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Abstract—The paradigm of reactive programming has attained
more and more interest in recent time. In this paper, we show why
reactive programming is a well-suited paradigm for sensor fusion
algorithms. As a new contribution, we show how the efficiency of
stream-oriented reactive programs can be enhanced by applying
the magic update method that originally stems from the field of
update propagation in deductive databases.

I. INTRODUCTION

In recent papers [1]–[3] we investigated the suitability of
relational database systems for the processing of sensor data
streams with the goal of enhanced and descriptive program-
ming. While it turned out that relational database management
systems can be used well for the task of sensor data fusion,
there are many applications where the usage of such a system
may be immoderate or improper as no data has to be stored
persistently. In our research, we pointed out that the descriptive
paradigm of relational database systems is a great advantage
in compare to the commonly used imperative paradigm.

In recent times, the techniques of reactive programming in
combination with programming language integrated queries
have emerged. With these new paradigms, it is possible for
sub-programs to subscribe to occurrence of certain events.
The events can be filtered by means of queries that are in
general comparable to relational queries in relational database
management systems (RDBMs).

The advantage of this approach is, that it is flexible, leads to
easily understandable source code and offers new possibilities
for optimization. On the one hand, many optimizations that are
already made in relational database can be directly transferred
to the program integrated query languages. For instance,
technical aspects, like parallel task execution, can be integrated
by the designers of the programming language, as it is the case
in DBMS. On the other hand, relational optimization methods
can be done by the programmer to avoid unnecessary process-
ing steps. As reactive programming focuses on changing data
after events, one of the most important techniques stems from
the area of update propagation, where the most general case is
the method of magic updates [4]. In this paper, we show how
this technique can be used in integrated queries and how this
can be used in combination with reactive programming. We
also give a short evaluation of a concise example that shows
the benefit of this method.

The rest of the paper is organized as follows: In the
next section, we give a short summary of related work. In
Section III we introduce the paradigm of integrated queries
by means of Microsoft’s LINQ. In Section IV we present the
paradigm of reactive programming. In Section V we show that
the relational algebra and LINQ expressions are idempotent.
An introduction to incremental update propagation and magic
updates is given in Section VI and VII, respectively. The paper
closes with an evaluation the proposed methods for an aircraft
monitoring scenario.

II. RELATED WORK

In [5], the problem of optimization for reactive computing in
combination with sensors is discussed with respect to energy
efficiency.

The Language Integrated Query LINQ was introduced by
Microsoft for C# and Visual Basic 9 in 2007 [6]. Beside
programming-oriented books [7], LINQ did not receive much
attention in the scientific literature. One of the few publications
that copes with LINQ optimizing is “Avalanche-Safe LINQ
Compilation” [8]. In a recent paper [9], the idea of integrating
heterogeneous data with LINQ was discussed.

Koenig and Paige were one of the first authors who sug-
gested thirty years ago to avoid costly calculation of derived
expressions but to use incremental counterparts instead [10].
Since then, many methods for incremental recomputation of
relational expressions have been proposed in the literature. Al-
though most approaches essentially apply the same techniques,
they mainly differ in the way they have been implemented
and in the granularity of the computed induced updates. With
respect to implementation, e.g. authors used the database
languages SQL (including triggers) [11], Datalog [12]–[14]
and relational algebra [15]–[17] for specifying their delta rules
– just to mention a few.

The Magic Set method was first proposed with respect to the
optimization of logic programming and database queries [18].
It was later extended to the optimization of database up-
dates [4]. The applicability of the method to data streams was
proposed in [1]–[3]. A proposal for higher-level sensor fusion
by means of relational, descriptive rules was given in [19].



III. LINQ

LINQ (contrived acronym for Language Integrated Query)
was introduced by Microsoft for the .NET based languages in
order to fill the mismatch between object oriented languages
and the handling of structured data. Briefly said, LINQ is a
descriptive, functional extension of the mostly imperative pro-
gramming languages of the .NET family. Meanwhile, similar
constructs exist for other programming languages like Java or
Python. In the following, we present LINQ by means of its
C# implementation.

