

simplicity and it can be implemented in R software by hclust() and agnes(). Section 6 
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explain the software and the implementations. The steps behind the working principles of the 

algorithm are shown below, based on the studies of Panigrahi and Sahu, (2004). 

1. Read all input patterns 

2. Normalize all input patterns by dividing each data point by the maximum value of the 

corresponding attribute.   

                                                                                                                (1) 

3. Assign each item to its own cluster, thus, if there are n samples in set C, there will be n 

clusters. 

i.e. if C = {X1,X2,X3……Xn} where Xi = {Xi}, I = 1,……p (p is the number of characters in 

each sample) 

then, C
^
= n                                                                                                                      ( 2) 

4. If C^
≤ C ( no. of clusters required), stop. 

5. Find the nearest pair (most similar) of distinct clusters, Xi, and Xj, where Xi ≠ Xj, whose 

merger will increase (or decrease) the criterion function as little as possible. 

6. Merge Xi and Xj, delete Xj and decrease C
^
 by 1 

7. Go to point 4 

R software was utilized in this thesis and this automatically computes the above.  

5.2.2. Computation 

The details of the computation processes using R software, the implementations and the results 

are discussed below. 

Hierarchical clustering function hclust()is in standard R functions and is available without 

loading any specific libraries. Hierarchical clustering requires dissimilarities as its input with 

standard R having functions dist() to calculate many dissimilarity functions.  

Hierarchical agglomerative cluster analysis starts by calculating the distance matrix in the matrix 

of data. Below are the lists of the common distance functions in R with their respective 

disadvantages 

i. The Euclidean (square) distance 

                                                                  (3) 
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The disadvantages is that the application is not scale invariant and not for negative 

correlation 

ii. Maximum, Minowski, Canberra, Manhattan, binary. 

iii. Correlation base distance: 1-r. This includes 

a. Pearson correlation coefficient (PCC) 

      (4) 

The disadvantage is that it is very sensitive to outliers  

b. Spearman correlation coefficient (SCC)  

This has the same calculation with Pearson correlation coefficient, although with 

ranked values.  

Cluster analysis can be run in the R-mode especially when seeking relationship among variables 

and Q-mode. In Q-mode analysis, the distance matrix is a square, symmetric matrix of size n x n 

that expresses all possible pairwise distance among sample. Hence, a Q-mode analysis is 

assumed in this work. Euclidean distance is utilized. Equation 3 gives Euclidean (square) 

distance, dij, between points i and j  

The command in R that accomplished this is dist(data), where data is a matrix or dataframe 

containing the data. 

On the complete computation of the distance matrix, a hierarchical cluster analysis can be 

completed. There are several alternative clustering linkages or methods in the standard function 

hclust. The method to be utilized depends heavily on the nature of the data and the expected 

output. The next section explains all the methods or measures.  

5.2.2.1. Similarity Measure 

The similarity measurement is very essential to note when deciding the clustering algorithm to be 

used. The degree of similarity in the clusters and dissimilarity between clusters requires distance 

measurement. All these commence in a similar manner by fusing two most similar points to a 

cluster and they differ in the way in which they combine clusters to each other, or new points to 

existing cluster. In order words, the algorithms differ in the way in which distance is measured 

between clusters mainly by using two parameters: the distance or likelihood measure (Euclidean, 
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Dice, etc) and the cluster method (Between group linkage, nearest neighbor etc.). Figure 16 

illustrates four hierarchical algorithm methods. The explanation below follows the description 

given by Gelbard et al., (2007). 

Within groups average: This method calculates the distance between two clusters thereby 

allowing the cluster with highest average likelihood measure to be united. It applies the 

likelihood measure to all the samples in the two clusters.  

Between groups average: This method calculates the distance between two clusters by applying 

the likelihood measure to all the samples of one cluster and then comparing it with all the 

samples of the other cluster. The two clusters with the highest likelihood measure are then 

united. 

 

 

Figure 16 Showing of four hierarchical algorithms methods. Adapted from Gelbard et al., (2007) 

 

Nearest neighbor (Single linkage): This method calculates the distance between two clusters by 

applying the likelihood measure to all the samples of one cluster and then comparing it with all 

the samples of the other cluster. The two clusters with the highest likelihood measure, from a 

pair of samples, are united. 

Furthest neighbor (Complete Linkage): This method, like the previous methods, calculates the 

distance between two clusters by applying the likelihood measure to all the samples of one 

cluster and then comparing it with all the samples of another cluster. For each pair of clusters, 

the pair with the lowest likelihood measure is taken and two clusters with the highest likelihood 

measure of those pairs are then united. 
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Centroid: This method calculates the centroid of each cluster by calculating the mean average 

properties for all the samples in each cluster. The likelihood measure is then applied to the means 

clusters and the clusters with the highest likelihood measure between their centroids are united. 

