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Abstract This article presents an application of stress-

constrained topology optimization to compliant mecha-

nism design. An output displacement maximization for-

mulation is used, together with the SIMP approach and

a projection method to ensure convergence to nearly

discrete designs. The maximum stress is approximated

using a normalized version of the commonly-used p-

norm of the effective von Mises stresses. The usual prob-

lems associated with topology optimization for compli-

ant mechanism design: one-node and/or intermediate

density hinges are alleviated by the stress constraint.

However, it is also shown that the stress constraint

alone does not ensure mesh-independency.
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1 Introduction

For compliant mechanisms, elastic strain is the basis

for kinematic actuation. Their main advantages are re-

duced wear, friction and backlash compared to conven-

tional mechanisms. These characteristics lead to higher

precision and reliability to perform the tasks they are

built for. Moreover, they can use their own stored elastic

energy to return to the initial position when the input

actuation is ceased, without the need for a second actu-

ation (Howell, 2013). The main disadvantages are: part

of the input work being spent on elastic deformation

of the mechanism itself, susceptibility to fatigue and

the lack of systematic design methodologies for real-life

applications.

Compliant mechanisms are widely used as preci-

sion mechanical devices in the biomedical area and in

MEMS - MicroElectroMechanical Systems. MEMS are

built in very small sizes, using advanced micro-scale

manufacturing; they are usually etched in a single ma-

terial layer with subsequent underetching.

A mechanism design procedure starts by the specifi-

cation of the available design domain, the supports, the

input and output ports and their forces and kinematics,

the strength requirements, and the manufacturing con-

straints, which may include length scales and manufac-

turability issues. A design problem formulation should

include all this information, and also be reasonably in-

dependent of numerical parameters such as numerical

discretization and solution algorithms.

Among several techniques applied in compliant mech-

anisms design, topology optimization (Sigmund, 1997;

Frecker et al., 1997) has been one of the most general

and systematic, since it has been able to deal with the

precise elastic behavior of complex geometries. As the

goal of this work is not to provide a historical back-
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ground on the subject, only the most relevant formula-

tions are discussed in the following.

Some of the first works applying topology optimiza-

tion to compliant mechanisms design by Sigmund (1997)

and Larsen et al. (1997), used a density-based formu-

lation and defined the objective function as maximiza-

tion of the output port displacement. This formulation

yields energy efficient designs, however with lumped

compliant regions or one-node-connected hinges con-

necting stiff members, thus effectively mimicking rigid-

body mechanisms. This formulation has served as a ba-

sis to many others since its publication, including the

present work. Whereas the original works considered

linear (small) displacements, the concept has also been

extended to finite deformations (Pedersen et al., 2001).

Although the inclusion of finite deformation theory is

imperative for practical applications, the focus in the

present work is on the inclusion of stress constraints

rather than on practical applications and hence uses

simpler linear elasticity theory. However, it is expected

that the conclusions drawn here for the linear problem

largely apply to the non-linear case as well.

In the topology optimization method, a well-known

challenge is to avoid numerical instabilities (Sigmund

and Petersson, 1998) and ensure convergence with mesh-

refinement. In order to obtain mesh-independent and

checkerboard-free designs, filtering techniques are by

far the most common procedures. Both sensitivity fil-

tering (Sigmund, 1997) and density filtering (Bourdin,

2001; Bruns and Tortorelli, 2001), successfully produce

designs for a chosen length scale (filter radius), although

with the appearance of an intermediate density (gray)

transition area between the solid and void regions of

the domain and the appearance of one-node-connected

and/or gray-scale localized hinge regions. In order to

overcome the former difficulties, various projection schemes

have been proposed (see Guest et al., 2004; Sigmund,

2007; Guest, 2009, among others). Depending on thresh-

old values, these filters may control minimum feature

sizes of either solid or void regions, however, they do

not prevent localized artifacts (Wang et al., 2011) which

for compliant mechanism design show up in the form of

one-node-connected hinges.

The question of whether lumped or distributed com-

pliant mechanisms are optimal is a long standing and

still open question in the field. One issue is certain, how-

ever. The appearance of one-node-connected hinges in

topology optimization of compliant mechanism must be

avoided since it represents poor finite element model-

ing. To ensure satisfactory stress solution quality, any

feature in a geometry should be discretized by at least

a couple of elements.

Several schemes have been proposed to alleviate the

one-node-connected hinge problem. The schemes can

roughly be divided into (local) geometry-based and (global)

energy-based formulations. It is not the goal of the

present paper to provide a complete review of all these

papers and techniques. Instead we just mention a few

of the most recently published approaches:

– a robust formulation for compliant mechanisms pro-

posed by Sigmund (2009) and Wang et al. (2011),

that succeeds in imposing length scale, alleviating

the hinge problem and taking under- and/or over-

etching in the manufacturing process into account.

Despite the higher computational time compared to

other formulations (two to three finite element anal-

yses have to be performed at each iteration), it suc-

ceeds in obtaining compliant mechanisms, devoid of

one-node-connected hinges and with an allowed er-

ror bound for manufacture.

– a strain-based multi objective formulation proposed

by Lee and Gea (2014), where the effective strain is

included in the objective function;

– a compliance-based multi-objective function propo-

sed by Zhu et al. (2014), using a weighted function

consisting of the input and output port compliances;

The field of compliant mechanism design is not re-

stricted to the density approach used in this paper,

but has also been studied by means of level-set meth-

ods, (e.g. Luo et al., 2008), and phase-field methods

(Takezawa et al., 2010). Among them, one can cite

level-set based formulations with a geometric penalty

on the curvature to avoid small features (Luo et al.,

2008), a formulation for minimum stress design (Allaire

and Jouve, 2008) and a formulation that minimizes a

functional using a relation between the minimum com-

pliance of the output and input ports and with a cho-

sen target for the geometrical advantage of the mecha-

nism (Zhu and Zhang, 2012).