While the first implementations of LINQ referred to re-
lational databases, it is possible to write LINQ mappers to
virtually any kind of structured data. As a concise example, we
present the problem of joining two arrays. Let employees
be an array of employee names together with their grade and
salaries a list of grades with the actual salary. If we want
to have the salary of each employee, an imperative program
would look like:
foreach (e in employees) {

foreach (s in salaries) {
if (e.grade == s.grade) {

Console.WriteLine("{0} earns {1} $",
e.name, s.salary);

}
}

}

With LINQ, we can write:
var res = from s in salaries join e in employees

on s.grade equals e.grade
select new {e.name, e.grade, s.salary};

foreach (r in res) {
Console.WriteLine("{0} earns {1} $",r.name,r.salary);

}

While the example using LINQ is not necessarily shorter
than the imperative way, it is often easier to read. Another
advantage is, that the C# compiler will automatically decide
how to evaluate the LINQ expression. For example, it may
decide on multi-core machines to parallelize the expression.
We can also use aggregate functions, as known from relational
databases. For instance, if we want the salary sum over all
employees with the same grade, we can write
var sum = from r in res

group by grade into g
select new {Grade=g.Key, Sum=g.Sum()};

What makes LINQ interesting in the field of data fu-
sion is the fact that virtually any data source can be con-
nected to LINQ by implementing appropriate providers. Be-
sides database source, network streams and arrays, numerous
providers to web services, like Google, Twitter or Wikipedia
exist. Also text or XML files can be directly queried. The
integration of sensor data streams is straight ahead.

In [19], we presented a way of expressing criteria for
anomaly detection using relational algebra. For instance, off
road vehicles could be detected using the two relations cars,
containing the position of all vehicles measured by a sensor
and roads, containing geographical information about the road

net:

rareSituation = σweight>3500∧(t<6:00∨t>22:00)(Cars)
1onRoad(Cars.x, Cars.y, r.x1, r.y1, r.x2, r.y2) (σr.quality=’Dirt’(Roads)))

(1)

where the symbol 1 denotes the join. Using LINQ, we can
transform this to the following expression:
var rare = from c in Cars join r in Roads

on c.t<6 OR c.t>22
where r.quality = "Dirt" and
c.onRoad(r);

with an appropriate implementation of the function onRoad.
In the following section, we will see how this static example
can be applied to a stream model using the Reactive Program-
ming Extensions Rx of .NET

IV. REACTIVE PROGRAMMING

The Reactive Programming Framework Extension (Rx) is a
paradigm for implementing programs that can react to some
events, called Observables. In many stream scenarios (e.g.
for sensor data processing), programs run in an infinite loop
processing data streams:
while(true) {
r = data.read();
process(r);

}

This classical approach has the disadvantage, that the data read
can only be processed by one consumer; in this case the routine
process(r). All other functions that would like to process
the data have to be added to the loop or to the function. In
addition, it has to be checked whether the data is interesting
for being processed or not.

The Rx framework solves this problem: The data read can
be “thrown” into an event queue. Instead of “pulling” the data
from the queue, the queue itself invokes its processing. To this
end, the processing function can subscribe observables. Let r
be an Observable, then we can transform the code above to
Rx like this:
r.subscribe(value => process);

The expression can be understood in the following way:
After an instance of r occurs, the lambda-function
value => process is invoked, where value automati-
cally is initialized with the instance that triggered the lambda-
function. The lambda function can also consist of a direct
implementation:
r.subscribe(value =>
{Console.WriteLine(value.id);
long a = v.length/2048;
Console.WriteLine(a);});

There exist many ways to generate Observables. One way
is to call the generator
Observable.Generator(initialState, condition,

iterate, resultSelector)

For instance, we can “loop” through an array and return an
Observable for each element of the array:
IObservable<string> o = Observable.Generate(

data.GetEnumerator(),
e => e.MoveNext(),
e => e,
e => e.Current);



Another straight forward example is listening to a TCP/IP
port: After receiving a TCP packet, the data from that packet
is thrown as an Observable. An overview of Rx can be found
in [20].

Another interesting fact is that Observables are “first-class-
objects” in .NET, i.e. they can be treated as any other object
(passed to functions, redefined, extended etc.) and that they
also implement the IEnumerable interface, which means
that they can be queried with LINQ. For instance, if we want
only to react on observable that fulfill a certain condition, we
can select them out:
var r2 = from myR in r

where myR.size > 1024
select myR;

r2.subscribe(value => process);

which means that only observable from r whose attribute
size is larger than 1024 are processed. As Observables can
also be joined to Enumerables, this offers a wide spectrum
in sensor data fusion applications. We will take this up in
Section VIII.

