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Structural Dynamics of Linear Elastic 
Multiple-Degrees-of-Freedom (MDOF) Systems

u1

u2

u3

This topic covers the analysis of multiple-degrees-of-freedom (MDOF) 
elastic systems.  The basic purpose of this series of slides is to provide 
background on the development of the code-based equivalent lateral force 
(ELF) procedure and modal superposition analysis.  The topic is limited to 
two-dimensional systems.
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Structural Dynamics of Elastic
MDOF Systems

• Equations of motion for MDOF systems
• Uncoupling of equations through use of natural 

mode shapes
• Solution of uncoupled equations
• Recombination of computed response
• Modal response history analysis
• Modal response spectrum analysis
• Equivalent lateral force procedure

Emphasis is placed on simple elastic systems.  More complex three-
dimensional systems and nonlinear analysis are advanced topics covered 
under Topic 15-5, Advanced Analysis.
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Symbol Styles Used in this Topic

M
U Matrix or vector (column matrix)

m
u

Element of matrix or vector or set
(often shown with subscripts)

W
g Scalars

The notation indicated on the slide is used throughout.
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Relevance to ASCE 7-05

ASCE 7-05 provides guidance for three specific 
analysis procedures:

• Equivalent lateral force (ELF) analysis
• Modal superposition analysis (MSA)
• Response history analysis (RHA)

Cs

Ts 3.5Ts T

ELF not allowedELF usually allowed

See ASCE 7-05
Table 12.6-1

Table 12.6-1 of ASCE 7-05 provides the permitted analytical procedures for 
systems in different Seismic Design Categories (SDCs).   Note that ASCE 7-
05 is directly based on the 2003 NEHRP Recommended Provisions for 
Seismic Regulations for New Buildings and Other Structures, FEMA 450, 
which is available at no charge from the FEMA Publications Center, 1-800-
480-2520 (order by FEMA publication number).
Use of the ELF procedure is allowed in the vast majority of cases.  MSA or 
RHA is required only for longer period systems or for shorter period systems 
with certain configuration irregularities (e.g., torsional or soft/weak story 
irregularities).
Note that response history analysis is never specifically required. 
More details will be provided in the topic on seismic load analysis.
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Majority of mass
is in floors

Typical nodal 
DOF

Motion is
predominantly
lateral

Planar Frame with 36 Degrees of Freedom

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

This slide shows that the number of degrees of freedom needed for a 
dynamic analysis may be less than the number required for static
analysis.  The principal assumptions that allow this are:

1. Vertical and rotational masses not required,
2. Horizontal mass may be lumped into the floors, and
3. Diaphragms (floors) are axially rigid.
However, all information must be retained in the reduced dynamic model.
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Planar Frame with 36 Static Degrees of Freedom
But with Only THREE Dynamic DOF
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The 36 static degrees of freedom may be reduced to only 3 lateral degrees 
of freedom for the dynamic analysis.  This reduction is valid only if the 
dynamic forces are lateral forces.  The three dynamic degrees of freedom 
are u1, u2 and u3, the lateral story displacements.
Note that these are the relative displacements and, as such, do not include 
the ground displacements.
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d1,1

d2,1

d3,1

f1 = 1 kip

Development of Flexibility Matrix

d1,1

d2,1

d3,1

An important concept of analysis of MDOF systems is the change of basis 
from “normal” Cartesian coordinates to modal coordinates.  One way to 
explain the concept is to show that a flexibility matrix, as generated on this 
and the next two slides, is simply a column-wise collection of displaced 
shapes.  The lateral deflection under any loading may be represented as a 
linear combination of the columns in the flexibility matrix.  This is analogous 
to the mode shape matrix explained later.  
The first column of the flexibility matrix is generated here.  Note that a unit 
load has been used. It is also important to note that ALL 36 DOF ARE 
REQUIRED in the analysis from which the 3 displacements are obtained. 
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Development of Flexibility Matrix
(continued)

d1,2

d2,2

d3,2

f2=1 kip
d1,1

d2,1

d3,1

d1,2

d2,2

d3,2

The unit load is applied at DOF 2 and the second column of the flexibility 
matrix is generated. 
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Development of Flexibility Matrix
(continued)

d1,3

d2,3

d3,3

f3 = 1 kip

d1,1

d2,1

d3,1

d1,2

d2,2

d3,2

d1,3

d2,3

d3,3

The unit load is applied at DOF 3 and the third column of the flexibility matrix 
is generated. 
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D F = U K U = F-1K = D

Concept of Linear Combination of Shapes 
(Flexibility)

For any general loading, F, the displaced shape U is a linear combination of 
the terms in the columns of the flexibility matrix.  Hence, columns of the 
flexibility matrix are a basis for the mathematical representation of the 
displaced shape.
Note the relationship between flexibility and stiffness.  Also note that 
flexibility as a basis for defining elastic properties is rarely used in modern 
linear structural analysis. 
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Static Condensation

Massless DOF

DOF with mass

2

1
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Static condensation is a mathematical procedure wherein all unloaded 
degrees of freedom are removed from the system of equilibrium equations.  
The resulting stiffness matrix (see next slide), although smaller than the 
original, retains all of the stiffness characteristics of the original system.
In the system shown earlier, the full stiffness matrix would be 36 by 36.  Only 
3 of the 36 DOF have mass (m = 3) and 33 are massless (n = 33). If the full 
36 by 36 matrix were available (and properly partitioned), the 3 by 3 matrix 
could be determined through static condensation.
Note that there are other (more direct) ways to statically condense the non-
dynamic degrees of freedom.  Gaussian elimination is the most common 
approach.
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Condensed stiffness matrix

Static Condensation
(continued)

2

1

Rearrange

Plug into

Simplify
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Derivation of static condensation (continued).  For the current example, the 
inverse of K would be identical to the flexibility matrix.
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Idealized Structural Property Matrices

Note: Damping to be shown later

In the next several slides, a simple three-story frame will be utilized.  The 
representation of the columns as very flexible with respect to the girders is a 
gross (and not very accurate) approximation.  In general, K would be 
developed from a static condensation of a full stiffness matrix.
In this simple case, K may be determined by imposing a unit displacement at 
each DOF while restraining the remaining DOF.  The forces required to hold 
the structure in the deformed position are the columns of the stiffness matrix. 
The mass matrix is obtained by imposing a unit acceleration at each DOF 
while restraining the other DOF.  The columns of the mass matrix are the 
(inertial) forces required to impose the unit acceleration. There are no inertial 
forces at the restrained DOF because they do not move. Hence, the lumped 
(diagonal) mass matrix is completely accurate for the structure shown.
The terminology used for load, F(t), and displacement, U(t), indicate that 
these quantities vary with time.
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Coupled Equations of Motion 
for Undamped Forced Vibration