Median: This method calculates the median of each cluster. The likelihood measure is applied 

medians of the clusters and the clusters with the highest median likelihood are then united. 

Ward’s Method: This method calculates the centroid for each cluster and the square of the 

likelihood measure of each sample in the cluster and the centroid. The two clusters, which when 

united have (negative) affect on the sum of likelihood measures, are the clusters that need to be 

united. 

 

A study of similarity measures as explained above clearly indicates that average linkage method 

is more suitable for this particular application than the single and complete linkage methods. The 

original gamma ray log data and the computed difference of the gamma ray logs of each well are 

considered. Average linkage, used here, is also very useful when clusters are not well separated 

which has been observed in the present case.  

The general syntax/ scripts developed for the computation is printed in Appendix C  

Appendix A shows the resulting dendograms of gamma ray in the 21 wellbores from the study 

area. The results and the implementation are discussed in section 6. 

5.3. Electrofacies Classification of Gamma ray well log data using 

hierarchical clustering 

In earth sciences, the hierarchical clustering techniques described above are most widely applied 

especially in the determination of the electrofacies (Lim et al., 1997), which also corresponds to 

a cluster in the multivariate space of log data. The clusters can be interpreted as lithofacies, 

homogenous classes, or similar patterns that exist in the data. For example, shale would typically 

form a population of data point characterized by high gamma ray while sand will be 

characterized by a low gamma ray. 

An attempt has been made to classify the Athabasca Oil Sand well log data (Original gamma ray 

data and the computed difference) by hierarchical clustering following the algorithm described 

above.  
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Figure 17 Dendrogram showing clustering scheme resulting in four class. Scale on the left 

represent multivariate distance and class designations refers to four electrofacies identified 

within Athabasca Oil sand 

 

The observed gamma ray well log dataset were organized into meaningful structures by the 

classification algorithm, grouping similar objects to distinguish them from other dissimilar 

objects on the basis of their measured characteristics. The identification of electrofacies which 

clearly separate between sand, shale and intermediate sediments following different values of 

gamma rays logs for each wellbore were recognized. The depths which correspond to each 

dataset were also noted. The differences in gamma ray log data for each wellbore were computed 

and the clustering algorithm was also applied to the computed differences. This was done to 

recognize all the hidden patterns of the gamma ray well log dataset, which ordinarily will not be 

recognized if only the clustering techniques were done with the original gamma ray dataset. The 

procedures to achieve the classification of gamma ray well log data are as follows. 

i. The datasets of the gamma ray well log (the attributes measurements) were compiled  

ii. The clustering algorithm was applied to the similarity matrix as an iterative process to the 

original gamma ray well log dataset and to the computed difference gamma ray well 

log dataset    

iii. The pairs of object with highest similarities were merged, the matrix was re-computed 

and the procedures repeat.  
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All objects are linked together as a hierarchy, shown as a dendrogram. Figure 17 and 18 show 

the stages of cluster analysis of log data and dendrogram zones for electrofacies classification. It 

is essential to note that before applying the algorithm, appropriate similarity measures were 

chosen as described in section 5.2.2.1. All these measures have minimum variance flavor which 

often give similar results when clusters are compact and well separated. However, if the clusters 

are close to each other and a different result may be obtained.  As stated earlier, the study of 

similarity measures clearly indicates that average linkage method is more suitable for this 

particular application where the original and computed difference of gamma ray log data are 

considered than the single and complete linkage. Therefore, average linkage method was 

utilized.  

Determining the optimal number of groups in a cluster analysis is crucial. Some objective 

methods with somewhat arbitrary application have been proposed. These are as follows:  

(a) Visually observing for the natural groupings in the data defined by long stem 

(b) Definition of clusters at a consistent level of similarity, so that one would draw a line at 

some chosen level of similarity and all stems that intersect that line would indicate a 

group. 

(c) Definition based on the ratio of within-group variance to total variance  

(d) Definition based on the mean of the total mean from all the wellbores. 

 

(A)                                                                                       (B) 

Figure 18Stages of Cluster analysis of log data: (a) dendrogram of zones according to 

hierarchical clustering of zones based on their similarities; (b) classification of zones 

(Adapted from Doveton, 1994) 
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Sequel to the above, we determine the optimal number of the groups based on the option (b) 

which supports the assumption that the strength of clustering is indicated by the level of 

similarity at which elements join a cluster.  

Similarity characterization process identified in the above process delineates dominant 

electrofacies which is referred here as reservoir compartments figure 20. The 

compartmentalization helps in better understanding of sedimentary structure of the reservoir, 

where each compartment represents the region with specific sedimentary features that is 

consistently observed over the locations.  