V. RELATIONAL ALGEBRA VS. LINQ

In order to apply techniques from the world of relational
algebra (RA) to the world of LINQ, we have to show that
LINQ is relational complete, i.e. that we can find an equivalent
LINQ expression for every RA expression. We do this by
giving explicit transformation rules between RA and LINQ.

The RA has been proposed by Codd [21] in 1970 for
handling relational data. To this end, all data stored inside
a relational database are assumed to be stored in relations. A
relation R is a subset of the cross-product of some domains
D1, . . . , Dn:

R ⊆ D1 ×D2 × · · · ×Dn (2)

so each element (tuple) of R has the form (d1, d2, . . . dn) with
di ∈ Di (1 ≤ i ≤ n). The di are called attributes of the tuple.
For simplicity, each attribute is given a name, with the notation
t.attributeName. We can operate on relations using the set
functions union (∪), intersection (∩) and set difference (\),
with the constraint that both operands have the same domain
structure. Additionally, the cross product × on relations is
defined as:

A×B := {{(a1, a2, . . . , an, b1, b2, . . . , bm)}
|{(a1, a2, . . . , an, ) ∈ A ∧ (b1, b2, . . . , bm) ∈ B}}

(3)

Additionally, we define the operation selection σc:

σc(r)(R) := {r ∈ R : c(r) is true} (4)

where c is a boolean expression. The projection
πai1

,ai2
,...aim

(R) removes attributes from a relation:

πai1
,ai2

,...aim
(R) := {(ai1 , ai2 , . . . aim)|a ∈ R} (5)

The rename operator ρb←a renames attribute a to b. The often
used join operator 1 is a combination of cross-product and
selection:

A 1c(a,b) B := σc(a,b)(A×B) (6)

We can extend the RA by “defining equations” of the form
C ← A ⊗ B. As C does not correspond directly to a stored
relation in the database, but is generated, C is called a derived
relation, while A and B are stored relations.

LINQ supports each operation of the relational algebra as
well as defining equations. The transformation rules for all
basic RA operators are shown in Table I.

Please note that there are some constraints on the join
operation in LINQ. However, this does not pose a problem as
the join can be simulated by the cross-product and selection.
It has also to be mentioned that LINQ supports functions that
are similar to the aggregate functions of SQL, as well as the
Boolean check .any and the grouping via .groupBy, and
thus is more powerful than RA. In the following, we will
not consider these operators in the context of incremental
update propagation. A solution for incremental updates on
these functions has been given e.g. in [22]

VI. INCREMENTAL UPDATE PROPAGATION

Query optimization is a well-established database research
topic which is divided into logical and physical optimiza-
tion. Physical optimization copes strategies for storing data
efficiently in structures, e.g. trees or hash tables. Physical
optimization techniques used in the area of relational databases
cannot be transferred directly to LINQ due to the generic
nature of the queried Enumerables.

In contrast, logical optimization optimizes queries or update
statements on databases by rewriting relational expressions
into another, equivalent form. As we have seen in the previous
chapter, LINQ is relational complete. Thus, we can transfer
logical optimization techniques from the world of relational
databases to LINQ. In this section, we present a technique for
decomposing update statements into equivalent counterparts
that are (in general) more efficient.

The problem of update propagation occurs when the data
of derived views are stored in memory. When the underlying
data of the derived relation changes, the question arises how
the derived data has to be aligned when the source data change.
In LINQ, this corresponds to the problem that the results
of a LINQ expression have been assigned to a variable and
the right-hand variables change. A complete recomputation
may often be costly and unnecessary. Taking a real world
example, no one would print a new phone book if only one
phone number changes. To this end, the method of incremental
update propagation has emerged.

The idea behind incremental update propagation is to
identify all data in derived relations that must be changed
upon changes in the underlying base relations. The relations
that contain the essential changes are called delta relations,
referring to the symbol ∆ in mathematics.

In the following, we will recall well-known transformations
for deriving specialized delta rules from a given set of LINQ
rules. In order to achieve completeness, so-called transition
rules are considered afterward which allow to simulate the
old and new state of a relation.