Although the above procedures somewhat success-

fully avoid one-node-connected hinges, we here postu-

late that the optimal mechanism layout is neither en-

sured by purely energy-based, nor by purely geometry-

based measures. The avoidance of localized hinges should

come from a mechanics-based reformulation of the com-

pliant mechanism optimization formulation in terms of

local field measures, possibly combined with some mea-

sures to avoid mesh-dependency. One way of doing this

is to include a maximum stress limit as suggested in

this paper.

It is noticeable from the available literature that a

steady progress has been made in addressing the con-

vergence of the numerical implementation of kinematics-

only formulations, but the strength requirement has

been largely absent. A natural explanation for this is
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that the stress constraint problem is still an open re-

search area - even for simpler non-mechanism design

problems (e.g. Allaire et al., 2004; Le et al., 2010),

among others. To the best of our knowledge, stress-

constrained mechanism design formulations have only

been formulated for truss-based mechanism design by

Saxena and Ananthasuresh (2001) and in a preliminary

work by Meneghelli and Cardoso (2013).

Fig. 1 A typical optimized compliant inverter design with
hinged connections and the corresponding grey scale stress
distribution below with black denoting high and white de-
noting low stresses. The circles magnify a hinge and its cor-
responding stress concentrations.

This paper applies stress-constrained topology op-

timization to compliant mechanism design. The addi-

tional constraint is applied to a normalized global stress
measure, based on the well-known p-norm of the von

Mises effective stress (Duysinx and Sigmund, 1998; Le

et al., 2010). The goal of the stress constraint is to en-

sure mechanically sensible mechanisms by alleviating

the one-node-connected hinge problem and lowering the

general stress level, in turn improving the fatigue life of

the device. Fig. 1 shows the von Mises stress plot of

a typically one-node-connected hinge compliant mech-

anism with the distinctive stress concentration at the

hinge.

The paper is organized as follows. Section 2 intro-

duces the general topology optimization formulation for

compliant mechanism design including projection fil-

tering, the stress-norm constraint and a discussion of

appropriate continuation strategies. Section 3 demon-

strates the procedure applied to the compliant inverter

and the compliant gripper benchmark problems. The

section includes various parameter studies such as con-

vergence with mesh-refinement, dependency on stress

constraint value and output stiffness. Section 4 con-

cludes the work and discusses options for further stud-

ies.

2 Optimization problem

A mechanism is expected to react when a force is acting

upon it. Besides that, it is required to perform work on

a workpiece. The points where the external force is ap-

plied and where force is expected to react, we refer to as

the input and output ports, respectively. Fig. 2 shows

the general problem for topology optimized mechanism

design. The physical domain, Ω = Ωd∪Ωs∪Ωv, is split

into three parts: the design domain, Ωd; a prescribed

solid domain, Ωs; and a prescribed void domain, Ωv.

The domain boundary, Γ = ΓD ∪ ΓN , is made up of

two parts: the Dirichlet boundary with prescribed dis-

placements, ΓD; and the Neumann boundary with zero

normal stress, ΓN . The input port is subjected to a

given load, fin, and the output port exhibits the de-

sired output, uout, due to elastic deformation of the

domain.

Most actuators have a built-in stiffness that needs

to be taken into account, together with the workpiece

stiffness. To physically describe these, springs kin and

kout, are added to the input and output ports, respec-

tively, as shown in Fig. 2. Alternatively, input and out-

put displacements can be used as delimiters, imposing

a constraint on the displacements.

Fig. 2 General problem for mechanism design.

The presented work builds on the formulation by Sig-

mund (1997), where the objective function is written as

minimization of displacement in the output port sub-

ject to the equilibrium equations and a volume con-

straint. The main contribution of this work is the ad-

dition of a constraint on the maximum stress to the
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optimization problem. The general formulation is given

as:

min
ρ

: f (ρ) = lTu

s.t. : K(ρ)u = f

: fv(ρ) =

∑
i∈Ne

¯̃ρi(ρ)vi

V
6 V ∗

: fs(ρ) = max (σ) 6 σ∗

: 0 6 ρi 6 1, i ∈ Ne (1)

where K is the stiffness matrix obtained by means of

finite element discretization, u and f are the solution

and the input vectors respectively, ρ is the vector of

design variables, Ne is the set containing all elements

and ¯̃ρi is the physical density associated with the i’th

design element. The vector l takes zero in all positions

except for the position corresponding to the output de-

gree of freedom, which is set to one. The total volume

of the design domain is V , V ∗ is the allowed volume

fraction and vi is the volume of the i’th element. The

vector σ contains the element stress measures, to be

defined in section 2.2, and σ∗ is a chosen threshold for

the maximum elemental stress.

The element stiffness matrices Ki are calculated as

Ki = EiK0 where K0 is the element stiffness matrix for

unit material stiffness and Ei is the material stiffness

obtained using the well-known solid isotropic material

interpolation with penalization (SIMP):

Ei = Emin + ¯̃ρi
k

(E0 − Emin) (2)

where E0 is the stiffness of the solid phase, Emin is a

small stiffness attributed to regions to avoid ill-conditio-

ning and k is the penalization parameter. Adjoint sensi-

tivity analysis can be applied to calculate the derivative

of objective function with respect to the physical den-

sities:

∂f

∂ ¯̃ρi
= λT

dK

d ¯̃ρi
u (3)

where λ is the adjoint vector calculated from Kλ = −l.
In this work, an implementation of MMA (Method

of Moving Asymptotes) (Svanberg, 1987) written in C

is used as the mathematical programming algorithm.

