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Abstract: Rotating multilayer cylinder subjected to internal pressure and/or radial temperature gradient finds 

several applications, e.g. mold of centrifugal casting machine. The cylinder wall may undergo elastic 

deformation during the operation. The present study deals with thermo-elastic stress analysis of rotating 

multilayer cylinder subjected to internal pressure and radial thermal gradient. Multilayer compound cylinder is 

usually tailor made in order to satisfy the requirement of working in extreme operating conditions characterized 

by high temperature, high pressure and/or corrosive environment. This paper presents a basic model that can be 

used to study the effects of rotation, internal pressure and temperature on the stress distributions and 

displacement fields in multilayer compound cylinders. The results of the developed analytical approach are 

compared with published research paper and validated. 

Index Terms: Multilayer cylinder, rotation, internal pressure, temperature gradient. 

I. INTRODUCTION 

In many industrial applications, the cylinders are often subjected to extreme operating conditions characterized 

by high temperature, high pressure and/or corrosive environment. Conventional cylinder made of single 

material can barely satisfy the requirements for service in extreme operating condition. Therefore, a 

multilayered composite cylinder is usually tailor-made to satisfy the particular requirements, using different 

layer. Most cylinders used in industry, are subjected to thermal loads produced by temperature variation in 

addition to mechanical loads. Thermal load has a significant influence on the stress distribution of a 

multilayered composite pressure vessel because it is made of materials with different coefficients of thermal 

expansion and constructed by shrink fitting. So, it is important to derive solution for multilayer cylinder 

subjected to thermo-mechanical load. In case of multilayer cylinder, a larger number of design variables are 

available to the designer. 

A cylinder made of two or more layer is known as multilayer cylinder. In a multilayer compound cylinder the 

outer cylinder is shrunk fit over the inner cylinder by heating and cooling. On cooling, the contact pressure is 

developed at the junction of the two cylinders, induces compressive tangential stress in the material of the inner 
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cylinder and tensile tangential stress in the material of the outer cylinder. When the cylinder is loaded, the 

compressive stresses are first relieved and then tensile stresses are induced. Hence, a multilayer compound 

cylinder is effective in resisting higher internal pressure than single cylinder with the same overall dimension.  

A deformation of cylinder subjected to various thermo-mechanical loads has been investigated by many 

researchers. Initially the French mathematician Gabriel Lame presented an analytical solution of cylinder made 

of homogeneous and isotropic material exposed to external and internal pressure. This problem has been 

extended to consider the thermal stresses in number of work. Whalley has presented a series of papers on 

design of shell subjected to thermal stresses in addition to pressure with different authors. In part IV of that 

series, Whalley and Morris [1] have discussed the design of multilayer vessel subjected to thermal stress. It was 

shown that thermal and pressure stresses may add or subtract at any point within the vessel. In part IV, Whalley 

and Mackinnon [2] applied this theory considering transient thermal stress. Bahoum and Diany [3] presented a 

basic model that can be used to study the effects of temperature and internal pressure on the stress distributions 

and displacement fields in compound cylinders. In this model, two layer compound cylinder was considered 

with logarithmic radial temperature distribution. Stress distribution is obtained for two cylinder layer made of 

same material steel ASTM A564 H1150 and cylinder layer made of different material steel ASTM A564 H1150 

and aluminum 1050A-H9. It was shown that to ensure permanent contact between two cylinders the minimum 

temperature T1is around 100 °C when T3 is the ambient temperature. The results of the analytical solution were 

compared and validated to finite element axis symmetric model. Anani and Rahimi [4] analyzed rotating thick-

walled hollow cylindrical shell composed of functionally graded material by using the theory of hyper 

elasticity. Radial stress, circumferential stress and longitudinal stress as a function of radial direction are plotted 

for different values of n. The obtained results show that the material inhomogeneity parameter (n) and structure 

parameter (β: ratio of outer radius to inner radius) have a significant influence on the mechanical behavior of 

rotating thick-walled hollow cylindrical shell made of functionally graded materials with power law varying 

properties. 