DOF 1

DOF 2

DOF 3

This slide shows the MDOF equations of motion for an undamped system 
subjected to an independent time varying load at DOF 1, 2, and 3.  The 
purpose of this slide is to illustrate the advantages of transforming from u1, 
u2, u3 to modal coordinates.
When the matrix multiplication is carried out, note that each equation 
contains terms for displacements at two or more stories. Hence, these 
equations are “coupled” and cannot be solved independently.
There exist methods for solving the coupled  equations of motion but, as will 
be shown later, this is inefficient in most cases.  Instead, the equations will 
be uncoupled by changing coordinates.
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Developing a Way To Solve
the Equations of Motion

• This will be done by a transformation of coordinates
from normal coordinates (displacements at the nodes)
To modal coordinates (amplitudes of the natural
Mode shapes).

• Because of the orthogonality property of the natural mode
shapes, the equations of motion become uncoupled,
allowing them to be solved as SDOF equations.

• After solving, we can transform back to the normal
coordinates.

Our solution approach is to impose a change of coordinates from the normal 
coordinates to the modal coordinates.  The normal coordinates are simply 
the displacements at each of the three original DOF in the structure.  
The modal coordinates are quite different.  They are amplitudes (multipliers) 
on independent shapes, the linear combination of which forms a 
mathematical basis for the displaced shape of the system. Through the 
orthogonality properties of the mode shapes, the equations can be 
uncoupled, and this is the principal advantage of using these shapes.
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Natural mode shape
Natural frequency

Solutions for System in Undamped Free Vibration
(Natural Mode Shapes and Frequencies)

φ ω= −&& 2U( ) ω sint t

When the loading term is removed, the equations represent the motion of an 
undamped structure in free vibration.  Under undamped free vibration, the 
deflected shape of the structure stays the same, and only the amplitude 
changes with time.  
Through the solution of an eigenvalue problem, the free vibration shapes 
and their natural frequencies are obtained.
Note that there will be n independent solutions to the problem where n is the 
number of dynamic degrees of freedom.
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For a SINGLE Mode

Φ = ΦΩ2K M For ALL Modes

[ ]321 φφφ=ΦWhere:

φ φ
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Solutions for System in Undamped Free Vibration
(continued)

Note: Mode shape has arbitrary scale; usually
Φ Φ =TM I

φ =1, 1.0i
or

Note that the amplitude of the mode shapes is arbitrary because the shape 
appears on each side of the equation.  The shapes may be independently 
scaled.  The two scaling techniques shown have different advantages.  
These advantages will be described later when use is made of the shapes in 
uncoupling the equations of motion. 
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MODE 1 MODE 3MODE 2

φ1,1

φ2,1

φ3,1 φ3,2

φ2,2

φ1,2

φ3,3

φ2,3

φ1,3

Mode Shapes for Idealized 3-Story Frame

Node

Node

Node

This plot shows idealized mode shapes for a three-story building.  Note the 
relation between modes and “nodes,” the number of zero crossings.  Higher 
modes will always vibrate at a greater frequency than the lower modes.
As with any displaced shape, the mode shapes must be compatible with the 
boundary conditions.
Note that any kinematically admissible displaced shape may be obtained 
from a linear combination of the mode shapes.
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Concept of Linear Combination of Mode Shapes
(Transformation of Coordinates)

Mode shape

Modal coordinate = 
amplitude of mode 
shape

The mode shape matrix, like the flexibility matrix, is a mathematical basis for 
defining the displaced shape of the structure.
The mode shape matrix has the advantage that it is an orthogonal basis and, 
as such, will diagonalize the stiffness matrix.
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Generalized stiffness

Orthogonality Conditions

⎧ ⎫
⎪ ⎪Φ = ⎨ ⎬
⎪ ⎪
⎩ ⎭

*
1
*
2
*
3

f ( )
F( ) f ( )

f ( )

T

t
t t

t

Generalized force

The orthogonality condition is an extremely important concept as it allows for 
the full uncoupling of the equations of motion. 
The damping matrix (which is not involved in eigenvalue calculations) will be 
diagonalized as shown only under certain conditions.  In general, C will be 
diagonalized if it satisfies the Caughey criterion:  CM-1K = KM-1C
We will assume a diagonalizable C and show conditions that will enforce this 
assumption.
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MDOF equation of motion:

Transformation of coordinates:

Substitution:

Premultiply by TΦ :

Using orthogonality conditions, uncoupled equations of motion are:

Development of Uncoupled Equations of Motion

This slide shows how the original equations of motion are uncoupled by a 
change of coordinates and by use of the orthogonality conditions.
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&& &* * * *
1 1 1 1 1 1 1m y +c y +k y = f ( )t

Development of Uncoupled Equations of Motion
(Explicit Form)

Mode 1

Mode 2

Mode 3

&& &* * * *
2 2 2 2 2 2 2m y +c y +k y = f ( )t

&& &* * * *
3 3 3 3 3 3 3m y +c y +k y = f ( )t

This slide shows the fully uncoupled equations of motion.  Each equation 
has a single unknown, y, which is the amplitude of the related mode shape.  
The * superscript in the mass, damping, stiffness, and load terms represents 
the fact that these are the “generalized” quantities for the system 
transformed into modal coordinates.  