2.1 Projection filtering

Considering the optimization problem as stated in (1)

with the physical densities, ¯̃ρ, set equal to the design

variables, ρ, will lead to two well-known problems; the

formation of checkerboard patterns and mesh-dependent

designs (Sigmund and Petersson, 1998). The first is due

to bad numerical modeling from low-order discretiza-

tion of the design (Dı́az and Sigmund, 1995). The sec-

ond problem means that instead of getting higher reso-

lution images of the topology, the optimization process

starts to add small details in the solid and/or void re-

gions. This leads the optimization procedures to differ-

ent topologies, creating a dependence on mesh size.

Selecting the filtered densities, ρ̃, to be the new phy-

sical densities leads to another problem; the appear-

ance of gray transition areas between solid and void

phases. These intermediate densities can be disregarded

by simple thresholding for simpler problems such as

compliance minimization. Unfortunately, however, in

more complex problems such as compliant mechanisms

design, this postprocessing may lead to wrong physical

interpretations.

A recent tool that has been widely used to avoid

gray transition areas is the implementation of projec-

tion methods (Guest et al., 2004; Sigmund, 2007). All

the filtered density values above a threshold η are pro-

jected to 1 and values below it to 0. As discussed in the

introduction, simple projection filtering does not avoid

one-node-connected hinges – this would require a ro-

bust formulation (Sigmund, 2009; Wang et al., 2011).

Here, however, we refrain from using the robust formu-

lation since we want to investigate whether the added

stress constraint will avoid the one-connected-hinge is-

sue as well as provide mesh-independency without fur-

ther means.

To ensure differentiability, the projection method

applies a smoothed Heaviside funtion:

¯̃ρi =
tanh(βη) + tanh(β(ρ̃i − η))

tanh(βη) + tanh(β(1− η))
(4)

where β determines the slope (sharpness) of the curve

and η the threshold value.

The projected variables, ¯̃ρ, are chosen as the phys-

ical density variables. They are a function of the fil-

tered densities, ρ̃, and the design variables, ρ, and thus

the sensitivities are corrected using the chain rule as

detailed by Sigmund (2007). The discreteness of opti-

mized topologies is measured by a gray-level indicator

as introduced by Sigmund (2007):

Mnd =

∑N
i=1 4¯̃ρi(1− ¯̃ρi)

N
× 100% (5)

When ¯̃ρi = 0.5 for all elements, the value of Mnd is

100%, and when ¯̃ρi = 0 or ¯̃ρi = 1 for all elements, the

value of Mnd is 0%.

2.2 Stress constraints

Stress-based topology optimization is a standing chal-

lenge. Applying stress constraints to a given problem
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raises additional obstacles to be overcome. Firstly, the

singularity problem appears when elements that ap-

proach zero density vanish from the design space, re-

sulting in degenerated subspaces impossible to be iden-

tified by the algorithm, that converges to local min-

ima. The problem was first encountered and clearer to

be noticed for optimization of truss structures (Kirsch,

1990; Cheng and Jiang, 1992), where the cross sec-

tional area of some members tending to zero, degen-

erate the solution space. The problem with trusses is

overcome by means of functions that smooth the feasi-

ble design space (Cheng and Guo, 1997; Rozvany and

Sobieszczanski-Sobieski, 1992) and this generally allows

the algorithm to converge to better local minima. Later,

these functions were adapted to continuum problems

(Duysinx and Bendsøe, 1998; Duysinx and Sigmund,

1998). In the present work, a relaxation scheme intro-

duced by Le et al. (2010) is applied to the von Mises

stress on each design element. The elemental stress mea-

sure for a given element becomes:

σi = ¯̃ρi
q
σvm,i (6)

where σi is the relaxed stress measure, ¯̃ρi is the element

physical density, q is a relaxation parameter and σvm,i
is the von Mises effective stress of the (solid) element

centroid:

σvm,i =
(
σi
TVσi

) 1
2 (7)

with V being the auxiliary matrix:

V =

 1 − 1
2 0

− 1
2 1 0

0 0 3

 (8)

The element stress vector, σi = {σ11, σ22, σ12}T , is

calculated for fully solid material:

σi = C0Bui (9)

where C0 is the elasticity tensor for the base material,

B is the strain-displacement matrix and ui is a vector

containing the i’th element’s degrees of freedom of the

global displacement vector.

The relaxation, equation (6), allows the elemental

stress measure to go to zero when ¯̃ρi → 0 and recovers

the original stress when ¯̃ρi → 1.

According to (Duysinx and Bendsøe, 1998) this model

simplifies the computational effort for solving stress con-

strained problems. However, they also notice that the

optimization problem solved is inconsistent with physics

and can lead to artificial removal of material. This issue

is fully addressed in the original paper. Nevertheless,

since the projection filtering technique applied in this

work removes intermediate densities successfully, this

physical inconsistency is alleviated in the optimized re-

sults. A comparison between the optimized and inter-

preted results confirms this conclusion. The same for-

mulation has with success been used in the work of Le

et al. (2010) for compliance design.

The highly non-linear relation between stress lev-

els and element density is another important issue to

consider. Stress levels can vary significantly, especially

when holes and corners are formed in the topology. The

algorithm must be robust enough to handle these varia-

tions, otherwise it becomes difficult for the optimization

to converge.