A cylinder subjected pressure and thermal load made of a homogenous material or functionally graded material 

(FGM) has been investigated by number of researches till now. Research work related to cylinder subjected to 

pressure, rotation and radial temperature gradient is missing in this literature survey. Hence, aim of the present 

investigation is to develop analytical solution of multilayer cylinder subjected to internal pressure, rotation and 

radial temperature gradient. 

II. ANALYTICAL FORMULATION OF MULTILAYER CYLINDER 

A Two layer cylinder with internal radius a, mid radius b and external radius c is considered for the 

mathematical modeling. A general equation for the cylinder is derived first and then this equation is applied to 

each layer of the multilayer cylinder and these equations are solved using the boundary condition for the 

multilayer cylinder. 

The equation of equilibrium in radial direction and strain-displacement relationship for the rotating cylinder 

under axisymmetric loading condition is written as [5], 

 

    
dσr

dr
+

σr−σt

r
+ γω2r = 0           (1) 

 

εr =
du

dr
       &        εt =

u

r
                       (2) 
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Hooke’s constitutive laws for the tri-axial stress state in the linear elastic field with thermal loading are as 

follows 

εr =
1

E
(σr − v(σt + σz)) + αT               (3) 

εt =
1

E
(σt − v(σr + σz)) + αT               (4) 

εz =
1

E
(σz − v(σr + σt)) + αT               (5) 

From above Eq. 3 - 5 values of r, t and z is given by 

σr =
E

(1+v)
(

v∙e

1−2v
+ vεr) −

E

(1−2v)
∙ αT         (6) 

 

σt =
E

(1+v)
(

v∙e

1−2v
+ vεt) −

E

(1−2v)
∙ αT         (7) 

 

σz =
E

(1+v)
(

v∙e

1−2v
+ vεz) −

E

(1−2v)
∙ αT        (8) 

 

Obtaining the value of  
dσr

dr
 and 

σr−σt

r
 using the Eq. 6 and 7. 

dσr

dr
=

E

1+v
(

v

1−2v
(

d2u

dr2 +
1

r
∙
du

dr
−

u

r2) +
d2u

dr2) −
E

1−2v
∙ α

dT

dr
                                   (9) 

σr−σt

r
= 

E

1+v
(
1

r
∙
du

dr
−

u

r2)                                                                      (10) 

Substituting the value of Eq. 9 and 10 in Eq. 1, we get the following governing differential equation for the 

rotating cylinder subjected to radial thermal gradient. 

d2u

dr2 +
1

r

du

dr
−

u

r2 − (
1+v

1−v
) α

dT

dr
+

(1+v)(1−2v)

E(1−v)
γω2r = 0                                                         (11) 

 

d

dr
(
1

r
∙

d

dr
(u ∙ r)) − (

1+v

1−v
) α

dT

dr
+

(1+v)(1−2v)

E(1−v)
γω2r = 0                                            (12) 

Integrating the above equation to obtain the displacement u which involves two integration constants C1 and C2, 

u = α ∙
1+v

1−v
∙
1

r
∙ ∫ T ∙ r ∙ dr

r

ri
−

(1+v)(1−2v)

E(1−v)
∙
γω2r3

8
+

C1

2
∙ r +

C2

r
                                     (13) 

Differentiating the above equation, we get 

du

dr
=

1+v

1−v
∙ α ∙ T − α ∙

1+v

1−v
∙

1

r2 ∫ T ∙ r ∙ dr
r

ri
= −

(1+v)(1−2v)

E(1−v)
∙
3γω2r2

8
+

C1

2
−

C2

r2                       (14) 

 

From this, value of radial and tangential strain is given by following equation 

εr =
du

dr
=

1+v

1−v
∙ α ∙ T − α ∙

1+v

1−v
∙

1

r2 ∫ T ∙ r ∙ dr
r

ri
= −

(1+v)(1−2v)

E(1−v)
∙
3γω2r2

8
+

C1

2
−

C2

r2                        (15) 
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εt =
u

r
= α ∙

1+v

1−v
∙

1

r2 ∙ ∫ T ∙ r ∙ dr
r

ri
−

(1+v)(1−2v)

E(1−v)
∙
γω2r2

8
+

C1

2
+

C2

r2                                     (16) 

As per the generalized plane strain assumption, axial strain for multilayer cylinder is given by Eq. 17. 