RA LINQ
C = A ∪B var C = A.union(B);
C = A ∩B var C = A.intersect(B);
C = A\B var C = A.except(B);
C = A×B var C = from a in A from b in B select new {a, b};
C = σc(A) var C = from a in A where (c) select a;
C = πx,y,z(A) var C = from a in A select new {a.x, a.y, a.z};
C = ρx←z(A) var C = from a in A select new {x=a.z};
C = A 1 B var C = from a in A join b in B select new {a, b};

TABLE I: The operators of relational algebra (RA) and their counterparts in LINQ

Various authors introduced delta views, but not always in an
identical manner. In this paper, we will use a style similar to
that of [14], [23] where delta views are directly defined. Other
authors define laws for iteratively transforming a complex
expression into its delta version (as [24] does). We assume
that all elements are unique, so no bags need to be considered,
which facilitates the incremental expressions. Approaches for
incremental updates with duplicates have been considered
e.g. in [11], [17]. (Uniqueness for LINQ expressions can be
achieved by using the .distinct() method or by adding
unique key attributes).

In the following, for each relation name P, two delta rela-
tions P_ins, P_del are used for representing the insertions
and deletions induced on P by an update of the underlying
Enumerables. The delta relations defined for a relation P have
the same schema and type as P. The state of a relation P
before the changes is denoted by P_old, whereas the new
state is represented by P_new. The delta sets can be defined
as follows:
var P_ins = P_new.except(P_old);
var P_del = P_old.except(P_new);

The most common expressions in LINQ are of the simple
form
var p = from q in Q

join r in R on a
where c
select {q,r};

We can distinguish three different subsets of inserted data upon
insertions into the underling Enumerable variables:

1) An insertion into Q that finds a matching partner in the
old state of R

2) An insertion into R that finds a matching partner in the
old state of Q

3) An insertion into Q that finds a matching partner in the
new inserted data of R

Thus, the join expression has the incremental version
var p_ins = (
from q_ins in Q_ins join r_0 in R_0 on a where c)
.union(
from r_ins in R_ins join q_0 in Q_0 on a where c)
.union(
from r_ins in R_ins join q_ins in Q_ins on a where c);

A similar consideration holds for deletions:
var p_del = (
from q_del in Q_del join r_0 in R_0 on a where c)
.union(
from r_del in R_del join q_0 in Q_0 on a where c)
.union(
from r_del in R_del join q_del in Q_del on a where c);

Usually a residue expression has to be included in both rules
in order to eliminate induced insertions for which a different
derivation already existed in the old state, or to eliminate
induced deletions for which another derivation will exist in
the new state, respectively [14]. This kind of “effectiveness
test” is normally also required for the union operator because
of duplicate derivations generated. Since we assume that the
elements are unique, this effectiveness test is not necessary and
we can use the more simpler incremental expression instead.

The most complicated version is that for the set difference,
as the second argument is a “negative” one and can lead to
deletions upon insertion, so the transformation of
var p = Q.except(R);

is defined as
var p_ins = (from q_ins in Q_ins

select q_ins)
.union(R_ins.intersect(Q_0))
.union(R_del.intersect(Q_ins)
.except(R_0)
.except(R_ins));

var p_del = Q_del.union(R_ins.intersect(Q_0));

A. Transition Rules

Generally, for computing safe updates, it is necessary to
refer to the old, the new or the preserved state of the LINQ
sets. In [25] it is assumed that all derived relations are
materialized which simplifies the state evaluation process but
seems to be unrealistic in practice. Therefore, the possibility
has been investigated of dropping the explicit references to
one of the states by deriving it from the other one and the
given updates. The benefit of such a state simulation is that it
is not required to store intermediate results explicitly but one
may work on one state only. Rules for state simulation will
be called transition rules according to the naming in [26].

We have defined the delta rules in a way that only references
to preserved relation states occur. Therefore, we will concen-
trate on their simulation given the changes of the underlying
data sources although new and old relation states can be
simulated in a similar way. In the following, we assume that
the preserved state of a source relation is provided by the data
source (together with the respective delta relations). Conse-
quently, the relation states Q_0 and R_0 in the expression
above are and can be seen as base tables. The remaining
preserved states of the derived views, e.g. P_0, however, have
to be simulated. A very straightforward approach is to use
so-called naive transition rules which employ the preserved
relation state of the data source for simulating derived ones:



var P_0 = from q_0 in Q_0
join r_0 in R_0
select {q_0, r_0};

The disadvantage of these transition rules, however, is that
each derivation with respect to a derived state of a preserved
relation has to go back to the preserved base relations and
hence makes no use of the implicit updates already derived
during the course of propagation. What is more, the expensive
projections – implementing data transformation and cleansing
operations – are again applied to very large relations and no
optimization effect is achieved for them.