FEMA 451B Topic 4 Notes MDOF Dynamics 4 - 23

Instructional Material Complementing FEMA 451, Design Examples MDOF Dynamics 4 - 23

ξ ω ω+ + =&& & 2 * *
1 1 1 1 1 1 1 12 ( ) /y y y f t m

ξ ω ω+ + =&& & 2 * *
2 2 2 2 2 2 2 22 ( ) /y y y f t m

ξ ω ω+ + =&& & 2 * *
3 3 3 3 3 3 3 32 ( ) /y y y f t m

Simplify by dividing through by m* and defining ξ
ω

=
*

*2
i

i
i i

c
m

Mode 1
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Development of Uncoupled Equations of Motion
(Explicit Form)

Here, each equation is simply divided by the generalized mass (never zero) 
for that mode.  Using the definition for damping ratio (see the topic on SDOF 
dynamics), the generalized damping term in each equation has been 
eliminated.  Now, the solution for each mode depends only on the damping 
ratio, the frequency, and the loading history.
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Earthquake “Loading” for MDOF System

As with SDOF systems, it is necessary to develop effective earthquake 
forces when the loading arises from a ground acceleration history.  
At each level of the structure, the inertial force is equal to the mass times the 
total acceleration.  The total acceleration is equal to the ground acceleration 
(a scalar) and the appropriate relative acceleration (a component of a 
vector).  
The inertial force is converted into the sum of two vectors through use of the 
“influence coefficient vector,” R.   R contains a value of one for each mass 
that develops an inertial force when the whole system is accelerated 
horizontally.  In this case, all of the values are 1 because all masses are 
affected by the horizontal ground motion.  When forming R, the whole 
structure is accelerated as a rigid body.
The relative acceleration part of the inertial force is retained on the left, and 
the ground acceleration part is moved to the right to form the effective 
earthquake load.  
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Modal Earthquake Loading

&& ( )u tg

)(tug&&

The influence coefficient vector, R, is not always full of zeros.  This is 
explained by the two examples taken from Clough and Penzien.  
In the first case, inertial forces develop at each DOF when the structure is 
accelerated horizontally.
In the second case, the vertical mass at DOF 3 does not develop an inertial 
force when the whole structure is horizontally accelerated as a rigid body 
and, hence, the relater term in R is zero.  This represents the fact that the 
ground motion part of the total acceleration at this DOF is identically zero.
Note, however, that this mass will develop inertial forces when the structure 
responds to the ground shaking because relative vertical accelerations will 
occur at that DOF. 
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Definition of Modal Participation Factor

Typical modal equation:

For earthquakes:

Modal participation factor pi

φ= − &&*
g( ) u ( )T

i if t MR t

φξ ω ω+ + = = −&& & &&
*

2
* *

( )2 ( )
i

T
i i

i i i i i i g
i

f t MRy y y u t
m m

When the effective earthquake force is transformed into modal coordinates 
and the modal equation is divided by the generalized mass, a term called the 
“modal participation factor” emerges.
The modal participation factor often appears in computer output for standard 
structural dynamics programs (e.g., SAP2000).  Note that the quantity is 
unitless but is affected by the way the modes are scaled.  
If one compares the simplified equation for SFOF earthquake response to 
the one shown in this slide, it may be seen that the only difference is the 
presence of P in the modal equation.  Hence, the solution for a single mode 
of the full system is simply P times the solution for the SDOF system (with 
the same ξ and ω).
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φ φT
i iM

Caution Regarding Modal Participation Factor

Its value is dependent on the (arbitrary) method 
used to scale the mode shapes.

φ
= *

T
i

i
i

MRp
m

It is very important to note that the value of the modal participating factor is a 
function of how the modes are normalized.  This is apparent because the 
modal scale factor is squared in the denominator but appears only once in 
the numerator.
However, the mode’s computed response history (with an extra φ in the 
denominator), when multiplied by the corresponding mode shape, will 
produce an invariant response in that mode. 
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1.0

p1 = 1.0 p1 =1.4 p1 =1.6
1.01.0

Variation of First Mode Participation Factor
with First Mode Shape

This slide shows what the modal participation factor would be for systems 
with three possible first mode shapes.  Note that in each case, the mode 
shape has been normalized to have the maximum value equal to 1.0.
The first case, with P = 1, is impossible because the upper portion of the 
system is acting as a rigid body (and as such is not truly a MSOF).  Thus, P 
= 1 is an lower bound for system normalized as shown.  The P values for the 
next two systems are more realistic.  And the values of P between 1.4 and 
1.6 can be used as a reality check when evaluating the accuracy of the 
output from computer software.  
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Concept of Effective Modal Mass

For each Mode I, = 2 *
i i im p m

• The sum of the effective modal mass for all 
modes is
equal to the total structural mass.  

• The value of effective modal mass is
independent of mode shape scaling.

• Use enough modes in the analysis to provide
a total effective mass not less than 90% of the
total structural mass.

The concept of effective modal mass is important.  It can be interpreted as 
the part of the total mass responding to the earthquake in each mode .  Note 
the scaling problem disappears. The requirement that the number of modes 
needed to produce 90% of the effective mass is a code provision.
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1.0

= 1.0
1.01.0

Variation of First Mode Effective Mass
with First Mode Shape

= 0.9 = 0.71m / M 1m / M 1m / M

The effective modal mass for various first modes is given here. Again, it is 
assumed that each mode is normalized to give 1.0 at the top.  This is 
important for the modal participation factor but not for effective modal mass 
because the latter does not depend on modal scaling.
The first mode shape is, of course, impossible because there is no mass left 
for the other modes.  
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Derivation of Effective Modal Mass
(continued)

ξ ω ω+ + = −&& & &&22i i i i i i i gy y y p u

For each mode:

SDOF system:

ξ ω ω+ + = −&& & &&22i i i i i i gq q q u

Modal response history, qi(t) is obtained by first 
solving the SDOF system.

The derivation for effective modal mass is given in the following slides.  
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Derivation of Effective Modal Mass
(continued)

=y ( ) p q ( )i i it t

Recall φ=u ( ) y ( )i i it t

Substitute φ=u ( ) p q ( )i i i it t

From previous slide

Derivation of effective modal mass continued.
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Derivation of Effective Modal Mass
(continued)

φ ω φ= 2
i i iK M

Applied “static” forces required to produce ui(t):

Recall:

φ= =( ) ( ) ( )i i i i iV t Ku t PK q t

φ ω= 2( ) ( )i i i i iV t M P q t

Substitute:

Derivation of effective modal mass continued.



FEMA 451B Topic 4 Notes MDOF Dynamics 4 - 34

Instructional Material Complementing FEMA 451, Design Examples MDOF Dynamics 4 - 34

Derivation of Effective Modal Mass
(continued)

Total shear in mode: = T
i iV V R

φ ω φ ω= =2 2( ) ( ) ( )T T
i i i i i i iV M RP q t MRP q t

“Acceleration” in mode

ω= 2 ( )i i iV M q t

φ= T
i i iM MRP

Define effective modal mass: 

and

Derivation of effective modal mass continued.