 

Figure 19 Reservoir compartmentalization 
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6. IMPLEMENTATION 

The details of the methodological framework and the computation processes described in section 

5 were implemented using the statistical programming software R. The software provides the 

clustering functionality that can be applied to a set of well log data.  

The well log dataset of 21 wellbores in the depositional environment of the study area as 

described in section 3 was imported to the software. This section will summarize the 

programming environment R and discuss the application of the method to the data and results. 

 

R is a programming language for data analysis, manipulation, and graphical representation. It 

provides the language and environment and packages which includes functions (Venables, et al., 

2008).  It is a part of GNU project with its source code freely available under the GNU General 

Public License
2
. Therefore R was chosen for the implementation. 

The Packages “sp”, “clusters”, “R.basic”, were utilized for spatial analysis, clustering and 

graphic visualization. 

The subtle variations of lithofacies based on the selection of log data are optimized for 

characterizing rock types by capturing electrofacies that predicts reservoir complexity. The 

electrofacies are calibrated using a qualitative interpretation of well logs which helps in filtering 

a large quantity of data so as to automatically detect potential sandbodies which serve as the 

reservoir rocks for the bitumen. It is essential to note that the output of the classification will be 

utilized to delineate prospective areas for in depth geological mapping and interpretation.  

 

6.1. Data Preprocessing and Compilation of Well logs
  
 

The well log data was preprocessed into the formats that could be readily used for the 

implementation in the software. The data comprises well location data and well log data in text 

files. Well names, surface x-y coordinates and heights are given in the well location file. The log 

data provided include gamma ray, azimuth and dip which consist of four columns. Each line is a 

vector of depth, gamma ray, azimuth and dip. The log measurements were taken at 

approximately every 10cm.   

 

                                                           
2
 
www.gnu.org/license
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The implementation generates some textual and graphical representation of intermediate and 

final results which include outputs such as the dendogram for each well (with visualization) and 

Sand/shale/intermediate sediments electrofacies classification for each well (with visualization).   

 

The dendograms obtained from the aforementioned well log data clusters are presented in 

Appendix A. For illustration purpose, figure 20 shows the dendogram of a selected three 

wellbores. The dendograms show the clustering results that depicts four classes in each of the 

wells  

The 21 wellbores were symbolized with an alpha-numeric tags for which they are identified as 

A1, B2…, U21 representing well 1, 2…and 21 respectively. 

 

Figure 20 The dendograms of well A1,B2, and C3. 

 

A critical review of the different dendograms generated by all the wellbores reveal the following:   

a. The vertical axes of the cluster dendrogram indicate the fusion level with the most similar 

observations combining first which are at the same level in all dendrograms.  

b. At the upper fusion levels, the scales diverge showing the distance among cluster 

centroids since average linkage was utilized.  
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c. In all the dendogram in Appendix A, it has been observed that at a similarity value of 10 

the number of clusters obtained for the wells is an average of seven clusters. 

d. At similarity distance of approximately 80, all the samples are forced to one cluster 

except in the case of wells F6, G7, and O15 where the value is about 100 while well T20 

is about 120.  

e. At a similarity distance of approximately 22 (average of all distances), four clusters were 

obtained in almost all the wellbores. It may be observed here that there are a large 

number of reductions of clusters in each of the wells. This indicates that the clusters are 

natural, hence approximately at a distance of 22 four clusters are considered for 

classification. 

f. In some cases where the similarity distance is more or less than the average, the distances 

were adjusted so that uniformity of four clusters is maintained in all wells. 

g. Finally, it may be concluded that in all cases four clusters were chosen for the 

classification of gamma ray data of the well logs. 

 

The decision to choose four clusters for all the wellbores were based on the nature of the data 

and the knowledge of the study area’s geology, as explained in section 3, where sediments are 

categorized as Sandstone, Sandy-Shales, Shales and Shale-Sands.  

The whole processes were automated by assigning the corresponding parameters to the software. 

The clustering of the 21 wellbores was carried out automatically, generating 4 clusters in each of 

the wells and plotting the corresponding dendograms. It took approximately 80 seconds to 

complete the whole process on a computer processor with AMD Athlon™ 64 X 2 Dual-Core 

Processor TK-57 1.90GHz, Memory (RAM) 2.00GB and System type 32-bit Operating System.  

The challenges of this algorithm and the results are described in section 6.3  

6.2. Calibration of Electrofacies  

The objective of this electrofacies classification was to distinguish between four classes: 

Sandstone, Sand-Shale, Shale-Sand and Shale. Preferably, the lithology would have been 

calibrated on core
3
 by matching the depth and the rock types with the log data. However, due to 

unavailability of core samples, the lithology assessments and calibration were based on the 

qualitative interpretation of well logs over a set of rules. Table 2 depicts north-eastern Alberta 

                                                           
3
 A tabular segment of rocks obtained as a study sample by drilling  
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well logs suite with their respective measured values, the characteristic rock types and regional 

stratigraphic unit from where the calibration and interpretation will be based. 

