# Structural Determination of Organic Compounds

How do you know your reaction worked?

How do you know your final product is what you wanted?

- Is the molecular formula of the product correct?
- Are the atoms connected correctly to give you the desired structure?
- Can you identify all the functional groups of your product?

#### How can you answer these questions?

#### Mass Spectrometry (Chapter 14)

- Provides the molecular mass of a compound
- The compounds are charged (positive or negative ion) and separated based on the m/z (mass/charge) ratio

#### Organic Spectroscopy: Interaction of Light/Energy with matter

#### UV-vis Spectroscopy

Presence or not of a chromophore (double bond containing compound)

#### IR Spectroscopy

Presence or not of different functional groups

#### • NMR Spectroscopy

- Presence or not of different functional groups
- Information on C-C and C-H bonding

Mass Spectrometry (Chapter 14)

### **Understanding Mass Spectra (Chapter 14)**



- The tallest peak in the mass spectrum is called the base peak.
- For methane the base peak is also the M peak (molecular ion), although this is usually not the case.
- Though most C atoms have an atomic mass of 12, 1.1% have a mass of 13.
- Thus,  ${}^{13}CH_4$  is responsible for the peak at m/z = 17. This is called the M + 1 peak.



#### **Mass Spectrometry**

- Provides the molecular mass of a compound
- The compounds are charged (positive or negative ion) and separated based on the m/z (mass/charge) ratio

#### Organic Spectroscopy: Interaction of Light/Energy with matter

#### UV-vis Spectroscopy

Presence or not of a chromophore (double bond containing compound)

IR Spectroscopy (Chapter 12)

Presence or not of different functional groups

- NMR Spectroscopy (Chapter 13)
  - Presence or not of different functional groups
  - Information on C-C and C-H bonding

#### **Electromagnetic Spectrum**



#### **Electromagnetic Spectrum**



### **IR Spectroscopy (Chapter 12)**

 Absorption of IR light causes changes in the vibrational motions of a molecule.



### **Absorption of IR Light**

• The different vibrational modes available to a molecule include stretching and bending modes.



 The vibrational modes of a molecule are quantized, so they occur only at specific frequencies which correspond to the frequency of IR light.

### **Bond Stretching and Bending**

 When the frequency of IR light matches the frequency of a particular vibrational mode, the IR light is absorbed, causing the amplitude of the particular bond stretch or bond bend to increase.



- Different kinds of bonds vibrate at different frequencies, so they absorb different frequencies of IR light.
- IR spectroscopy distinguishes between the different kinds of bonds in a molecule, so it is possible to determine the functional groups present.

### **Characteristics of an IR Spectrum**

- In an IR spectrometer, light passes through a sample.
- Frequencies that match the vibrational frequencies are absorbed, and the remaining light is transmitted to a detector.
- An IR spectrum is a plot of the amount of transmitted light versus its wavenumber.
- Most bonds in organic molecules absorb in the region of 4000 cm<sup>-1</sup> to 400 cm<sup>-1</sup>.



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

### **Regions of an IR Spectrum**

The IR spectrum is divided into two regions: the functional group region (at ≥ 1500 cm<sup>-1</sup>), and the fingerprint region (at < 1500 cm<sup>-1</sup>).

Figure 13.9



- **A** and **B** show peaks in the same regions for their C=O group and  $sp^3$  hybridized C-H bonds.
- A and B are different compounds, so their fingerprint regions are quite different.