FEMA 451B Topic 4 Notes MDOF Dynamics 4 - 35

Instructional Material Complementing FEMA 451, Design Examples MDOF Dynamics 4 - 35

φφ φ φ
φ φ

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

T
T Ti

i i i i i iT
i i i

MRM MRP M P
M

= 2 *
i i iM P m

Derivation of Effective Modal Mass
(continued)

Derivation of effective modal mass continued.
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In previous development, we have assumed:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=ΦΦ
*
3

*
2

*
1

c
c

c
CT

• Rayleigh “proportional damping”
• Wilson “discrete modal damping”

Development of a Modal Damping Matrix

Two methods described herein:

For structures without added dampers, the development of an explicit 
damping matrix, C, is not possible because discrete dampers are not 
attached to the dynamic DOF.  However, some mathematical entity is 
required to represent natural damping.
An arbitrary damping matrix cannot be used because there would be no 
guarantee that the matrix would be diagonalized by the mode shapes. 
The two types of damping shown herein allow for the uncoupling of the 
equations.
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MASS
PROPORTIONAL
DAMPER

STIFFNESS
PROPORTIONAL
DAMPER

KMC βα +=

Rayleigh Proportional Damping
(continued)

The mathematical model for Rayleigh damping consists of a series of mass 
and stiffness proportional dampers.   Since the mass matrix and the stiffness 
matrix are diagonalized by the mode shapes, so then would be any linear 
combination of the two.
If the dampers (as shown) are given arbitrary (nonproportional) values, the 
damping matrix will not be uncoupled.  A complex (imaginary number) 
eigenvalue problem would then be required.  
It should be noted that the mass proportional component of Rayleigh 
damping will produce artificial reactions along the height of the structure.  
Hence, the elastic force plus the stiffness proportional damping force across 
a story will not be equal to the inertial shear across the story.  This apparent 
equilibrium error can be a problem for highly damped structures (damping 
above 10% critical). 
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KMC βα +=

For modal equations to be uncoupled:

n
T
nnn Cφφξω =2

Using orthogonality conditions:

22 nnn βωαξω +=

βωα
ω

ξ
22

1 n

n
n +=

Rayleigh Proportional Damping
(continued)

IMT =ΦΦ
Assumes

The development of the proportionality constants is shown here. For any 
system, the damping in any two modes is specified.  By solving a 2 by 2 set 
of simultaneous equations, the alpha (mass proportional) and beta (stiffness 
proportional) terms are computed.  Once these terms are known, the 
damping obtained in the other modes may be back calculated.
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Select damping value in two modes, ξm and ξn

KMC βα +=

Rayleigh Proportional Damping
(continued)

Compute coefficients α and β:

Form damping matrix

ω ω ξα ω ω
ω ω ξβ ω ω

−⎡ ⎤ ⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

2 22
1/ 1/

n m mm n

n m nn m

The mass and stiffness proportionality constants are determined as shown.  
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Mode         ω
1          4.94
2          14.6
3          25.9
4          39.2
5          52.8

Structural frequencies

Rayleigh Proportional Damping (Example)
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MASS
STIFFNESS
TOTAL

TYPE
α = 0.41487
β = 0.00324

5% critical in Modes 1 and 3

This slide shows how the damping varies for a 5-DOF structure with 5% 
damping specified in Modes 1 and 3.  The total damping (uppermost line) 
and the mass and stiffness proportional components are shown.  
Note that Mode 2 will have less than 5% damping and Modes 4 and 5 will 
have greater than 5% damping.
Note that for stiffness proportional damping only (alpha = 0), the damping 
increases linearly with frequency, effectively damping out the higher modes.  
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Modes         α β
1 & 2      .36892    0.00513
1 & 3      .41487    0.00324
1 & 4      .43871    0.00227
1 & 5      .45174    0.00173

Proportionality factors 
(5% each indicated mode)

Rayleigh Proportional Damping (Example)
5% Damping in Modes 1 & 2, 1 & 3, 1 & 4, or 1 & 5
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1,2
1,3
1,4
1,5

MODES

This slide shows total damping for various combinations of modal damping.  
Note that if 5% is specified in Modes 1 and 2, Modes 4 and 5 will effectively 
be damped out.  If 5% is specified in Modes 1 and 5, Modes 2, 3, and 4 may 
be underdamped. 
Rayleigh damping is rarely used in large-scale linear structural analysis.  It is 
very often used in nonlinear analysis where the full set of equations is 
simultaneously integrated.  Interestingly, a proportional damping matrix is 
really not required in that case.  For example, DRAIN-2D allows element-by-
element stiffness proportional damping.
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Wilson Damping

Directly specify modal damping values *
iξ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=ΦΦ
*
33

*
3

*
22

*
2

*
11

*
1

*
3

*
2

*
1

2
2

2

ξω
ξω

ξω

m
m

m

c
c

c
CT

In Wilson damping, the modal damping values are directly specified for the 
uncoupled equations of motion.  In this case, an explicit damping matrix C 
need not be formed.
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ξ ω
ξ ω

ξ ω
ξ ω
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Formation of Explicit Damping Matrix
From “Wilson” Modal Damping

(NOT Usually Required)

A Wilson damping matrix can be explicitly formed using the equation shown.  
In general, the damping matrix will be full, causing coupling across degrees 
of freedom that are not actually coupled.  As with Rayleigh damping, this 
may lead to errors in highly damped structures (damping above about 10% 
critical).
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Wilson Damping (Example)
5% Damping in Modes 1 and 2, 3
10% in Mode 5, Zero in Mode 4

In Wilson damping, only those modal DOF that are assigned damping will be 
damped.  All other modes will be undamped.  This illustration shows 5% 
damping in Modes 1, 2 and 3, zero damping in Mode 4, and 10% in Mode 5.
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Wilson Damping (Example)
5% Damping in all Modes
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The same damping usually will be used in each mode as shown here.  
Instead of using high damping values in the higher modes, simply do not 
include the modes in the analysis.  (This is explained later.)
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Solution of MDOF Equations of Motion

• Explicit (step by step) integration of coupled equations

• Explicit integration of FULL SET of uncoupled equations

• Explicit integration of PARTIAL SET of uncoupled

Equations (approximate)

• Modal response spectrum analysis (approximate)

This slide shows the scope of the remainder of the unit.  In all cases, the 
information will be presented by example.
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Computed Response for 
Piecewise Linear Loading

Once the equations have been uncoupled, the individual response history 
analyses are best carried out through the use of the piece-wise exact 
method covered in the single-degree-of-freedom topic.
The use of a Newmark method may introduce undesired effects (e.g., 
additional artificial damping in higher modes and period elongation).  
However, the Newmark method (or some variation thereof) must be used in 
nonlinear analyses.  The exception is the Wilson FNA method as explained 
in Three-Dimensional Analysis of Structures by Wilson.
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Example of MDOF Response of Structure 
Responding to 1940 El Centro Earthquake

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

Assume Wilson
damping with 5%
critical in each mode.