     

Table 2 Stratigraphic Nomenclature and Characteristics of Different Units in Athabasca 

Wabiskaw-McMurray Succession, Northeastern Alberta. Adapted from Hein and Cotterill (2006) 

 

 

A detail review into the distribution of the original and computed gamma ray values of some 

selected wells (A1, B2, T20, U21) that are associated with the electrofacies in our case are 

shown as box plot in Figure 22. The four box plot in each well depicts the data from the clustered 

well logs were segmented into EF1
4
, EF2, EF3 and EF4. The details of the distributions indicate 

that the electrofacies grouping reflects the nonlinearity between the gamma rays of each 

clustered well as there was no overlapping of electrofacies in each of the individual well. 

Outliers are observed as circle in the plots, although it is not conclusive. Hence, the distribution 

of the data of each electrofacies can be quickly viewed for an informed interpretation.  The 

statistical values are shown in Table 3 this enables the ability to compare between selected 

wellbores. 

 

 

 

                                                           
4
 EF means Electrofacies 
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Figure 21 Box plots showing distributions of the gamma ray values within four electrofacies 

classes determined by clustering on log data. The central box shows the quartile of the data, 

whiskers indicate range, the median are represented by a line and the outliers are denoted by 

circle. 
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Table 3 This shows the statistical values of the computed box plots indicating the values of the 

lower end of the whisker, the first quartile (25th percentile), second quartile (median=50th 

percentile), third quartile (75th percentile), and the upper end of the whisker.  

Statistical values of Well 21 Statistical values of Well 20 

 

 

 

Statistical values of Well 1 Statistical values of Well 2 

 
 

 

 

6.2.1. Rule Base 
 

Baker, (1989) proposed some simple rules to recognize lithological zones by visually observing 

the shape and relationships between different logs such as gamma ray, neutron and density etc. 

Based on his geologic knowledge of the study area, he constructed a set of rules using a GURU 

expert system shell. However, neutron porosity and density porosity were among the additional 

input data with gamma ray data that informed his decision. Nevertheless, this rule can fit in this 
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case study. The rules were useful in recognizing the lithology for log data and it is stated as 

follows 

IF  the gamma ray is less than 50 API 

THEN the gamma ray is low 
 

IF  density porosity – neutron porosity is less than 2.5% 

AND density porosity – neutron porosity is greater than -2.5% 

THEN porosity difference is equal 
 

IF gamma ray is low 

AND porosity difference is equal 

THEN lithology is limestone 

 

Sequel to the above the distribution of the log data in different electrofacies of different 

wellbores, Figure 22 reveals that the qualitative interpretation based on the possibilities 

presented by Baker, (1989); Hein and Cotterill (2006) can be applied to the study data. 

In achieving this, the mean of each electrofacies from the clustered gamma ray data in each 

wellbore were computed. This gives the average value of each electrofacies. The range values 

which describe the range of the gamma ray distribution in each classification were also 

computed. Appendix B shows all the values and corresponding ranges for each of the 

electrofacies respectively. Electrofacies were calibrated based on the mean values, considering 

the maximum value in a cluster of each group as a factor. The interest as stated earlier is to 

distinguish between the four lithological classes thereby depicting the sandbodies which serve as 

reservoir rocks. 

 

In Example 1 (below), six decision rules were constructed for lithology identification. The 

programme (written in R) was applied when calibrating the electrofacies generated from the 

clustering performed in each wellbore. It first describes the attributes of the clusters, in which the 

essential parameters are the mean and maximum values of each cluster.  However, the rules 

would have given preferred results if Bayes classifier based on Bayes formula was implemented 

in generating the rules. 
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Bayes classifier has the advantage that the decision is based on the additional information 

concerning the classification and its conditional probability distributions (Friedman and Kandel, 

1999).   

Three threshold values were used to assign some rules to encode the lithologic classification. 

These threshold values are based on the gamma ray values as described in Table 2.  

This rule base consists of a number of if/then rules. It has two parts an IF (or Condition) part and 

a THEN ( or action) parts. The rules are stated as follow 

Example 1. Six decision rules for calibrating electrofacies 
 

IF                    1. The mean gamma ray is less than 50 API 

THEN             2. The gamma ray is low. 
 

IF                     1. The gamma ray is low and the maximum value in a cluster is less than 45 API 

THEN             2  The gamma ray is Sand. 