In the Internal Events Method [26] as well as in [14] it
has been proposed to improve state simulation by employing
not only the extensional delta relations but the derived ones
as well, leading to so-called incremental transition rules.
However, this does not help to avoid the costly projections.
Therefore, we refrain from using incremental transition rules
rather the naive one such that the optimization effects of Magic
Sets becomes more apparent.

Stratification Briefly said, a set of LINQ expression is strat-
ifiable if it does not contain negative cycles (cf. [27]). An
example of a negative cycles would be:
var a = x.except(b);
var b = a;

Naive Transition Rules τ(R) Let R be a set of stratifiable
view definitions and Rnf := normR(R) the corresponding
set in normal form. The set of naive transition rules for safe
updates and preserved state simulation with respect to Rnf is
denoted τ(R) and is defined as follows:

1) For each auxiliary relation H introduced by the mapping
normR(R) and each rule rule of the form var r = E
with H=rel(R) and E representing an arbitrary LINQ
expression a transition rule of the form
var H_0 =
...E[Pi|Pi_0]

is in τ(R) where E[Pi|Pi_0] denotes E with every
relation name Pi in E substituted by P o

i .
2) No other rules are in τ(R).

VII. MAGIC UPDATES

Logical optimization rules include a selection pushing strat-
egy which allows for shifting selection condition to lower-
level operands within a given operator tree such that irrelevant
answer tuples are eliminated as early as possible. As soon
as recursive expressions are allowed, however, the classical
selection pushing strategy cannot deal with new selection
constants introduced during the course of evaluation. For
solving this problem, the rewriting technique Magic Sets has
been proposed in [18] which uses auxiliary relations (the
“Magic Sets”) in order to store and to dynamically apply those
generated constants.

The introduction of auxiliary Magic Sets containing dy-
namically generated selection constants can also be used
for improving the focus within non-recursive expressions as
shown in [28]–[30]. As an example, consider the following

P_ins

Q_p R_0

∩

∩

S_0 T_0

Π
x

S_0 T_0

Π

m_b m_b

x

Q_p Q_p

Π x Πx

Fig. 1: An evaluation tree for the incremental evaluation and
its magic-optimized sub-tree. In the left tree, no optimization
effect for S 1 T is achieved, while the magic relation m_b
pre-selects S_0 and T_0, leading to a smaller sub-expression.

algebra expression for defining the view P (x) based on the
relations Q(x), R(x), S(x, y) and T (x, z):
var P = (Q.union(R))

.except(from s in S
join t in T
on s.ID equals t.ID
select s.x);

Applying our transformation would yield the following rule
for computing induced insertions P_ins of P resulting from
insertions Q_ins into Q:
var P_ins = (Q_ins.union(R_0))

.except(from s_0 in S_0
join t_0 in T_0
on s_0.ID equals t_0.ID
select s_0.x);

Despite of the focus on changes with respect to Q, no
optimization effect is achieved with respect to the evaluation of
the right-hand argument of the set difference operator. Magic
Sets, however, allows to use the small number of tuples in
Q_ins already for determining all matching join partners by
introducing the Magic Set m_aux_b applied in two semi-
joins:
var m_aux_b = Q_ins;

var m_s_0 = from m in M_AUX_B_P
join s_0 in S_0
select s_0;

var m_t_0 = from m in M_AUX_B
join t_0 in T_0
select t_0;

var P_ins = (Q_P.except(R))
.except(from m_s_0 join m_t_0

on ...
select s.x);

Under the assumption that So and T o are quite large in
comparison to the size of Q+ and there is a low selectivity
of the tuples in Q+, the argument sizes of the join and dif-
ference operator are considerably reduced. Thus, the resulting
incremental algebra expression provides a much better focus
on the changes to Q.

Note that Magic Sets does not always lead to an im-
proved evaluation. Generally, its optimization effects strongly
depend on relation sizes, selectivities and the chosen side-
ways information passing strategy. Under the assumption that
delta relations are considerably smaller than state relations,



however, the focus on selection constants in delta sets by using
MS provides notable optimization effects. This is especially
the case if the increased focus allows to reduce the input
size for expensive operations that perform data cleansing or
transformation.