### Four Regions of an IR Spectrum

• Bonds absorb in four predictable regions of an IR spectrum.



| Bond type                         | Approximate $\tilde{v}$ (cm <sup>-1</sup> ) | Intensity     |
|-----------------------------------|---------------------------------------------|---------------|
| 0-Н                               | 3600-3200                                   | strong, broad |
| N-H                               | 3500-3200                                   | medium        |
| C-H                               | ~3000                                       |               |
| • C <sub>sp</sub> <sup>3</sup> -H | 3000–2850                                   | strong        |
| • C <sub>sp<sup>2</sup></sub> -H  | 3150-3000                                   | medium        |
| • C <sub>sp</sub> -H              | 3300                                        | medium        |
| C≡C                               | 2250                                        | medium        |
| C≡N                               | 2250                                        | medium        |
| C=O                               | 1800–1650 (often ~1700)                     | strong        |
| C=C                               | 1650                                        | medium        |
|                                   | 1600, 1500                                  | medium        |

### **IR Spectrum of 2-Butanol**

- The OH group of the alcohol shows a strong absorption at 3600-3200 cm<sup>-1</sup>.
- The peak at ~ 3000 cm<sup>-1</sup> is due to  $sp^3$  hybridized C–H bonds.



### **IR Spectrum of 2-Butanone**

- The C=O group in the ketone shows a strong absorption at ~ 1700 cm<sup>-1</sup>.
- The peak at ~ 3000 cm<sup>-1</sup> is due to  $sp^3$  hybridized C–H bonds.



### **IR Spectrum of Octylamine**

 The N–H bonds in the amine give rise to two weak absorptions at 3300 and 3400 cm<sup>-1</sup>.



### **IR Spectrum of Propanamide**

 The amide exhibits absorptions above 1500 cm<sup>-1</sup> for both its N-H and C=O groups: N-H (two peaks) at 3200 and 3400 cm<sup>-1</sup>; C=O at 1660 cm<sup>-1</sup>.



### **IR Spectrum of Octanenitrile**

 The C=N of the nitrile absorbs in the triple bond region at ~ 2250 cm<sup>-1</sup>.

![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_0.jpeg)

Table of IR Absorptions

• OH

| Eunctional Group            | Characteristic Absorption(s) (cm <sup>-1</sup> ) |  |  |
|-----------------------------|--------------------------------------------------|--|--|
| Alled C H Strateb           | 0050_0050 (m et e)                               |  |  |
| Aikyi C-H Stretch           | 2950 - 2850 (m or s)                             |  |  |
| Alkenyl C-H Stretch         | 3100 - 3010 (m)                                  |  |  |
| Alkenyl C=C Stretch         | 1680 - 1620 (v)                                  |  |  |
| Alkynyl C-H Stretch         | ~3300 (s)                                        |  |  |
| Alkynyl C=C Stretch         | 2260 - 2100 (v)                                  |  |  |
| Aromatic C-H Stretch        | ~3030 (v)                                        |  |  |
| Aromatic C-H Bending        | 860 - 680 (s)                                    |  |  |
| Aromatic C=C Bending        | 1700 - 1500 (m,m)                                |  |  |
| Alcohol/Phenol O-H Stretch  | 3550 - 3200 (broad, s                            |  |  |
| Carboxylic Acid O-H Stretch | 3000 - 2500 (broad, v                            |  |  |
| Amine N-H Stretch           | 3500 - 3300 (m)                                  |  |  |
| Nitrile C=N Stretch         | 2260 - 2220 (m)                                  |  |  |
| Aldehyde C=O Stretch        | 1740 - 1690 (s)                                  |  |  |
| Ketone C=O Stretch          | 1750 - 1680 (s)                                  |  |  |
| Ester C=O Stretch           | 1750 - 1735 (s)                                  |  |  |
| Carboxylic Acid C=O Stretch | 1780 - 1710 (s)                                  |  |  |
| Amide C=O Stretch           | 1690 - 1630 (s)                                  |  |  |
| Amide N-H Stretch           | 3700 - 3500 (m)                                  |  |  |

![](_page_21_Figure_0.jpeg)