The last, but no less important, issue is the local na-

ture of stress. As it is computationally intractable to im-

pose one constraint on each finite element in the mesh,

the most common way to deal with stress constraints

is to select one global stress measure. In this work, the

global p-norm stress measure proposed by Duysinx and

Sigmund (1998) and later adopted and extended by Le

et al. (2010) is applied in order to approximate the

maximum stress of the design domain. This formula-

tion aims to control the stress level by capturing the

trend of the maximum stress. The stress constraint can

be written as:

σPN =

(∑
i∈Nσ

viσi
p

) 1
p

(10)

where Nσ is the set of elements to be constrained, vi is

the elemental volume, σi is the element relaxed stress

measure and p is the stress norm parameter. It can be

proven that for p → ∞, the p-norm approaches the

maximum stress. However, the higher the value of p,

the greater the degree of non-linearity and discontinu-
ity and thus the greater the chances to find poor local

minima. In this work, a value of p = 12 has worked

successfully.

The normalized stress measure as introduced by Le

et al. (2010) is used in this work:

σ̃PN = cσPN (11)

The normalization parameter c is proposed to give

physical meaning to the p-norm and is defined for n >
1, where n is the design iteration number, as:

cn = αn
σn−1max

σn−1PN

+ (1− αn) cn−1 (12)

where σmax is the actual maximum element stress mea-

sure and α is a parameter that controls the update of c

between iterations. In this work, αn = 0.5 for all n and

c0 = 1 was used. The normalization provides a closer

approximation of the maximum stress:

max(σ) ≈ σ̃PN (13)
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allowing for easier control of the maximum stress using

a physical limit stress, σ∗. The normalized stress mea-

sure, equation (11), is chosen as the constraint function

and the resulting optimization problem is thus as de-

tailed in equation (1) but with fs = σ̃PN .

Basically, this formulation uses the well-known for-

mulation stated by Sigmund (1997) and adds a con-

straint on the normalized global stress measure pro-

posed by Le et al. (2010). The goal in imposing a con-

straint of the maximum stress, by means of a p-norm, is

to avoid peaks in the mechanism stress field, indirectly

avoiding the appearance of localized hinges in the de-

sign.

The adjoint sensitivity method is also applied to

calculate the gradient of the stress constraint:

∂fs
∂ ¯̃ρi

=c σsum
1
p−1viσi

p−1q ¯̃ρi
q−1

σvm,i

+ k ¯̃ρi
k−1

(E0 − Emin)λσi
T
K0ui (14)

where σsum is the sum of equation (10):

σsum =
∑
i∈Nσ

viσi
p (15)

and the vector λσi contains the i’th element’s degrees of

freedom of the adjoint vector for the stress constraint.

This adjoint field, λσ, is calculated from the following

adjoint problem:

Kλσ = −∂fs
∂u

T

(16)

where the right-hand side is obtained through the finite

element assembly of the element contributions:

∂fs
∂ui

T

=
c σsum

1
p−1viσi

p−1 ¯̃ρi
q

σvm,i
BTC0Vσi (17)

2.2.1 Constant beta vs. beta continuation

As stated earlier, the value of β determines the slope

of the smoothed Heaviside function, described in equa-

tion (4). Generally, β is initialized with a small value,

for instance 1, and then gradually increased using a

continuation procedure. This can cause the algorithm

to be very slow in convergence, besides the appearance

of oscillatory and instable behavior when β is increased.

As mentioned in section 2.2, the relation between

stress level and density is very non-linear. This is very

pronounced when updating values for β. Especially for

large values, the procedure of updating can cause per-

turbations that lead the algorithm to loose the path to

convergence.

Recently, Guest et al. (2011) proposed a modifica-

tion of the initial optimization settings in MMA, in or-

der to allow the algorithm to start with large values for

(a) constant β: f = −3.95, σ∗ = 9, Mnd = 3.3%

(b) β continuation: f = −3.99, σ∗ = 9, Mnd = 1.2%

Fig. 3 Convergence problems using a constant value for β.
Without the β-continuation strategy, pronounced gray re-
gions are seen in the hinge regions (a).

β. A tightening of the MMA asymptotes tells the al-

gorithm to use a very conservative approximation from

the onset of optimization. The initial asymptotes are

made dependent of β and this alternative to the con-

tinuation method seems to be a good way in preventing

perturbations and slow convergence.

However, for the formulation presented in this work,

starting with a large value for β caused an additional

problem. Mainly when dealing with very low thresholds

for stress, the algorithm seems to find particularly poor

local minima. Fig. 3 shows an example where the al-

gorithm converged to a mechanism with a pronounced

gray area in the hinge regions. This problem did not

appear when a continuation procedure was applied.

To avoid this problem and overcome the perturba-

tion issue, this work uses a β-continuation procedure

alongside the tightening of the asymptotes proposed by

Guest et al. (2011) every time the curve slope is up-

dated. This procedure slows the convergence, but al-

lows the algorithm to both control the stresses and in

the authors’ experience generally produces better opti-

mized designs.
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3 Numerical examples

In compliant mechanism design, there are several bench-

mark problems widely used to verify if a given for-

mulation converges towards a hinge-free design. These

benchmark tests are prone to present hinges if the for-

mulation does not help to prevent them. In the follow-

ing we use the benchmark examples as e.g. used by

Sigmund (2009), but modified to use physical dimen-

sions and material properties (Sigmund, 1997) in order

to ensure a physically reasonable meaning of the stress

constraint.

3.1 Compliant inverter

The first example is the compliant inverter, where the

output port is expected to move in the opposite direc-

tion compared to the input port (Fig. 4). The dark gray

squares in the upper left and right corners are a group

of elements that are inactive; that is they are forced to

have density equal to 1 and are ignored in the calcula-

tions of the global stress measure, i.e. excluded from the

set Nσ. Due to the point load nature of the input and

output points, these areas will inherently exhibit large

stresses which would overshadow other highly stressed

regions if not excluded from the design domain and the

stress norm calculation. In reality, the input actuator

and workpiece have finite contact regions with the com-

pliant mechanism, in turn avoiding this stress singular-

ity issue.