εz = constant = ε0                                                      (17) 

Substituting the values of εr, εt and εz from Eq. 15 to 17 in Eq. 6 to 8 and simplifying, we get 

σr =
E∙C1

2(1+v)(1−2v)
−

E∙C2

(1+v)
∙

1

r2 −
(3−2v)

8(1−v)
∙ γω2r2 −

αE

(1−v)

1

r2 ∫ T ∙ r ∙ dr
r

ri
+

Ev

(1+v)(1−2v)
∙ ε0    

  (18) 

σt =
E∙C1

2(1+v)(1−2v)
+

E∙C2

(1+v)

1

r2 −
(1+2v)

8(1−v)
∙ γω2r2 +

αE

(1−v)

1

r2 ∫ T ∙ r ∙ dr
r

ri
+

Ev

(1+v)(1−2v)
∙ ε0 −

αTE

(1−v)
  

(19) 

σz =
E∙C1∙v

(1+v)(1−2v)
−

v

(1−v)
∙
γω2r2

2
+

E(1−v)

(1+v)(1−2v)
∙ ε0 −

αTE

(1−v)
                  

(20)                                                                                    

Using equations 18 to 20 of a single layer cylinder, the equation of a multilayer cylinder is given by Eq. 21 to 

23.  Where i is the number of layers (i=2 for this case). Equation involves 2i+1 unknown (5 unknown for this 

case). 

  
σr

i (r) =
Ei∙Ci1

2(1+vi)(1−2vi)
−

Ei∙Ci2

(1+vi)
∙

1

r2 −
(3−2vi)

8(1−vi)
∙ γiω

2 ∙ r2 −
αiEi

(1−v)
∙

1

r2 ∙ ∫ Tcyi ∙ rdr
r

ri
+

Eivi

(1+vi)(1−2vi)
∙ ε0  

(21) 

σt
i(r) =

Ei∙Ci1

2(1+vi)(1−2vi)
+

Ei∙Ci2

(1+vi)
∙

1

r2 −
(1+2vi)

8(1−vi)
∙ γiω

2 ∙ r2 +
αiEi

(1−vi)
∙

1

r2 ∙ ∫ Tcyi ∙ r ∙ dr
r

ri
−

αiEiTcyi

(1−vi)
+

                                                                                                                                        
Eivi

(1+vi)(1−2vi)
∙ ε0      

(22) 

σz
i (r) =

Ei∙Ci1∙vi

(1+vi)(1−2vi)
−

vi

(1−vi)
∙
γiω

2r2

2
−

αiEiTcyi

(1−vi)
+

Ei(1−vi)

(1+vi)(1−2vi)
∙ ε0  

 (23) 

ui(r) = αi ∙
1+vi

1−vi
∙
1

r
∙ ∫ Tcyi ∙ r ∙ dr

r

ri
−

(1+vi)(1−2vi)

E(1−vi)
∙
γiω

2r3

8
+

Ci1

2
∙ r +

Ci2

r
                              (24) 

 

Temperature distribution in each layer is given by the following equation.  