N-S component of 1940 El Centro earthquake
Maximum acceleration = 0.35 g

Example 1

10 ft

10 ft

10 ft

In the next several slides, this structure will be analyzed.  This structure is 
taken from Example 26-3 of Clough and Penzien, 2nd Edition.  
Note that the structure has nonuniform mass and stiffness.  This is not a 
problem for the modal response history and modal response spectrum 
techniques but may pose problems for the ELF method.  For comparison 
purposes, a similar example with uniform properties follows the example 
shown on this slide. 
The second example is typically not included in a classroom presentation of 
this topic.
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k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

kip/in
3001200
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−
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Form property matrices:

Example 1 (continued)

These are the mass and stiffness matrices of the structure.  Note again that 
the stiffness matrix is highly idealized for this example.
The damping matrix is not needed because the damping in the various 
modes is assigned directly (Wilson damping).
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22 sec
4.212

6.96
0.21

−

⎥
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⎥

⎦

⎤

⎢
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⎢

⎣

⎡
=Ω

k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡

−
−−=Φ

47.2676.0300.0
57.2601.0644.0

000.1000.1000.1

2ΦΩ=Φ MK
Solve eigenvalue problem:

Example 1 (continued)

The mode shapes and frequencies were taken from Clough and Penzien 
and independently verified. 
Note that the mode shapes have been scaled to produce a unit positive 
displacement at the top of the structure for each mode.  It is often more 
convenient to scale such that φi

TMφi=1.0.
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Normalization of Modes Using Φ ΦT M I=

vs
⎡ ⎤
⎢ ⎥Φ = − −⎢ ⎥
⎢ ⎥−⎣ ⎦

0.749 0.638 0.208
0.478 0.384 0.534
0.223 0.431 0.514

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

1.000 1.000 1.000
0.644 0.601 2.57
0.300 0.676 2.47

This slide demonstrates two alternatives for scaling the modes. The 
generalized mass matrix for the system with the modes as normalized to the 
left are 1.0 for each mode. The example uses the mode shapes shown on 
the right.  
While the mode shapes have different scale factors, this will not affect the 
computed results.
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MODE 1 MODE 2 MODE 3

T = 1.37 sec T = 0.639 sec T = 0.431 sec

Example 1 (continued)
Mode Shapes and Periods of Vibration

ω = 4.58 rad/sec ω = 9.83 rad/sec ω = 14.57 rad/sec

This slide shows the mode shapes approximately to scale.  Note that the first 
mode period of vibration, 1.37 seconds, is more appropriate for a 10-story 
building than it is for a 3-story structure.   
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k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in
in/seckip

10.23
455.2

801.1
2* −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ΦΦ= MM T

sec/rad
57.14
83.9
58.4

⎪
⎭

⎪
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⎫

⎪
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⎪
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⎧
=nω sec

431.0
639.0
37.1
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⎭
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⎫

⎪
⎩

⎪
⎨

⎧
=nT

Compute Generalized Mass:

Example 1 (continued)

This slide shows the generalized mass matrix.  These masses are 
appropriate for the modes and should not be confused with the story 
masses.  The magnitude of the generalized mass terms is a function of the 
mode shape normalization technique used.
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k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

Compute generalized loading:

= −Φ &&* ( ) ( )T
gV t MRv t

⎧ ⎫
⎪ ⎪= − −⎨ ⎬
⎪ ⎪
⎩ ⎭

&&*

2.566
1.254 ( )
2.080

n gV v t

Example 1 (continued)

This slide shows how the effective earthquake force has been computed for 
each mode.  The magnitude of the generalized effective earthquake force is 
also a function of the mode normalization technique used.  
The values shown in the lower equation are NOT the modal participation 
factors.  To get the participation factors, the equation for each mode must be 
divided by the generalized mass for that mode
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k3=180 k/in

u1(t)

u2(t)

u3(t)

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5 k-s2/in

m3=2.0 k-s2/in

Example 1 (continued)

Write uncoupled (modal) equations of motion:

ξ ω ω+ + =&& & 2 * *
1 1 1 1 1 1 1 12 ( ) /y y y V t m

ξ ω ω+ + =&& & 2 * *
2 2 2 2 2 2 2 22 ( ) /y y y V t m

ξ ω ω+ + =&& & 2 * *
3 3 3 3 3 3 3 32 ( ) /y y y V t m

+ + = −&& & &&
1 1 10.458 21.0 1.425 ( )gy y y v t

+ + =&& & &&
2 2 20.983 96.6 0.511 ( )gy y y v t

+ + = −&& & &&
3 3 31.457 212.4 0.090 ( )gy y y v t

Here, the full set of uncoupled equations has been formed.  Note that, 
except for the formation of the generalized mass terms, the other 
generalized constants need not be computed as all that is needed are the 
modal frequencies and damping ratios.  Note that Wilson damping has been 
assumed with 5% damping in each mode.
The values shown on the RHS of the last set of equations are the modal 
participation factors times -1. 
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Modal Participation Factors

1
2
3

Mode
Mode
Mode

Modal scaling φi, .1 10= φ φi
T

iM =10.