Fig. 4 Sketch of the compliant inverter problem setup.

Silicon is chosen as the base material with Young’s

moduli for the solid and void phases as E0 = 180 [GPa]

and Emin = 10−9E0, respectively, and the Poisson ra-

tio is ν = 0.3. The force applied at the input port is

fin = 1000 [µN ], the input spring stiffness is kin =

2× 10−4 [ Nµm ], and the output spring stiffness is kout =

2.5 × 10−4 [ Nµm ]. The domain length is set to L =

150 [µm] and the thickness is set 7 [µm]. The penal-

ization parameter (SIMP) is k = 3 and the relaxation

parameter for stress is set to q = 1 until convergence,

then it is updated to 0.5 to further reduce the gray

areas for all presented examples. In the work by Le

et al. (2010), a fixed value of q = 0.5 was used from

the start, however, for mechanism design with a stress

constraint we found that the most stable behavior is

obtained with the described two-step approach for this

parameter. The volume fraction is V ∗ = 0.3 and the

stress limit, σ∗, will be stated for each result. For all

examples, a density filter radius of 5.6L
100 [µm] is used,

η = 0.5 and β is doubled every 100 iterations until

βmax = 150 from an initial value of 1, except for cases

shown in section 3.1.1 where the maximum value for β

are specified.

In the following we investigate the influence of mesh

refinement, stress constraint value and output stiffness

value for the inverter example.

3.1.1 Mesh refinement study

In order to investigate whether the imposed stress con-

straint results in mesh-independence, a mesh refine-

ment study is carried out.

Fig. 5 shows results for several meshes, both with

and without an active stress constraint, using the same

parameters, except for βmax. This value is set to 50,

100, 150, 200 and 300 for the meshes 50× 25, 100× 50,

150× 75, 200× 100 and 300× 150, respectively, due to

the fact that a higher β value is needed to ensure the

same level of gray-scale when the filter radius is larger

relative to the element size (Guest et al., 2011). Stress

levels in the optimized mechanisms are shown using the

same gray scale for all designs with black meaning high

stress and white meaning zero stress.

It can be seen that the topologies are qualitatively

the same, with small variations. The most significant

change is the length of the compliant members replac-

ing the one-node-connected hinges for the stress con-

strained designs. It is seen that the length of these com-

pliant members decreases with mesh-refinement. Fig. 6

shows close-ups of the hinge regions for the three finest

meshes. Here it can be observed that the stress con-

straint effectively removes the one-node-connected hinges

and replaces them with a compliant member. It is also

observed that the thickness and length of the com-

pliant member varies with mesh-refinement. To avoid

stress concentrations the optimizer replaces the one-

node-connected hinge with a compliant member with

minimal bending resistance that satisfies the stress con-

straint. As the mesh is refined, the member gets thinner

meaning that the member can be shorter and still en-

sure the same small bending stiffness and stress level

as for the coarser design. Obviously, the stress distribu-
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(a) 50 × 25, f = −4.136 (b) σ∗ = 14, σmax = 14 (c) 50 × 25, f = −4.425 (d) σmax = 34.9

(e) 100 × 50, f = −4.147 (f) σ∗ = 14, σmax = 14 (g) 100 × 50, f = −4.311 (h) σmax = 26.8

(i) 150 × 75, f = −4.235 (j) σ∗ = 14, σmax = 14 (k) 150 × 75, f = −4.321 (l) σmax = 25.4

(m) 200 × 100, f = −4.285 (n) σ∗ = 14, σmax = 14 (o) 200 × 100, f = −4.320 (p) σmax = 24.1

(q) 300 × 150, f = −4.299 (r) σ∗ = 14, σmax = 14 (s) 300 × 150, f = −4.321 (t) σmax = 18.9

Fig. 5 Inverter compliant mechanism with (left) and without (right) stress constraints for different meshes. The units for all
examples are in µm for f and GPa for σ∗ and σmax.

tion in the compliant member is not well-modeled by

only two element discretizing its cross-section. Also, the

hinges for the finer meshes do show a bit of grey scale

(see Sec. 3.1.2 for a discussion of this issue). Neverthe-

less, this example shows that adding a stress constraint

by itself does not ensure mesh-independent designs al-

though it does eliminate the one-node-connected hinge

issue. It appears that the addition of the stress con-

straint to compliant mechanism design still must be

accompanied by a minimum feature size constraint in

order to ensure accurate modeling and optimization for

compliant mechanism design.

It is very interesting to note that despite a signif-

icantly reduced maximum stress, the performance is

not remarkably lower for the stress constrained designs

compared to the non-constrained ones. This aspect will

be further investigated in the following subsection.

3.1.2 Effect of stress constraint and Pareto optimality

In order to further investigate the effect of imposing a

stress constraint on the performance of the optimized

designs, a Pareto front is sought by optimizing the com-

pliant inverter for several stress limits of decreasing

value. In all examples a mesh of 150x75 is applied.

The Pareto plots in Fig. 8 (and later in Fig. 13)

show two sets of results. “Optimized design” denotes

the results as obtained in the optimization process and

“thresholded design” denotes their subsequent solid and

void interpretations. Here, intermediate densities are
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(a) 150 × 75

(b) 200 × 100

(c) 300 × 150

Fig. 6 Close-ups of the hinge region of a selection of results
presented in Fig. 5. Stress constrained left and no constraint
right.

mapped to 0 or 1 using a sharp threshold value of 0.5.