Tcyi = Tou + (Tin − Tou)
ln(

𝑟

𝑟𝑜𝑢
)

ln(
𝑟𝑖𝑛
𝑟𝑜𝑢

)
                                            (25) 

Equation for two layer cylinder involves 5 unknowns to be determined. These unknowns are determined using 

the following five conditions [3, 5]. 
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1. σr
1(a) = −Pi 

2. σr
2(c) =    0 

3. σr
1(b) = σr

2(b) 

4. u1(b) = u2(b) 

5. Fz = ∑ ∫σz
i ∙ dA2

i=1 = Pi ∙ πri
2 

 

I. σr
1(a) = −Pi 

E1

2(1+v1)(1−2v1)
C11 −

E1

(1+v1)a2 C12 +
E1v1

(1+v1)(1−2v1)
ε0 =

3−2v1

8(1−v1)
𝛾1𝜔

2𝑎2 − Pi  

k1C11 − k2C12 + k3ε0 = M1                                                                                                        (26) 

 

II. σr
2(c) =  0 

E2

2(1+v2)(1−2v2)
C21 −

E2

(1+v2)c2 C22 +
E2v2

(1+v2)(1−2v2)
ε0 =

3−2v2

8(1−v2)
γ2ω

2c2 +
α2E2

(1−v2)c2 ∫ T ∙ rdr
c

b
  

k4C21 − k5C22 + k6ε0 = M2                                                                                                       (27) 

 

III. σr
1(b) =  σr

2(b) 

E1

2(1+v1)(1−2v1)
C11 −

E1

(1+v1)b2 C12 −
E2

2(1+v2)(1−2v2)
C21 +

E2

(1+v2)b
2 C22 + ε0 (

E1v1

(1+v1)(1−2v1)
−

E2v2

(1+v2)(1−2v2)
) =

 
3−2v1

8(1−v1)
γ1ω

2b2 −
3−2v2

8(1−v2)
γ

2
ω2b2 +

α1E1

(1−v1)b
2 ∫ T ∙ r ∙ dr

b

a
  

k1C11 − k7C12−k4C21 + k8C22 + k9ε0 = M3                                                                         (28) 

 

IV. u1(b) = u2(b) 

C11

2
+

C12

b2 −
C21

2
−

C22

b2 =
(1+v1)(1−2v1)

1−v1
∙
γ1ω2b2

8E1
−

(1+v2)(1−2v2)

1−v2
∙
γ2ω2b2

8E2
−

1+v1

1−v1
∙
α1

b2 ∫ T ∙ r ∙ dr
b

a
  

1

2
C11 + k10C12 −

1

2
C21 − k10C22 = M4                                                                                     (29) 
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V. ∑ ∫σz
i ∙ 𝑑𝐴2

𝑖=1 = 𝑃𝑖 ∙ 𝜋𝑟𝑖
2 

∴  ∫ σz
1 ∙ 2πr ∙ dr

b

a
+ ∫ σz

2 ∙ 2πr ∙ dr
c

b
= 𝑃𝑖 ∙ 𝜋𝑟𝑖

2  

∴  ∫ σz
1 ∙ r ∙ dr

b

a
+ ∫ σz

2 ∙ r ∙ dr
c

b
=

1

2
𝑃𝑖 ∙ 𝑟𝑖

2    

E1v1(b2−a2)

2(1+v1)(1−2v1)
C11 +

E2v2(c
2−b2)

2(1+v2)(1−2v2)
C21 + ε0 (

E1(1−v1)(b2−a2)

2(1+v1)(1−2v1)
−

E2(1−v2)(c
2−b2)

2(1+v2)(1−2v2)
) = 

v1

8(1−v1)
γ1ω

2(b4 − a4) +

v2

8(1−v2)
γ

2
ω2(c4 − b4) +

α1E1

(1−v1)
∫ T ∙ r ∙ dr

b

a
+

α2E2

(1−v2)
∫ T ∙ r ∙ dr

c

b
+

1

2
𝑃𝑖 ∙ 𝑟𝑖

2  

k11C11 + k12C21 + k13ε0 = M5                                                                                                  (30) 

 