−

1.425

0 .511

0 .090

−

1.911

0.799

0.435

This slide shows the modal participation factors and how their magnitudes 
depend on mode shape scaling.
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Modal Participation Factors 
(continued)

using usingφ11 1, = φ φ1 1 1T M =

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

1.000 0.744
1.425 0.644 1.911 0.480

0.300 0.223

The modal participation factor times the mode shape must be invariant.
The slight discrepancies here are due to rounding error.
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Effective Modal Mass

= 2 *
n n nM P m

Mode 1
Mode 2
Mode 3

3.66 81 81
0.64 14 95
0.20 5 100%

Accum%

4.50 100%

%nM

Note that the percentage of effective mass decreases with each mode.  The 
sum of the effective mass for each mode must be the total mass. Most 
analysts use enough modes to account for no less than 90% of the total 
mass.
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Example 1 (continued)
Solving modal equation via NONLIN:

For Mode 1:

This slide shows how a single modal equation might be analyzed via 
NONLIN.  After each modal time history response has been computed, they 
can be combined through the use of EXCEL and the NONLIN.XL1 files that 
may be written for each mode.
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MODE 1

Example 1 (continued)

MODE 2

MODE 3
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Maxima

This slide shows the computed response histories for each mode. These 
are the modal amplitudes, not the system displacements. The yellow dot 
shown in each history points out the location of the maximum (positive or 
negative) displacement response for that mode.
Note that the plots are drawn to different vertical scales.
Note that these maxima generally do not occur at the same times. Also note 
that the magnitudes of the modal response quantities is a function of the 
mode normalization technique used.
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Modal Response Histories:

Example 1 (continued)

This is the same as the previous slide, but the modal displacements are 
drawn to the same scale.  Note that the displacements in Mode 3 are very 
small when compared to Modes 1 and 2.  This would seem to indicate that 
Mode 3 could be eliminated from the analysis with little introduction of error.  
Note also the apparent difference in the frequency content of the modal 

responses.
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Example 1 (continued)
Compute story displacement response histories:
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)()( tytu Φ=

By pre-multiplying the modal time histories by the mode shape matrix, the 
time histories of the displacements at each story are obtained. 
Essentially, we are transforming coordinates from modal space back to the 
original story SDOF.  The equation at the bottom of the slide shows how the 
time history of displacements at the first story was obtained.  The factors in 
the equation are the amplitudes of the 1st, 2nd,and 3rd modes at DOF U3 (see 
Slide 50).
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u1(t)

u2(t)

u3(t)

Example 1 (continued)
Compute story shear response histories:
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= k2[u2(t) - u3(t)]

This slide shows how story shear response histories are obtained.
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Example 1 (continued)

This is a summary “snap shot” of the response of the structure at the time of 
maximum displacement.
Note that the maximum displacement, shear, and overturning moments do 
not necessarily occur at the same point in time.  (The following slide is 
needed to prove the point.) 
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Example 1 (continued)

This is a summary “snap shot” of the response of the structure at the time of 
maximum first-story shear.
Note that the maximum displacement, shear, and overturning moments do 
not necessarily occur at the same point in time. (The previous slide is 
needed to prove the point.)
Note that the inertial force pattern is not even close to “upper triangular.”
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Modal Response Response Spectrum Method
• Instead of solving the time history problem for each

mode, use a response spectrum to compute the
maximum response in each mode.

• These maxima are generally nonconcurrent.

• Combine the maximum modal responses using some
statistical technique, such as square root of the sum of
the squares (SRSS) or complete quadratic combination
(CQC). 

• The technique is approximate.

• It is the basis for the equivalent lateral force (ELF) method.

The next several slides introduce the modal response spectrum approach.  
Here, the individual modal displacements are obtained from a response 
spectrum and then the modal quantities are statistically combined.  The 
method is approximate but generally accurate enough for design.
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Displacement Response Spectrum
1940 El Centro, 0.35g, 5% Damping

Example 1 (Response Spectrum Method)

Modal response

This slide shows the coordinates of the 5% damped El Centro displacement 
response spectrum at periods corresponding to Modes 1, 2 and 3 of the 
example structure. 
In the response spectrum approach, these modal maxima are used in lieu of 
the full response histories obtained from direct integration of the uncoupled 
equations of motion.
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Example 1 (continued)

Before the response spectrum coordinates can be used, they need to be 
scaled by the appropriate factors shown on the right hand side of the 
individual modal equations of motion.  Recall that these scale factors are the 
modal participation factors.  There is no need to retain the signs because the 
signs will be lost when the modes are combined.
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as the previous time 
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Example 1 (continued)

This slide shows that the scaled response spectrum coordinates are the 
same as the maxima obtained from the response history calculations.   It 
also emphasizes that the modal maxima occur at different points in time.
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1.000 4.940
0.644 4.940 3.181
0.300 1.482
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Example 1 (continued)
Computing Nonconcurrent Story Displacements

The modal displacements are obtained by multiplying the mode shapes by 
the values from the response spectrum.   
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⎧ ⎫+ + ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭+ +⎪ ⎪⎩ ⎭

2 2 2

2 2 2

2 2 2

4.940 1.550 0.108 5.18
3.181 0.931 0.278 3.33

1.841.482 1.048 0.267

Square Root of the Sum of the Squares:

+ +⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+ +⎩ ⎭ ⎩ ⎭

4.940 1.550 0.108 6.60
3.181 0.931 0.278 4.39
1.482 1.048 0.267 2.80

Sum of Absolute Values:

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

5.15
2.86
1.22

“Exact”

Example 1 (continued)
Modal Combination Techniques (for Displacement)

At time of maximum displacement

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

5.15
3.18
1.93

Envelope of story displacement

This slide shows two of the most common modal combination techniques, 
sum of absolute values and square root of the sum of the squares (SRSS).  
For very complicated structures with closely spaced modes, the complete 
quadratic combination (CQC) is preferred.  The CQC method  reduces to the 
SRSS method when the modes are not closely spaced.  SAP2000, ETABS, 
RAMFRAME, and most commercial programs use the CQC approach.  
Note the similarity between SRSS and the response history results.  The 
comparison is particularly good when the response spectrum values are 
compared with the ENVELOPE values from the response history.
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Example 1 (continued)
Computing Interstory Drifts

In this slide, modal interstory drifts are obtained from the modal 
displacements.  These will be used to compute modal story shears.
Note that the interstory drifts are NOT obtained from the SRSSed
displacements shown in the previous slide.
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Mode 1

Mode 2

Mode 3

Example 1 (continued)
Computing Interstory Shears (Using Drift)

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
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⎩ ⎭ ⎩ ⎭

1.759(60) 105.5
1.699(120) 203.9
1.482(180) 266.8

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− −⎩ ⎭ ⎩ ⎭

2.481(60) 148.9
0.117(120) 14.0
1.048(180) 188.6

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

0.386(60) 23.2
0.545(120) 65.4
0.267(180) 48.1

Computation of modal story shears from modal interstory drift.  To obtain the 
shears the drifts re multiplied by story stiffness.
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Example 1 (continued)
Computing Interstory Shears: SRSS Combination

Calculation of total story shear using SRSS.  Note that the story shears were 
not obtained from the SRSS response of the modal displacements.
Note the remarkable similarity in results from the exact envelope values and 
from the response spectrum approach.  This degree of correlation is 
somewhat unusual.
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Caution:

Do NOT compute story shears from the story
drifts derived from the SRSS of the story
displacements.  