 

IF                    1. The gamma ray is low and the maximum value in a cluster is more than 45 API 

THEN            2. The gamma ray is Sandy-Shale 

 

IF                    1. The gamma ray is more than 50 API 

THEN            2. The gamma ray is high 

 

IF                   1. The gamma ray is high and the maximum value in a cluster is less than 90 API 

THEN           2. The gamma ray is Shale-Sand 
 

IF                  1. The gamma ray is high and the maximum value in a cluster is more than 90 API 

THEN           2. The gamma ray is Shale. 
 

The above rules were used to calibrate the electrofacies in our study area based on the following 

a. The knowledge of the general geology and stratigraphy of the study area. 

b. The work of Baker, (1989); Hein and Cotterill (2006) summarized in table 2 

c. The intrinsic nature of the gamma ray data.  

It is essential to note that a crucial step in the electrofacies calibration is to be certain that the 

classes defined by the geological interpretation match with the distinct clusters in the 

multivariate space of the selected logs. However, the challenges posed by inaccurate matching of 

geological interpretation with the multivariate space of the selected log can be tackled by 

incorporating other geological analysis like paleontological, petrographic and geochemical 



60 

 

analysis. Secondly, considering this case study, the results can be improved with a complete suite 

of well log data such as Spontaneous Potential (SP), Deep Resistivity (DR), Density (RHO) and 

Neutron Porosity (NPHI) etc, where different factors based on rock properties and numerical 

calculations will be considered from there measured characteristics to ascertain a perfect match 

with the geological interpretation from the well log data. The most important aspect is that the 

algorithm developed with the above rules can automatically calibrate and classify electrofacies in 

numerous wells. There are some exceptions which may exist as a result of misclassification in 

the above set rules. This is because there is a continuum in terms of rock properties between 

these four classes and this ambiguity is intrinsic in any classification when dealing with 

continuous phenomena. The problem of misclassification is not addressed in this work, although 

the likely error of not identifying all the patterns in a clustered wellbore is explained in section 

6.3 with the possible solution.  

The table below shows an example of the result from the implementation utilizing the above 

decision rules. This assigns lithology to the clustered well. 

Table 4. An example of the result from the implementation using the decision rules 
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A set of wellbores from the study area with log responses typical of the four classes described 

above were randomly selected for the illustration. Sand, Sand-shale, Shale-sand and Shale were 

interpreted where a well defined contact was visible based on the set rules. In Figure 22 and 23 

the electrofacies profile with the depth interval and the zonation from well log response were 

defined on the basis of four clusters, as explained above, in two selected wells. The definition 

depicts the lithoglogy explained in Example 1.  The colors used in the interval demarcation are 

as follows; Yellow, Green, Red, and Blue which represent Electrofacies EF1, EF2, EF3, and EF4 

respectively. It was noted that there were less problems in visualization in large stable beds
5
 

compared to where there were sharp transition between beds especially in thin beds.  

Figure 23b shows the grouping of the lithology identified into segments in the wellbore. The cut-

off decision of each segment was based on the mean values, the maximum value in a cluster and 

the decision rules in Example 1. These have identified three lithology group Sand-shale, Shale-

sand Shale in well T20. The representative mean values of the varying electrofacies in each of 

the wells over the study area is shown in Appendix B 

 a) b) 

                                                           
5
 A geologic a layer of rock that is generally homogeneous and was deposited more or less continuously without 

erosion 
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Figure 22 Well log data with depth intervals for two selected wells. a) Well T20, b) Well U21 

 

a)   b) 

c)  

Figure 23 Profile of four electrofacies at Well T20 
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6.3. Electrofacies Assignment and Recognition of hidden patterns. 

The electrofacies were automatically assigned and calibrated using the set rules by some 

programmed codes and functions utilizing R programming language to the 21 wellbores in the 

study area (Table 4). The error of not recognizing the subtle variations in the patterns of a 

wellbore after applying the clustering algorithm was imperative. A review into figure 24 which 

depicts the likely structure of the data, reveals that it is possible that the clustering algorithm will 

ideally recognize the pattern and assign clusters to the values in figure 24a but fail to accurately 

do the same (match the clusters) in figure 24b because it assumes a different pattern. To tackle 

this challenge, the differences of the original gamma ray log were computed for all the 

wellbores. The computations assume this method: If x1, x2, x3, x4…..and so were the original 

gamma ray values, then the computed difference is x2-x1, x3-x2, x4-x3…….and so. The 

clustering algorithm was applied to the computed difference. The large circles in figure 24c 

indicate the likely pattern of the computed differences
6
 and the clusters are matched and 

recognized by the algorithm. This accounts for all subtle variations identified in the pattern of the 

data. 