Table of IR Absorptions

| Functional Group             | Characteristic Absorption(s) (cm <sup>-1</sup> ) |  |  |
|------------------------------|--------------------------------------------------|--|--|
| Alkyl C-H Stretch            | 2950 - 2850 (m or s)                             |  |  |
| Alkenyl C-H Stretch          | 3100 - 3010 (m)                                  |  |  |
| Alkenyl C=C Stretch          | 1680 - 1620 (v)                                  |  |  |
| Alkynyl C-H Stretch          | ~3300 (s)                                        |  |  |
| Alkynyl C <u>=</u> C Stretch | 2260 - 2100 (v)                                  |  |  |
| Aromatic C-H Stretch         | ~3030 (v)                                        |  |  |
| Aromatic C-H Bending         | 860 - 680 (s)                                    |  |  |
| Aromatic C=C Bending         | 1700 - 1500 (m,m)                                |  |  |
| Alcohol/Phenol O-H Stretch   | 3550 - 3200 (broad, s                            |  |  |
| Carboxylic Acid O-H Stretch  | 3000 - 2500 (broad, v                            |  |  |
| Amine N-H Stretch            | 3500 - 3300 (m)                                  |  |  |
| Nitrile C=N Stretch          | 2260 - 2220 (m)                                  |  |  |
| Aldehyde C=O Stretch         | 1740 - 1690 (s)                                  |  |  |
| Ketone C=O Stretch           | 1750 - 1680 (s)                                  |  |  |
| Ester C=O Stretch            | 1750 - 1735 (s)                                  |  |  |
| Carboxylic Acid C=O Stretch  | 1780 - 1710 (s)                                  |  |  |
| Amide C=O Stretch            | 1690 - 1630 (s)                                  |  |  |
| Amide N-H Stretch            | 3700 - 3500 (m)                                  |  |  |

• C=O

#### NMR Spectroscopy (Chapter 13)

### **Nuclear Magnetic Resonance Spectroscopy**

- Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules.
- Two common types of NMR spectroscopy are used to characterize organic structure:
  - <sup>1</sup>H NMR is used to determine the type and number of H atoms in a molecule; and
  - <sup>13</sup>C NMR is used to determine the type of carbon atoms in a molecule.
- The source of energy in NMR is radio waves which have long wavelengths, and thus low energy and frequency.
- When low-energy radio waves interact with a molecule, they can change the nuclear spins of some elements, including <sup>1</sup>H and <sup>13</sup>C.

### NMR (Nuclear Magnetic Resonance) Spectroscopy

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

![](_page_24_Figure_3.jpeg)

- NMR spectroscopy is applied to small and medium sized (proteins) organic molecules.
- Most commonly used: <sup>1</sup>H NMR All different hydrogens in a compound have a unique interaction with the applied magnetic field resulting in different NMR signals.
- What is the origin of the NMR signal?

#### Same basic technique as:

![](_page_25_Picture_4.jpeg)

#### MRI (Magnetic Resonance Image)

- An MRI is NMR-spectroscopy applied to whole body parts, not individual molecules (Biological NMR).
  - Human body: 75% water

The <sup>1</sup>H atoms in each water molecule interact differently with the applied magnetic field based on their different environments, resulting in different signals...

## **Magnetic Fields in NMR**

- When a charged particle such as a proton spins on its axis, it creates a magnetic field, causing the nucleus to act like a tiny bar magnet.
- Normally, these tiny bar magnets are randomly oriented in space.
- However, in the presence of a magnetic field (B<sub>0</sub>), they are oriented with or against this applied field.
- More nuclei are oriented with the applied field because this arrangement is lower in energy.
- The energy difference between these two states is very small (<0.1 cal).</li>

![](_page_26_Figure_6.jpeg)

#### <sup>1</sup>H NMR Spectra

• An NMR spectrum is a plot of the intensity of a peak against its chemical shift, measured in parts per million (ppm).

![](_page_27_Figure_2.jpeg)

#### • 4 general rules for <sup>1</sup>H NMR spectra

1. Only stereochemically different <sup>1</sup>Hs give different signals.

CH<sub>3</sub>CH<sub>2</sub>-Cl

Different H

Different NMR signal

Same H, symmetric  $CH_3CH_2CH_2CH_3$ Same H, symmetric Different H Different NMR signal

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)

2. Area covered under the signal is proportional to the number of <sup>1</sup>Hs causing the signal and is usually represented by integrals.