Calculate the story shears in each mode
(using modal drifts) and then SRSS
the results.

Self explanatory.
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Modal Response Histories:

Using Less than Full (Possible)
Number of Natural Modes

Recall that the third mode produces insignificant displacement. This mode 
may be eliminated from both the direct analysis (integration of all equations) 
and the modal response spectrum approach with little error.
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Time-History for Mode 1

Transformation:

Using Less than Full Number of Natural Modes

This slide shows the full modal response history analysis results (in matrix 
form) and the resulting multiplication to put the response back into story 
displacement DOF.
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Transformation:

Using Less than Full Number of Natural Modes

⎡ ⎤
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⎣ ⎦
1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

( 1) ( 2) ( 3) ( 4) ( 5) ( 6) ( 7) ( 8) .... ( )
( )
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y t y t y t y t y t y t y t y t y tn

y t
y t y t y t y t y t y t y t y t y tn

NOTE: Mode 3 NOT Analyzed

φ φ⎡ ⎤= ⎣ ⎦1 2( ) ( )u t y t

If only two of three modes are integrated, the transformation still yields 
displacement response histories at each story.  For large structures with 
hundreds of possible modes of vibration, it has been shown that only a few 
modes are required to obtain an accurate analysis.  ASCE 7 requires that 
enough modes be included to represent at least 90% of the effective mass of 
the structure.  
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2 2 2

2 2 2

4.940 1.550 0.108 5.18 5.18
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Square root of the sum of the squares:
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Sum of absolute values:
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At time of maximum 
displacement

Using Less than Full Number of Natural Modes
(Modal Response Spectrum Technique)

3 modes 2 modes

Higher modes may also be eliminated from modal response spectrum
analysis as shown here.
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Example of MDOF Response of Structure 
Responding to 1940 El Centro Earthquake

k3=150 k/in

u1(t)

u2(t)

u3(t)

k1=150 k/in

k2=150 k/in

m1=2.5 k-s2/in

m2=2.5 k-s2/in

m3=2.5 k-s2/in

Assume Wilson
damping with 5%
critical in each mode.

N-S component of 1940 El Centro earthquake
Maximum acceleration = 0.35 g

Example 2

10 ft

10 ft

10 ft

The next several slides present an example similar to the previous one but 
the story stiffnesses and masses are uniform.  
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⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

150 150 0
150 300 150 kip/in
0 150 300

K

Form property matrices:

Example 2 (continued)

These are the mass and stiffness matrices of the structure.  Note again that 
the stiffness matrix is highly idealized for this example.
The damping matrix is not needed because the damping in the various 
modes is assigned directly (Wilson damping).
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⎢ ⎥⎣ ⎦

2 2

11.9
93.3 sec

194.8

k3=150 k/in

u1(t)

u2(t)

u3(t)

k1=150 k/in

k2=150 k/in

m1=2.5 k-s2/in

m2=2.5 k-s2/in

m3=2.5 k-s2/in

⎡ ⎤
⎢ ⎥Φ = − −⎢ ⎥
⎢ ⎥−⎣ ⎦

1.000 1.000 1.000
0.802 0.555 2.247
0.445 1.247 1.802

2ΦΩ=Φ MK
Solve = eigenvalue problem:

Example 2 (continued)

The mode shapes and frequencies were computed using Mathcad.
Note that the mode shapes have been scaled to produce a unit positive 
displacement at the top of the structure for each mode.  It is often more 
convenient to scale such that φi

TMφi=1.0.
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Normalization of Modes Using Φ ΦT M I=

vs
⎡ ⎤
⎢ ⎥Φ = − −⎢ ⎥
⎢ ⎥−⎣ ⎦

0.466 0.373 0.207
0.373 0.207 0.465
0.207 0.465 0.373

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

1.000 1.000 1.000
0.802 0.555 2.247
0.445 1.247 1.802

This slide demonstrates two alternatives for scaling the modes. The 
generalized mass matrix for the system with the modes as normalized to the 
left are 1.0 for each mode. The example uses the mode shapes shown on 
the right.  
While the mode shapes have different scale factors, this will not affect the 
computed results.
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Mode 1 Mode 2 Mode 3

T = 1.82 sec T = 0.65 sec T = 0.45 sec

Example 2 (continued)
Mode Shapes and Periods of Vibration

ω = 3.44 rad/sec ω = 9.66 rad/sec ω = 13.96 rad/sec

This slide shows the mode shapes approximately to scale.  Note that the first 
mode period of vibration, 1.82 seconds, is more appropriate for a 10-story 
building than it is for a 3-story structure.   



FEMA 451B Topic 4 Notes MDOF Dynamics 4 - 85

Instructional Material Complementing FEMA 451, Design Examples MDOF Dynamics 4 - 85

k3=150 k/in

u1(t)

u2(t)

u3(t)

k1=150 k/in

k2=150 k/in

m1=2.5 k-s2/in

m2=2.5 k-s2/in

m3=2.5 k-s2/in ⎡ ⎤
⎢ ⎥= Φ Φ = −⎢ ⎥
⎢ ⎥⎣ ⎦

* 2

4 .603
7.158 k ip sec / in

23 .241

TM M

ω
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

3.44
9.66 rad/sec

13.96
n

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

1.82
0.65 sec
0.45

nT

Compute generalized mass:

Example 2 (continued)

This slide shows the generalized mass matrix.  These masses are 
appropriate for the modes and should not be confused with the story 
masses.  The magnitude of the generalized mass terms is a function of the 
mode shape normalization technique used.
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k3=150 k/in

u1(t)

u2(t)

u3(t)

k1=150 k/in

k2=150 k/in

m1=2.5 k-s2/in

m2=2.5 k-s2/in

m3=2.5 k-s2/in

Compute generalized loading:

= −Φ &&* ( ) ( )T
gV t MRv t

−⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎩ ⎭

&&*

5.617
2.005 ( )
1.388

n gV v t

Example 2 (continued)