 

                                                           
6
 Computed differences of each well have negative and positive values 
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6.4. Geological evaluation of the clusters and manual interpretation  

The above described implementation was carried out on the sample data of the study area. The 

results were compared with the manual interpretation done by a geologist. This is important in 

order to evaluate the quality of the various modeling results achieved through automatic 

interpretation of the wellbores. It is essential to note that the automatic interpretation workflow is 

divided into two corresponding parts. The clustering of the well logs in the first part and the 

calibration of the clustered wells in the second part. This calibration assigns the lithology to the 

clustered electrofacies identified.  

The clustering and calibration results were mainly influenced by the optimal number at a level of 

similarity and the gamma ray threshold values for Sand, Sand-shale, Shale-sand, and Shale 

respectively. 

Firstly, the clustering was generated from the sample data by cutting the hierarchy at different 

level of similarity in all the wells as explained above until a consistent level was achieved. This 

was to establish the resulting clusters that were applicable to multiple wells.  

The manual interpretation of the well log data set denotes to define a fixed number of clusters 

and apply this to all wells in the data set. Therefore, ten and four generated clusters have been 

tested and the results of the four clusters were found to lead to the classification equal to the 

manual classification in the wells.  

Figure 25 indicates a direct comparison of the manual and the automated classification results for 

a set of selected wells.  

The clusters generated which are described as electrofacies (EF1, EF2, EF3, and EF4) fit 

perfectly with the manual classification done by a geologist for the wells. Two clusters were 

chosen for the evaluation of the automatic model, in this case we considered cluster three and 

four (EF3 and EF4). The idea is to check if the algorithm was able to compute the same solution 

the geologist found.  

In the wells I and II, the automated and the manual interpretation are identical. Thus, the 

algorithm was able to found the contacts identified in the manual interpretation. In well III, EF3 

and EF4 were used to match the manual interpretation. The algorithm identified some contacts 

correctly. However, there are some errors in proper identifications of all the contacts in the well. 

This might be due to error during classification (misclassification). In some cases in the 
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wellbores, automatic classification was also identified to be different with the manual 

interpretation because of the error during classification. Both techniques led to good results to 

most of the wellbores.  

I II 

   III 

 

 

 

 

 

 

 

 

Figure 25. Comparison between automated (left) and manual (right) interpretation of three wells. 

The horizontal lines mark the identified contacts between the clusters 

It is essential to note that the mean and the maximum values of the gamma ray in each cluster of 

all the wells turned out to be suitable in assigning lithology to the clusters following the 

developed decision rules. This match the classification of Sand, Sand-shale, Shale-sand, and 

Shale in the manual interpretation 
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6.5. Practical Application of electrofacies in exploration. 

Electrofacies classification as applied in this study serves as a base in classifying lithology into 

sand, sand-shale, shale-sand and shale. It identifies potential sandbodies which are the bitumen 

reservoir rocks in the study area. Its automatic determination tackles the challenges posed by the 

time consuming manual analysis especially in this study area where the wellbore is more than 

250,000. In each stratigraphic sequence, the cumulated thickness of sandstone, sand-shale, shale-

sand and shale electrofacies were mapped to identify areas with higher potential of bitumen 

accumulation.  It is important to note that the result of the classifications need to be checked and 

partly developed further manually as it serve as a first quick assessment of data which gives an 

avenue to detailed manual interpretation. 

 Electrofacies classifications form a strong base for correlation. However, due to time 

constraints, automated correlations are not performed with the result of this electrofacies, but can 

be implemented on the algorithm developed by Exeler (2009) which explains a topological 

method in correlating well log data. This author established some connections between 

sandbodies in this study area with varying parameter such as search distance, search angle 

around flow direction and slope and sinuosity of the channels. The author developed zonations of 

the well log data and identified just sand and shale. Hence, incorporating the electrofacies 

generated which identified Sand, Shale and Intermediate sediments can yield a better correlation 

and a more informed subsurface model in the study area. Integrating this classification with the 

trend map of the study area will provide a good basis for selecting prospective areas on which to 

focus for more detailed work.      
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7. DISCUSSION AND CONCLUSION 

The originality of the methods described in this thesis resides in the automatic classification of 

stratigraphic column via statistical pattern recognition of the original and computed difference of 

the gamma ray log data from the wellbores in the study area.  

A hierarchical clustering algorithm was implemented in each of the wellbores and these clusters 

and classifies the wells in four classes that represent the lithologic information of the wells. The 

likely problems of not identifying the hidden patterns in the data were tackled by computing the 

gamma ray difference in each of the wellbores. The computed difference of the gamma ray forms 

a part of the variable that was clustered. 