![](_page_29_Figure_1.jpeg)

- 3. The **Chemical Shift** (where on spectrum each peak appears) depends on the "chemical environment" of each proton. (see above picture)
  - a. <sup>1</sup>Hs close to electronegative atoms (O, N, X (halogen)) or aromatics shift to the left (deshielded, downfield shifted)
  - b. The larger the number of <sup>1</sup>Hs on the same carbon the more to the right (shielded, upfield shifted) the NMR signal is.

![](_page_30_Figure_3.jpeg)

#### Sample <sup>1</sup>H NMR spectrum CH<sub>3</sub>OC(CH<sub>3</sub>)<sub>3</sub>

![](_page_31_Figure_1.jpeg)

#### **Regions in the 1H NMR Spectrum**

![](_page_32_Figure_1.jpeg)

- Shielded protons absorb at lower chemical shift (to the right).
- Deshielded protons absorb at higher chemical shift (to the left).

4. The multiplicity of the NMR peak depends on the number of <sup>1</sup>Hs on neighboring carbons, NOT the same carbon. <sup>1</sup>Hs attached to adjacent carbons split each other into:
sextet
s (singlet)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

a. Exchangeable, acidic <sup>1</sup>H (-OH, NH<sub>2</sub>) DO NOT split <sup>1</sup>Hs on adjacent carbons and show on the spectrum as broad singlets.

![](_page_35_Figure_1.jpeg)

b. Only **non identical** <sup>1</sup>Hs split each other.

The shape/relative intensity of the peaks follows the algorithm of **Pascal's Triangle:** Pascal's Triangle

![](_page_36_Figure_2.jpeg)

| Type of proton                                                                                                                             | Approximate chemical shift (ppm) | Type of proton                | Approximate chemical shift (ppm) |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|----------------------------------|--|
| (CH <sub>3</sub> ) <sub>4</sub> Si                                                                                                         | 0                                | ∕∕−н                          | 6.5-8                            |  |
| -CH <sub>3</sub>                                                                                                                           | 0.9                              | Q                             |                                  |  |
| $-CH_2-$                                                                                                                                   | 1.3                              | _с_ <mark>н</mark>            | 9.0–10                           |  |
| –C <mark>H</mark> –                                                                                                                        | 1.4                              | I-C-H                         | 2.5-4                            |  |
| $-C = C - CH_3$                                                                                                                            | 1.7                              | Br—C—H                        | 2.5-4                            |  |
| −C−C <mark>H</mark> 3                                                                                                                      | 2.1                              | сі—с́— <mark>н</mark>         | 3-4                              |  |
|                                                                                                                                            | 2.3                              | г—С <mark>Н</mark>            | 4-4.5                            |  |
| −C≡C− <mark>H</mark>                                                                                                                       | 2.4                              | RN <mark>H</mark> 2           | variable, 1.5-4                  |  |
| R—O—C <mark>H</mark> 3                                                                                                                     | 3.3                              | RO <mark>H</mark>             | variable, 2-5                    |  |
| $R-C=CH_2$                                                                                                                                 | 4.7                              | ArO <mark>H</mark>            | variable, 4–7                    |  |
| $\begin{array}{c} \mathbf{R} \\ \mathbf{R} \\ \mathbf{C} = \mathbf{C} \\ \mathbf{H} \\ \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \end{array}$ | 5.3                              | O<br>∥<br>−C−O <mark>H</mark> | variable, 10–12                  |  |
| <sup>a</sup> The values are approximate because they are affected by neighboring substituents.                                             |                                  |                               |                                  |  |

### <sup>13</sup>C NMR Spectrum Example

- <sup>13</sup>C Spectra are easier to analyze than <sup>1</sup>H spectra because the signals are not split.
- Each type of carbon atom appears as a single peak.

![](_page_38_Figure_3.jpeg)

39

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display