Fig. 7 shows an example of an optimized inverter be-

fore and after thresholding. One can notice from the

Pareto plots that the 0-1 interpretation causes a small

performance decrease in all examples. This is partly

due to the actual density change that causes changed

stiffness and hence changed response but also due to

the stress evaluation itself that dependents on density.

The discrepancies in compliance stay below a few per-

cent and below 10-20% for the stress evaluation with

a decreasing tendency with mesh refinement. We ob-

serve that the proper choice of penalization parameters

k and q alone is not enough to ensure completely 0-1 de-

signs because the optimizer always will take advantage

of the possibility of reducing stress by slightly lowering

the density. However, the error observed after thresh-

olding are small enough to support the conclusions that

we draw in this paper.

Fig. 8 shows the Pareto front obtained from opti-

mizing the compliant inverter for several stress limits.

The x-axis is the inverse of the absolute displacement

at the output port, 1
|uout| , and the y-axis is the stress

(relaxed p-norm (i.e. σ̃PN ) for the grey scale design and

σmax for the thresholded design).

(a) f = −4.235, σ∗ = 14, σmax = 13.99

(b) f = −4.225, σmax = 15.12

Fig. 7 Optimized topology (a) and the respective thresh-
olded design (b) for the inverter mechanism. All the values
for f and σ are in µm and GPa, respectively.
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0.245

Fig. 8 Pareto curve for the compliant inverter corresponding
to the results in Fig. 9.

The obtained points show a clear trade-off between

the stress level and the performance of the inverter.

However, it is very interesting to note, that quite a low

stress limit can be imposed before detrimental effects

are observed on the mechanism performance. For ex-

ample, it is possible to lower the stress level from 40

to 15 and only loosing slightly more than 1% in output

displacement. As will be discussed in more detail in the

following, the mechanisms change from lumped compli-
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(a) f = −4.331, σ∗ = 40 (b) f = −4.300, σ∗ = 30 (c) f = −4.305, σ∗ = 22 (d) f = −4.305, σ∗ = 21

(e) f = −4.293, σ∗ = 20 (f) f = −4.287, σ∗ = 19 (g) f = −4.283, σ∗ = 18 (h) f = −4.286, σ∗ = 17

(i) f = −4.275, σ∗ = 16 (j) f = −4.267, σ∗ = 15 (k) f = −4.235, σ∗ = 14 (l) f = −4.227, σ∗ = 13

(m) f = −4.217, σ∗ = 12 (n) f = −4.201, σ∗ = 11 (o) f = −4.159, σ∗ = 10 (p) f = −4.100, σ∗ = 9

Fig. 9 Optimized topologies for the compliant inverter problem with several stress constraint limits. All the values for f and
σ∗ are in µm and GPa, respectively.

ant to distributed compliant as the stress constraint is

lowered.

This is further emphasized by Fig. 9, which shows

the same optimized topologies for various levels of the

stress limit. The examples vary from a high stress limit,

σ∗ = 40 (Fig. 9(a)), where the stress constraint is not

active, to a very low value, σ∗ = 9 (Fig. 9(p)), where it

can be seen that the topology is significantly different

and exhibits no local hinges. It is observed that as the

stress limit is decreased, the length of the compliant

members is continually increased in order to distribute

the deformation and lower the stresses to comply with

the constraint. At the same time the compliant mem-

bers become thicker in order to accommodate the in-

creasing demand on longitudinal stiffness as the mem-

bers become longer. We note here that for all examples

the volume constraint fv is active.

Fig. 10 shows the stress distributions for the opti-

mized topologies from Fig. 9. For this case the scales

are different for each subfigure but as earlier, black de-

notes high stress and white low stress. It can be seen

that as the stress limit is lowered, the optimized designs

are more homogeneously stressed and it is clear to see

that mechanisms transit from being lumped to being

distributed.

The ultimate strength for silicon is not well-defined.

Silicon is a brittle material at room temperature and

the fracture strength depends on many factors such

as length-scale, surface roughness, environment, geom-

etry, crystal-orientation, and so forth. Cook (2006) lists

many different values mostly within the range of 1-18

GPa which corresponds to the interval of stress limits

used in the examples here.

We note that Pareto plot in Fig. 8 is not very smooth

and that there are points which are clearly non-optimal.

Clearly, one could produce better and smoother Pareto

curves by using neighbor points as starting guesses and

improved continuation strategies. Here we chose sim-

ply to plot the raw points resulting from individual

standardized runs showing that the designs problems
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(a) f = −4.331, σ∗ = 40 (b) f = −4.300, σ∗ = 30 (c) f = −4.305, σ∗ = 22 (d) f = −4.305, σ∗ = 21

(e) f = −4.293, σ∗ = 20 (f) f = −4.287, σ∗ = 19 (g) f = −4.283, σ∗ = 18 (h) f = −4.286, σ∗ = 17

(i) f = −4.275, σ∗ = 16 (j) f = −4.267, σ∗ = 15 (k) f = −4.235, σ∗ = 14 (l) f = −4.227, σ∗ = 13

(m) f = −4.217, σ∗ = 12 (n) f = −4.201, σ∗ = 11 (o) f = −4.159, σ∗ = 10 (p) f = −4.100, σ∗ = 9

Fig. 10 Stress distributions for the optimized topologies shown in Fig. 9 for the compliant inverter problem. All the values
for f and σ∗ are in µm and GPa, respectively.

are highly complex and that slight change of optimiza-

tion parameters may convergence to different local min-

ima. Nevertheless, the resulting Pareto curves clearly

prove the tendencies and conclusions discussed above

and later for the gripper example.