Where, 

k1 =
E1

2(1 + v1)(1 − 2v1)
                                                k2 =

E1

(1 + v1)a2
 

k3 =
E1v1

(1 + v1)(1 − 2v1)
= 2k1v1                                  k4 =

E2

2(1 + v2)(1 − 2v2)
 

k5 =
E2

(1 + v2)c2
                                                                        k6 =

E2v2

(1 + v2)(1 − 2v2)
= 2k4v2 

k7 =
E1

(1 + v1)b2
                                                                k8 =

E2

(1 + v2)b
2 

k9 =
E1v1

(1 + v1)(1 − 2v1)
−

E2v2

(1 + v2)(1 − 2v2)
=  k3 − k6 

k10 =
1

b2
 

k11 =
E1v1(b

2 − a2)

2(1 + v1)(1 − 2v1)
                                             k12 =

E2v2(c
2 − b2)

2(1 + v2)(1 − 2v2)
 

k13 =
E1(1 − v1)(b

2 − a2)

2(1 + v1)(1 − 2v1)
+

E2(1 − v2)(c
2 − b2)

2(1 + v2)(1 − 2v2)
 

M1 =
3−2v1

8(1−v1)
γ1ω

2a2 − Pi  

M2 =
3−2v2

8(1−v2)
γ

2
ω2c2 +

α2E2

(1−v2)c
2 ∫ T ∙ rdr

c

b
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M3 =
3−2v1

8(1−v1)
γ1ω

2b2 −
3−2v2

8(1−v2)
γ

2
ω2b2 +

α1E1

(1−v1)b
2 ∫ T ∙ r ∙ dr

b

a
  

M4 =
(1+v1)(1−2v1)

1−v1
∙
γ1ω2b2

8E1
−

(1+v2)(1−2v2)

1−v2
∙
γ2ω2b2

8E2
−

1+v1

1−v1
∙
α1

b2 ∫ Trdr
b

a
  

M5 =
v1γ1ω2

8(1−v1)
(b4 − a4) +

v2γ2ω
2

8(1−v2)
(c4 − b4) +

α1E1

(1−v1)
∫ T ∙ rdr

b

a
+

α2E2

(1−v2)
∫ T ∙ rdr

c

b
+

1

2
𝑃𝑖 ∙ 𝑟𝑖

2  

Arranging the equation in the matrix form  

[
 
 
 
 
 
 
k1 −k2 0 0 k3

0 0 k4 −k5 k6

k1 −k7 −k4 k8 k9

1 2⁄ k10 −1 2⁄ −k10 0

k11 0 k12 0 k13]
 
 
 
 
 
 

[
 
 
 
 
 
 
C11

C12

C21

C22

ε0 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
M1

M2

M3

M4

M5]
 
 
 
 
 
 

 

Solution above 5x5 system of equation gives the value of C11, C12, C21, C22 and εo. Hence, stress 
distribution and displacement field for the two layer cylinder is given by the equation 31 to 34, where i 
=1, 2. 

σr
i (r) =

Ei∙Ci1

2(1+vi)(1−2vi)
−

Ei∙Ci2

(1+vi)
∙

1

r2 −
(3−2vi)

8(1−vi)
∙ γiω

2 ∙ r2 −
αiEi

(1−v)
∙

1

r2 ∙ ∫ Tcyi ∙ rdr
r

ri
+

Eivi

(1+vi)(1−2vi)
∙ ε0  

(31) 

σt
i(r) =

Ei∙Ci1

2(1+vi)(1−2vi)
+

Ei∙Ci2

(1+vi)
∙

1

r2 −
(1+2vi)

8(1−vi)
∙ γiω

2 ∙ r2 +
αiEi

(1−vi)
∙

1

r2 ∙ ∫ Tcyi ∙ r ∙ dr
r

ri
−

αiEiTcyi

(1−vi)
+

                                                                                                                                        
Eivi

(1+vi)(1−2vi)
∙ ε0       (32) 

 
σz

i (r) =
Ei∙Ci1∙vi

(1+vi)(1−2vi)
−

vi

(1−vi)
∙
γiω

2r2

2
−

αiEiTcyi

(1−vi)
+

Ei(1−vi)