The measurement of similarities in the clusters and dissimilarity between clusters utilized 

Euclidean (square) distance/likelihood measure and the cluster method used was the Average 

linkage method. These classes known as electrofacies identify not just sand and shale lithology 

of the study area but also intermediate sediments. The merits of this approach are as follows:  

a. The data are allowed to “speak for themselves” and thereby revealing their subtle 

differences which are paramount in log response of different rocks. 

b. It does not require the pre-specification of the number of clusters. This is 

important because different geologic environments give varying numbers of 

classification of log response. Hence, it allows that the numbers of clusters are not 

pre-defined when applying the algorithm.  

c. It has been proved successful in identifying the classification in log response in 

different geologic environments, evident in the works of Wolff and Pelissier-

Combescure, (1982); Delfiner, et al., (1987); Lim, et al., (1997); Lee, et al., 

(2002) and Lim, (2003). These clusters are easily identified as a hierarchy which 

is more informative and it gives a single coherent global picture of the data 

thereby allowing the determination of the desired number of classification.    

The method also resides in the use of generated electrofacies as an exploration tool for 

identifying sandbodies which serve as the bitumen reservoir rocks. As no core was available, the 

samples were calibrated based on the qualitative interpretation of well logs over a set of decision 

rules. This application is not meant to be used outright in the field rather it reveals to the expert 

geologist the general subsurface patterns and classification of litholgy for a more detailed 

geologic survey. It also saves valuable time in manual analysis. 
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However, the general challenge/demerit envisaged in the algorithm implemented in this study is 

the ability of the algorithm to directly address the issue of determining the number of classes 

within the data i.e. simultaneous determination of the number of clusters and cluster membership 

in the data.  

As explained earlier the optimal number of classes in each wellbore were defined at a consistent 

level of similarity, by drawing a line at some chosen level of similarity and all stems that 

intersect that line would indicate a group. In a case of 250,000 wellbore, this approach will be 

cumbersome in visualizing each of the wellbore and if the classes are fixed to a particular 

number of classes, a case may also arise that a wellbore will depict either all sand or all shale and 

the algorithm will generate four classes and classify intermediate sediments.  

 

A univariate classification algorithm was offered as an alternative such as natural breaks, since 

the key variable of our data is the gamma ray log.  

Natural breaks are forms of variance-minimization classification typically uneven, and are 

selected to differentiate values where significant changes in value occur. The method applied is 

due to Jenks, as described in Jenks and Caspall (1971). In other words, the method seeks to 

reduce the variance within classes and maximize the variance between classes. The steps in this 

classification described by Goodchild and Longley (2006) are as follows 

Step 1: The user selects the attribute, x, to be classified and specifies the number of classes 

required, k 

Step 2: A set of k-1 random or uniform values are generated in the range [min{x},max{x}]. 

These are used as initial class boundaries 

Step 3: The mean values for each initial class are computed and the sum of squared deviations of 

class members from the mean values is computed. The total sum of squared deviations (TSSD) is 

recorded 

Step 4: Individual values in each class are then systematically assigned to adjacent classes by 

adjusting the class boundaries to see if the TSSD can be reduced. This is an iterative process, 

which ends when improvement in TSSD falls below a threshold level, i.e. when the within class 

variance is as small as possible and between class variance is as large as possible. True 

optimization is not assured. The entire process can be optionally repeated from Step 1 or 2 and 

TSSD values compared 
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However, the disadvantages of this method are that: 

a. The class ranges are specific to individual data sets 

b. The user specifies that number of classes prior to classification. This seems unsuitable in 

log classifications due to the varying nature of rock log response. 

c. Choosing the optimal number of classes is often difficult. 

 

In an attempt to solve the aforementioned challenges in both approaches, the following solutions 

are proposed 

i) The detailed knowledge of the geological settings of the study area helps to understand 

the general stratigraphic sequence and constitute a strong base for any automatic 

lithological classification. 

ii) Incorporating other geological analysis approach such as paleontological, petrographic 

and geochemical analysis. 

iii) Incorporating a complete well suite data (other geophysical measurement like density, 

porosity, permeability, spontaneous potential well-log data etc). This will reveal some 

intrinsic properties of rock materials and form the good base for the algorithm 

implementation.  

 

In view of the above, Fraley and Raftery (1998) developed a model-based hierarchical clustering 

algorithm that attempt to address the issue of directly determining the number of groups within 

the data. This will be a focus on the future research and a comparative analysis is recommended 

to be made between the model-based hierarchical clustering with the conventional hierarchical 

clustering algorithm for a more informed classification. 

 

Finally, based on the research hypothesis and question, it can be concluded that the patterns from 

the well logs are recognizable. The whole process is automated based on a set of decision rules 

and the results forms the basis of correlation between wells in the study area.  