A. Magic Updates Rewriting

We will now present the general approach for Magic Update
Rewriting. As the Magic Update relies on the detection of
bound and free variables in the query, define

Bound/Free attributes An attribute ai of a relation
R(a1, a2, . . . , ai, . . . , an) is bound if it is used in a select or
join condition. All other attributes are unbound.

Adornment An adornment string ad(C) for an n-ary relation
C ← A is defined as

ad(C) = γ1 ◦ γ2 ◦ γ3 ◦ · · · ◦ γn

where γi :=’b’ if the attribute on position i is bound and
γi :=’f’ if it is unbound (free).

We can now define the Magic Rewriting transformation for
queries:

Magic Predicates Let A ≡ Pad(~x) be a positive literal with
relation name P , adornment ad and bd(~x) the sequence of
attribute names within ~x indicated as bound in the adornment
ad. Then the magic predicate of A is defined as

magic(A) := m_ins_ad(bd(~x)).

Given a set of view definitions R and an adorned query Q ≡
Pad(~x) with P ∈ rel(R), the Magic Sets transformed rules
with respect to Q are denoted by msQ(R).

The Magic Update Set is obtained by applying the magic
rewriting to the set of delta views for a database (or, in our
case, for a LINQ program):

Magic Updates Rewriting Let R be a set of stratifiable view
definitions, Rnf := normR(R) the corresponding set in
normal form, and ϕ(R) the set of delta rules with respect
to Rnf. The MU rewriting of Rnf yields the magic rule set
Rmagic := ϕ(R)∪Rquery ∪Rstate where Rquery and Rstate are
defined as follows:

For each delta view of the form
var P = R_{p,m}.{union|except(S_0)};

or of the form
var P = from R_{p,m}

join S_0
select ....;

we define the following subquery rule:
var magic_S_0_ad = from R_{p,m}

select bd(x);

where bd(x) denotes the sequence of attributes within the
schema of R indicated as bound by the adornment of relation
magic(So

ad).
From the set τ(R) we derive the rule set Rstate: For each

relation symbol magic(Lo
ad) ∈ rel(Rquery) the corresponding

MS transformed rule set msQ(τ(R)) is in Rstate where Q ≡

Lo
ad represents an adorned query with rel(Lo) ∈ rel(τ(R)).

No other rules are in Rstate.
The MU rewriting of the original rule setR is denoted µ(R)

and is defined as norm−1R (Rmagic).

VIII. EXAMPLE: FLIGHT DELAY CALCULATION

As an example for our discussed transformation, we present
a problem in which we combine a stream of data with static
master data and slowly changing context data. In our example,
we calculate the delays for a stream of flight track data. Let
trackdata An Observable of flight track data that changes
rapidly (e.q. every second)
flightplans An Enumerable of flight plans that changes
slowly (e.q. each minute)
airports An Enumerable that contains the position of
airports that does not change while the system is running.
In order to calculate the delay, we first calculate an “ideal
flight”, i.e. a flight that starts at the scheduled airport as defined
in the flight plan and flies on a straight towards its destination.
Then, we calculate the remaining times for the ideal flight and
the real flight to reach the destination. The difference gives us
a lower bound of the delay:

Listing 1: Ideal Flight Calculation

var idealFlight =
from a in airports
join f in flightplans
on a.ICAO equals f.DEST_AIRPORT
select new {f, a, fLon = idealLON(a,f),

fLat = idealLAT(a,f)};

where idealLon/Lat is a simple function that calculates
the ideal position in longitude and latitude. The raw data
for the delay can then be calculated by joining the static
idealFlight with the observable trackdata:

Listing 2: Delay Calculation

var delay = from t in trackdata
from idf in idealFlight
where (t.TRACK_ID == idf.TRACK_ID

&& t.SPEED_HORI_KT > 0)
select new
{idf.TRACK_ID, idf.a.

ScheduledLandingTime,
idf.a.Lat, idf.a.Lon,
idf.fLat, idf.fLon, t.SPEED_HORI_KT

};

The delay itself can then be calculated by subscribing the
IObservable delay:

Listing 3: Delay Subscription

delay.Subscribe(value =>
Console.WriteLine("Delay: {0} for Track No.

{1}",
Delay.calculateDelay(value.