(1+vi)(1−2vi)
∙ ε0                                                   (33) 

 

ui(r) = αi ∙
1+vi

1−vi
∙
1

r
∙ ∫ Tcyi ∙ r ∙ dr

r

ri
−

(1+vi)(1−2vi)

E(1−vi)
∙
γiω

2r3

8
+

Ci1

2
∙ r +

Ci2

r
                             (34) 

III. RESULTS AND DISCUSSION 

Solution of the multilayer cylinder is used to study the stress distribution of the mold. Table 1 presents material 

properties, dimensions and loading conditions of the mold used for the investigation of the mold. Mold made of 

same material for both layer and both layer of equal thickness is considered to study the results of multilayer 

cylinder.  

Table 1 Mold dimensions, loading conditions and material properties  
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Mold material AISI-4340 

Density (ϒ) (Kg/m3) 7800 

Poisson’s ratio 0.29 

Young’s Modulus (GPa) 210 

Yield Strength (MPa) 910 

Thermal expansion (/°C) 1.21E-05 

Internal Radius (a) (mm) 1000 

Mid Radius (b)(mm) 1110 

External Radius (c) (mm) 1220 

Length (mm) 1000 

Internal Pressure (Pi) (MPa) 5 

Angular velocity (ω )(rpm) 600 

Temperature at Internal radius (T1) (°C) 700 

Temperature at Mid radius (T2) (°C) 370 

Temperature at Internal radius (T2) (°C) 100 

For obtaining stress distribution for multilayer cylinder, we require the value of temperature at mid radius T2. 

This value of temperature T2 can be found using following relation for heat transfer. Once the value of T2 is 

known stress distribution is obtained using the equations of two layer cylinder. Stress distribution for 

interference pressure equals to 5 MPa is obtained and by using the principle of super position the final stress 

distribution for multilayer cylinder is shown in fig. 1. 

Q =
2πk1L(T1 − T2)

ln(
b

a
)

=
2πk2L(T2 − T3)

ln(
c

b
)

 

 

Fig. 1 Stress distribution for multilayer cylinder with interference pressure = 5 MPa 

Figure. 1 presents the stress distribution for multilayer cylinder subjected to internal pressure of 5 MPa, 

Angular velocity of 600 rpm, internal wall temperature of 700 °C and external wall temperature of 400 °C. 
Radial stress is zero at internal and external radius and compressive in-between. Tangential and axial stress 

1166 1044
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varies from compressive at internal radius to tensile at external radius. Von mises stress is also obtained in 
order study the combined effect of radial, tangential and axial stress. 

Results of this case are compared with K. Bahoum paper to validate results of the developed analytical 

approach. Using the material properties and other conditions from the paper and considering angular velocity as 

0 rad/sec in the obtained analytical solution, results are obtained and it shows good agreement with the paper 

result. 

 

  

Fig. 2 Comparison of radial stress with paper 

 

   

Fig. 3 Comparison of tangential stress with paper 
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The results presented in this study are just for a selected loading combinations and for single material selected. 

However, analytical solution (stress distribution) for any combination of loading and material properties can be 

obtained.  

IV. CONCLUSION 

The main objective of the current investigation is to derive analytical solution for rotating multilayer cylinder 

subjected to internal pressure and radial thermal gradient. The expressions of radial displacement and different 

stresses in the two cylinders, inner and outer, were deducted for the cases where the cylinders are made from 

the same materials. The results obtained in the current investigation lead to the following conclusions. 

 The combined effects of rotation, internal pressure and temperature must be taken into account when 

designing compounds cylinders, to ensure their maximum efficiency and maximum availability. 

 Effect of thermal load is dominant over the load due to internal pressure and rotation. When multilayer 

cylinder is subjected to combined load. The hoop stress is more affected by the variation of the 

temperature then the internal pressure value. 
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