3.1.3 Effect of output stiffness

A mechanism designed to work with a high output

stiffness is expected to deliver a small output displace-

ment but large force and vice versa. This relationship

is expected for both compliant and rigid-body mech-

anisms. To be able to deliver a large force for a high

output spring stiffness, the optimized mechanism will

seldomly exhibit hinge regions. Therefore, specifying

a large output force or small input displacement in-

directly removes lumped hinges but on the other hand

results in mechanism with limited output kinematics.

Hence many of the optimization formulations includ-

ing global stiffness measures seen in the literature in-

deed avoid the lumped hinge issue, but at the same

time the resulting mechanisms have very limited out-

put motions. The inclusion of a stress constraint does

not directly imply high global stiffness and hence stress

constrained mechanisms are expected to deliver larger

output displacements.

Fig. 11 shows results for different output springs,

kout = 2.5×
{

10−2, 10−3, 10−4, 10−5
}

, both without and

with a stress limit of σ∗ = 14. It can be seen that the

stress-constrained formulation ensures that one-node-

connected hinges do not form for any of the output

stiffnesses. It is interesting to note that the thickness

and length of the compliant members vary quite sig-

nificantly when the output spring stiffness is varied; an

increase in the output spring stiffness leads to an in-

creased thickness and a decreased length of the compli-

ant members. It is also interesting to note that the dif-

ference in the optimized material distributions, between

the stress-constrained and the unconstrained cases in-

creases as the output spring stiffness is decreased. For

low output spring stiffnesses the requirement to low

stiffness (e.g. one-node-connected) hinges increases. If
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(a) f = −0.197,
kout = 2.5 × 10−2,
Mnd = 0.756%

(b) f = −0.219,
kout = 2.5 × 10−2,
σmax = 37.6,
Mnd = 0.505%

(c) f = −1.132,
kout = 2.5 × 10−3,
Mnd = 0.763%

(d) f = −1.204,
kout = 2.5 × 10−3,
σmax = 30.3,
Mnd = 0.587%

(e) f = −4.235,
kout = 2.5 × 10−4,
Mnd = 0.793%

(f) f = −4.321,
kout = 2.5 × 10−4,
σmax = 25.4,
Mnd = 0.520%

(g) f = −13.344,
kout = 2.5 × 10−5,
Mnd = 0.988%

(h) f = −13.800,
kout = 2.5 × 10−5,
σmax = 61.5,
Mnd = 0.520%

Fig. 11 Inverter compliant mechanism with and without
stress constraint for several workpiece output stiffnesses. In
examples where stress is active (left side), σ∗ = 14.

this is not possible due to the stress constraint, the

only alternative is to make very long and slender hinges

that minimize the bending resistance. If there is still

a longitudinal force requirement, the compliant mem-

ber thickness will increase in turn requiring an even

longer compliant member (or a fully distributed com-

pliant mechanism) to obtain the required low bending

stiffness.

As commonly observed for the unconstrained case,

the angle of the right-most member changes to accom-

modate the different load transfer conditions (Sigmund,

2001) for varying output stiffness. In this regard, it is

interesting to see that the optimized angles are very

similar for the stress-constrained and unconstrained de-

signs. Obviously these output angles will change when

the mechanisms will be analyzed and optimized based

on finite deformation theory in future works.

3.2 Compliant gripper

The compliant gripper benchmark problem is used as

the second example. It has a similar domain as the in-

verter, with a small difference in the region where the

workpiece is defined to be. In order to guarantee room

for the workpiece, a large void region is specified and a

solid region is defined under the void region, to ensure

the presence of jaws, c.f. Fig. 12.

Fig. 12 Sketch of the problem setup for the compliant grip-
per.

As for the compliant inverter, the domain represents

only half of the mechanism. The dark gray square in the

upper left corner follows the same idea as in the inverter

case. The solid region defining the jaws is also excluded

from the stress constraint.

The mechanical properties of silicon are the same as

for the previous example. The force applied at the in-

put port is fin = 1000 [µN ], the input spring stiffness

is kin = 5 × 10−4 [ Nµm ] and the output spring stiff-

ness is kout = 1.0 × 10−3 [ Nµm ]. The domain length is

L = 150 [µm] and the thickness is 7 [µm]. The allowed

volume fraction is V ∗ = 0.25 and the stress limit, σ∗,

varies as specified. Other parameters are as previously

specified in section 3.1.

Fig. 13 shows the Pareto curve obtained for the com-

pliant gripper problem and again a clear trade-off can

be observed between the stress levels and the mecha-

nism performance. As for the compliant inverter, it is

seen that a quite significant limit on the stress can be

imposed without leading to a significant decrease in the

output displacement.
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(a) f = 0.586, σ∗ = 10,
fv = 0.25

(b) f = 0.582, σ∗ = 9, fv =
0.25

(c) f = 0.575, σ∗ = 8, fv = 0.25(d) f = 0.572, σ∗ = 7,
fv = 0.25

(e) f = 0.568, σ∗ = 6, fv =
0.25

(f) f = 0.566, σ∗ = 5, fv = 0.25(g) f = 0.561, σ∗ = 4.8,
fv = 0.25

(h) f = 0.559, σ∗ = 4.6,
fv = 0.25

(i) f = 0.558, σ∗ = 4.4,
fv = 0.25

(j) f = 0.548, σ∗ = 4.2,
fv = 0.25

(k) f = 0.532, σ∗ = 4,
fv = 0.25

(l) f = 0.513, σ∗ = 3.8,
fv = 0.25

(m) f = 0.499, σ∗ = 3.6,
fv = 0.25

(n) f = 0.442, σ∗ = 3.4,
fv = 0.23

(o) f = 0.431, σ∗ = 3.2,
fv = 0.20

(p) f = 0.420, σ∗ = 3,
fv = 0.21

Fig. 14 Optimized topologies for the compliant gripper problem with various stress constraint limits. All the values for f and
σ∗ are in µm and GPa, respectively.
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Fig. 13 Pareto curve for the compliant gripper problem (the
arrows indicate designs where the volume constraint is not
active).