ScheduledLandingTime,
value.aLat, value.aLon, System.DateTime.Now

,
value.fLat, value.fLon, value.SPEED_HORI_KT

),
value.TRACK_ID));



Start Destination
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Fig. 2: Calculation of delay using an “ideal flight”. The
difference between both remaining times to landing gives a
lower estimation of the delay.

However, this approach (which we call “the static approach”
in the following) does not work correctly if the data in
flightplan are changed while the system is running. To
this end, we have to re-calculate the idealFlight for each
new IObservable:

Listing 4: Delay Calculation with Naive Incremental Join

var delay = from t in trackdata
from a in airports
from f in flightplans
where ((t.TRACK_ID == f.TRACK_ID
&& (t.SPEED_HORI_KT > 0)
&& (a.ICAO == f.DEST_AIRPORT)))
select new {t,a,f,

fLon = idealLON(a,f),
fLat = idealLAT(a,f)};

This solution (called the “naive incremental join” in the
following) has the drawback that it queries all airport and
flightplan data without focusing with respect to the new
trackdata. So we do a magic set transformation of the naive
join with the trackdata as insert relation:

Listing 5: Delay Calculation with Magic Update

var delay =
from t in trackdata
from idf in

(from a in airports
join f in flightplans
on a.ICAO equals f.DEST_AIRPORT
where t.TRACK_ID == f.TRACK_ID
select new
{f.TRACK_ID, f.ScheduledLandingTime,

aLon = a.LON, aLat = a.LAT,
fLon = f.LON, fLat = f.LAT,
f.SPEED_HORI_KT}) //Magic subquery

where (t.TRACK_ID == idf.TRACK_ID
&& t.SPEED_HORI_KT > 0)

select new {idf.TRACK_ID, idf.
ScheduledLandingTime,
idf.aLat, idf.aLon, idf.fLat,idf.fLon,
t.SPEED_HORI_KT};

Please note that we incorporated the magic subquery directly
into the main expression. This way, the size of the flight plan
relation is already shrunk before the join takes places.

size of trackdata
Method 1 500 50 000 1 500 000
static 4 109 2 732
naive 213 2 739 197 561
magic 3 92 2503
opt. array 1.5 48 1 444

TABLE II: Run time (results (in seconds) for three different
approaches and varying size of track data

size of flight plan
Method 28 280 2 800
static 11 20 109
naive 78 711 2739
magic 10 20 92

TABLE III: Run time (results (in seconds) for three different
approach and varying size of context data (flight plan). The
track data size was fixed to 50,000

IX. EVALUATION

For evaluation our approach, we implemented a test frame-
work that read all data from textfiles.1 The program reads data
from the file into an array and generates an observable for each
entry:

Listing 6: Observable from Array

IObservable<track> o = Observable.Generate(
readTracks.GetEnumerator(),
e => e.MoveNext(),
e => e,
e => e.Current);

The data is then subscribed as described in the previous
section. The runtimes for the complete evaluation of the test
set where measured using the stopWatch function of C#.
We varied the size of track data while we left the size of the
other tables unchanged. The results can be found in Table II. It
can clearly be seen that the static approach performs fastest,
while the naive approach performs rather poorly. From the
data, it can be seen that the naive approach has a super-linear
run-time. The magic set approach, in contrast, performs with
a linear runtime behavior and allows for handling changing
context data. In Table III, the run times for a changing size
of the flight plan data can be found. Also here, it can be seen
that the magic approach is always faster than the dynamic
approach. The static approach is only faster if the size of the
context data is small, but still has the disadvantage of possibly
incorrect results.

X. CONCLUSION

In this paper, we presented a way of fusing data using the
Reactive Extension Framework and LINQ. We have shown
how these techniques can lead to easy understandable, flexible
descriptive programming. We have also shown the drawback
of this solutions when joining streams with large context data.
To solve this problem, we proposed the usage of the Magic

1The source code of the test implementation is available at
http://code.google.com/p/magic-linq/



Update method that is already established in the context of
deductive databases. We have shown how magic updates can
be applied to LINQ queries. We evaluated the approach for a
real life example and have shown the improvement in runtime
behavior.

In a future work, we will show the effects of an automatic
magic update compiler for LINQ expressions. It is also of
interest to explore the possibilities of indexes in LINQ with
respect to rule transformations.
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