The comparative analysis between the automatic and the manual interpretation results indicated 

that the algorithm was able to compute exactly the same solution that the geologist found. 
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APPENDIX B 

 

 

Well U21  
   Cluster Number Average Gr Value 

(Mean) 

Min & Max 

(Range) 

   1 86.5573 79.09    97.37 

   2 68.85333 63.59    76.93 

   3 52.71947 45.05   62.75 

   4 26.51753 8.59   44.64 

 

Well T20 

 

   1 152.944 133.49   163.44 

   2 91.72036 81.65      113.39 

   3 66.7397 56.04        80.69 

   4 29.77443 10.65       55.50 

 

Well S19  

 

   1 74.98778 67.53 90.89 

 

 

 

 

   2 52.01346 40.83   66.67 

   3 32.17957 22.53     40.51 

   4 14.25871 4.23      22.29 

 

Well  R18 

 

   1 48.84613 34.57 65.33 

   2 17.82185 6.23 34.02 

   3 79.3171 65.70 104.65 

   4 112.748 109.83 115.72 

 

 

 

 

 

Well Q17 

 

   1 120.8937 102.52 143.23 

   2 74.07846 61.15 98.03 

   3 46.75461 36.18 60.50 

   4 25.56304 13.82 35.79 
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Well P16 

 

   1 120.8937 102.52    143.23 

   2 74.07846 61.15     98.03 

   3 46.75461 36.18     60.50 

   4 25.56304 13.82     35.79 

 

Well O15 

 

   1 142.502 126.35   156.99 

   2 109.4333 99.59     120.35 

   3 73.95608 62.90     96.07 

   4 30.36205 7.63       62.34 

 

Well N14 

 

   1 71.7705 58.96   90.26 

   4 49.33184 40.1     58.5 

   3 25.73789 9.89      39.80 

   4 100.8473 92.07    111.10 

 

Well M13 

 

   1 48.47233 36.70    66.99 

   2 22.65931 10.74    36.45 

   3 73.53321 67.93    81.48 

   4 94.9075 84.16    103.72 

 

 

 

 

Well L12 

 

   1 88.04286 81.41   96.02 

   2 71.57667 66.97   79.63 

   3 50.31506 38.37   65.94 

   4 23.23514 8.54     37.99 

 

Well K11 

 

   1 39.73314 23.32    66.55 

   2 15.83508 7.00      23.21 

   3 85.29667 72.31    96.68 

   4 110.4311 100.00  120.01 

 

Well J10 

 

   1 116.09 116.09     116.09 
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   2 87.50579 77.08        102.90 

   3 48.35233 36.81         72.68 

   4 23.22054 6.69           36.61 

 

Well I9 

 

   1 23.64029 8.95       40.44 

   2 48.66513 40.84      57.24 

   3 67.30424 57.92      78.12 

   4 86.83297 79.38      101.49 

 

Well H8 

 

   1 103.9209 92.82    122.02 

   2 80.12142 66.26   92.17 

   3 53.96439 43.44   65.77 

   4 24.25281 9.12      42.80 

 

Well G7 

 

   1 88.57747 74.38    111.66 

   2 55.90752 37.81     73.42 

   3 23.45217 11.75      37.42 

   4 136.4933 133.10    141.75 

 

Well F6 

 

   1 120.2275 105.73     146.19 

   2 81.51292 65.60        104.11 

   3 35.93195 16.95        65.22 

   4 159.132 154.55      164.64 

 

Well E5 

 

   1 100.0767 89.65     112.70 

   2 70.32242 45.96     89.25 

   3 29.32306 15.32      45.47 

   4 134.1986 116.06    162.63 

 

Well D4 

 

   1 134.8376 114.41   157.03 

   2 95.04333 77.39     112.04 

   3 40.12844 12.47     74.59 

   

 

 

 

4 170.326 163.30    174.99 

 

Well C3 

 

   1 91.30409 75.04   116.49 

   2 60.26241 49.62    72.69 
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   3 30.35025 7.69      49.14 

   4 143.8575 125.72   152.60 

 

Well B2 

 

   1 28.859 16.43    42.12 

   2 62.22983 43.13    77.40 

   3 91.96489 77.81     110.89 

   4 123.8133 112.21    143.90 

 

Well A1 

 

   1 32.04702 14.63    55.64 

   2 72.13055 56.44    81.86 

   3 94.19606 82.29     108.70 

   4 120.6119 111.20   130.17 
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Appendix C 

 

hclust(dmat, method = “average”),  where dmat is an object created by dist(). The 

optional command method gives the method used for clustering. 

To plot the resulting dendogram, the following syntax was utilized. 
 

        plot(clust, labels = NULL, hang = -1), where clust is an object created by hclust().The 

command label permits the specification of a vector containing names for the value being 

clustered whereas the command hang specifies where the labels are to be placed. A negative 

value aligns the labels just below a distance value of zero and this is mostly preferred option 

  