Fig. 14 shows several optimized topologies for vari-

ous levels of the stress limit. The examples vary from a

stress limit of σ∗ = 10 (Fig. 14(a)) to a very low value,

σ∗ = 3 (Fig. 14(p)). As for the compliant inverter prob-

lem, it is observed that as the stress limit is decreased,

the presence of local hinges is diminished. However, it

appears that the stress limit must be quite a bit lower in

order to push the optimized design towards distributed

hinges. It is important to note that for very low stress

limits, the volume constraint fv is not active for the

final designs.

Fig. 15 shows the stress distributions for the op-

timized topologies presented in Fig. 14. It can be seen

that when the stress limit is very low, the optimized de-

signs hardly exhibit local stress concentrations. Instead

they become truly distributed compliant mechanisms

with a relatively homogeneous stress distribution. In
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(a) f = 0.586, σ∗ = 10,
fv = 0.25

(b) f = 0.582, σ∗ = 9,
fv = 0.25

(c) f = 0.576, σ∗ = 8,
fv = 0.25

(d) f = 0.572, σ∗ = 7,
fv = 0.25

(e) f = 0.568, σ∗ = 6,
fv = 0.25

(f) f = 0.566, σ∗ = 5,
fv = 0.25

(g) f = 0.561, σ∗ = 4.8,
fv = 0.25

(h) f = 0.559, σ∗ = 4.6,
fv = 0.25

(i) f = 0.558, σ∗ = 4.4,
fv = 0.25

(j) f = 0.548, σ∗ = 4.2,
fv = 0.25

(k) f = 0.532, σ∗ = 4,
fv = 0.25

(l) f = 0.513, σ∗ = 3.8,
fv = 0.25

(m) f = 0.499, σ∗ = 3.6,
fv = 0.25

(n) f = 0.442, σ∗ = 3.4,
fv = 0.23

(o) f = 0.431, σ∗ = 3.2,
fv = 0.20

(p) f = 0.420, σ∗ = 3,
fv = 0.21

Fig. 15 Stress distributions for the optimized topologies shown in Fig. 14 for the compliant gripper problem. All the values
for f and σ∗ are in µm and GPa, respectively.

the limit of very small stress limit, it is noted that the

volume constraint becomes inactive. In order to satisfy

the stress constraint, the resulting mechanism will have

very thin and flexible members and can not make use

of the superfluous material.

Fig. 16 shows a sample of the thresholded design

obtained for σ∗ = 4.4. All conclusions drawn for the

inverter example are also valid here. In this example an

increase of around 1.1% is observed for the maximum

stress following thresholding.

4 Discussion and conclusions

In this paper we have added a stress constraint to the

classical compliant mechanism design problem. The stress

constraint is shown to have a strong influence on the re-

sulting designs. The usual issue of one-node-connected

and highly stressed hinges is eliminated. The lumped

hinges are replaced with compliant members. As the

stress level is lowered or the output stiffness is reduced,

the optimized compliant mechanisms go from being lumped

to being distributed. Hence, we conclude that there

is not a clear answer to the long standing question:

are optimal compliant mechanisms based on lumped or

distributed compliance? The answer depends on mate-

rial properties, stress constraint, input and output stiff-

nesses as well as design domain. However, it appears

that the proposed algorithm can be used to answer the

question for given design conditions.

Another important question answered in the paper

is if the imposing of a stress constraint would yield a
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(a) f = 0.558, σ∗ = 4.40, σmax = 4.39

(b) f = 0.549, σmax = 4.45

Fig. 16 Optimized topology (a) and the respective thresh-
olded (b) design for the gripper. All the values for f and σ
are in µm and GPa, respectively.

mesh-independent solution? The obtained results indi-

cate that this is not the case. The stress constraint must

still be combined with a minimum member size con-

straint. However, it should be noted that the analysis

is based on a fixed pixel-like grid, which obviously can-

not predict the real stress level very accurately. Hence,

it is possible, but in our eyes unlikely, that future work

based on adaptive meshing and more advance boundary

tracking schemes may change the above conclusion.

Finally, we note that for decreasing stress limit, the

volume constraint tends to become inactive, indicating

that stress level and not transfer of force from input to

output is the governing design factor. Hence, for very

low stress levels, the resulting mechanism will be fully

distributed compliant and may not be able to transfer

a large force from input to output. However, it may still

be able to provide large output motions for unloaded

output ports.

As stated in the introduction, the purpose of the

present work was to study the influence of stress con-

straints on compliant mechanism design problems. Sev-

eral conclusions have been drawn based on the study

and much insight has been achieved. However, the op-

timized mechanisms obtained are not relevant for prac-

tical applications since the design process was based

on linear, small displacement theory. Hence the obvi-

ous and most important extension of the work is to

include finite deformation theory. Further ideas include

adaptive and shape-conforming meshing, extensions to

three-dimensional problems, inclusion of buckling con-

straints and several others. Also, as discussed at sev-

eral instances, imposing a stress constraint alone is not

sufficient to ensure mesh-independency and hence geo-

metrical means, like robust topology optimization for-

mulations (Sigmund, 2009; Wang et al., 2011), must be

added as well.
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