This slide shows how the effective earthquake force has been computed for 
each mode.  The magnitude of the generalized effective earthquake force is 
also a function of the mode normalization technique used.  
The values shown in the lower equation are NOT the modal participation 
factors.  To get the participation factors, the equation for each mode must be 
divided by the generalized mass for that mode
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k3=150 k/in

u1(t)

u2(t)

u3(t)

k1=150 k/in

k2=150 k/in

m1=2.5 k-s2/in

m2=2.5 k-s2/in

m3=2.5 k-s2/in

Example 2 (continued)

Write uncoupled (modal) equations of motion:

ξ ω ω+ + =&& & 2 * *
1 1 1 1 1 1 1 12 ( ) /y y y V t m

ξ ω ω+ + =&& & 2 * *
2 2 2 2 2 2 2 22 ( ) /y y y V t m

ξ ω ω+ + =&& & 2 * *
3 3 3 3 3 3 3 32 ( ) /y y y V t m

+ + = −&& & &&
1 1 10.345 11.88 1.22 ( )gy y y v t

+ + =&& & &&
2 2 20.966 93.29 0.280 ( )gy y y v t

+ + = −&& & &&
3 3 31.395 194.83 0.06 ( )gy y y v t

Here, the full set of uncoupled equations has been formed.  Note that except 
for the formation of the generalized mass terms, the other generalized 
constants need not be computed as all that is needed are the modal 
frequencies and damping ratios.  Note that Wilson damping has been 
assumed with 5% damping in each mode.
The values shown on the RHS of the last set of equations are the modal 
participation factors times -1. 
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Modal Participation Factors

1
2
3

Mode
Mode
Mode

Modal scaling φi, .1 10= φ φi
T

iM =10.

−

−

1 .22

0 .28

0 .060

−

−

2.615

0.748

0.287

This slide shows the modal participation factors and how their magnitudes 
depend on mode shape scaling.
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Effective Modal Mass

= 2
n n nM P m

Mode 1
Mode 2
Mode 3

Accum%

7.50 100%

%nM
6.856

0.562

0.083

91.40

7.50

1.10

91.40

98.90

100.0

Note that the percentage of effective mass decreases with each mode.  The 
sum of the effective mass for each mode must be the total mass. Most 
analysts use enough modes to account for no less than 90% of the total 
mass.
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*
1

*
11

2
11111 /)(2 mtVyyy =++ ωωξ &&&

+ + = −&& & &&
1 1 11.00 0.345 11.88 1.22 ( )gy y y v t

M = 1.00 kip-sec2/in

C = 0.345 kip-sec/in

K1 = 11.88 kips/inch

Scale ground acceleration by factor 1.22

Example 2 (continued)
Solving modal equation via NONLIN:

For Mode 1:

This slide shows how a single modal equation might be analyzed via 
NONLIN.  After each modal time history response has been computed, they 
can be combined through the use of EXCEL and the NONLIN.XL1 files that 
may be written for each mode
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Mode 1

Example 2 (continued)

Mode 2

Mode 3

Modal Displacement Response Histories (from NONLIN)

T=1.82

T=0.65

T=0.45

Maxima

-10.00

-5.00

0.00

5.00

10.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-0.10

-0.05

0.00

0.05

0.10

0.15

0 1 2 3 4 5 6 7 8 9 10 11 12

C

-1.00

-0.50

0.00

0.50

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

This slide shows the computed response histories for each mode. These 
are the modal amplitudes, not the system displacements. The yellow dot 
shown in each history points out the location of the maximum (positive or 
negative) displacement response for that mode.
Note that the plots are drawn to different vertical scales.
Note that these maxima generally do not occur at the same times. Also note 
that the magnitudes of the modal response quantities is a function of the 
mode normalization technique used.
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Modal Response Histories

Example 2 (continued)
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This is the same as the previous slide, but the modal displacements are 
drawn to the same scale.  Note that the displacements in Mode 3 are very 
small when compared to Modes 1 and 2.  This would seem to indicate that 
Mode 3 could be eliminated from the analysis with little introduction of error.  
Note also the apparent difference in the frequency content of the modal 
responses.
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u1(t)

u2(t)

u3(t)

= 0.445 x Mode 1 – 1.247 x Mode 2 + 1.802 x Mode 3

Example 2 (continued)
Compute story displacement response histories: )()( tytu Φ=

-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00

0 1 2 3 4 5 6 7 8 9 10 11 12

By pre-multiplying the modal time histories by the mode shape matrix, the 
time histories of the displacements at each story are obtained. Essentially, 
we are transforming coordinates from modal space back to the original story 
DOF.  The equation at the bottom of the slide shows how the time history of 
displacements at the first story was obtained.  The factors in the equation 
are the amplitudes of the 1st, 2nd,and 3rd modes at DOF U3
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u1(t)

u2(t)

u3(t)

Example 2 (continued)
Compute story shear response histories:

=k2[u2(t)-u3(t)]

-600.00
-400.00
-200.00

0.00
200.00
400.00
600.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-600.00
-400.00
-200.00

0.00
200.00
400.00
600.00

0 1 2 3 4 5 6 7 8 9 10 11 12

-600.00
-400.00
-200.00

0.00
200.00
400.00
600.00

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

This slide shows how story shear response histories are obtained.
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222.2 k

175.9 k

21.9 k

6.935”

5.454”

2.800”

222.2

398.1

420.0

2222

6203

10403

0

Displacements and Forces at time of Maximum Displacements 
(t = 8.96 seconds)

Story Shear (k) Story OTM (ft-k)

Example 2 (continued)

This is a summary “snap shot” of the response of the structure at the time of 
maximum displacement.
Note that the maximum displacement, shear, and overturning moments do 
not necessarily occur at the same point in time.  (The following slide is 
needed to prove the point.) 
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130.10 k

215.10 k

180.45 k

6.44”

5.57”

3.50”

130.10

310.55

525.65

1301

4406

9663

0

Displacements and Forces at Time of Maximum Shear
(t = 6.26 sec)

Story Shear (k) Story OTM (ft-k)

Example 2 (continued)

This is a summary “snap shot” of the response of the structure at the time of 
maximum first-story shear.
Note that the maximum displacement, shear, and overturning moments do 
not necessarily occur at the same point in time. (The previous slide is 
needed to prove the point.)
Note that the inertial force pattern is not even close to “upper triangular.”
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Modal Response Response Spectrum Method
• Instead of solving the time history problem for each

mode, use a response spectrum to compute the
maximum response in each mode.

• These maxima are generally nonconcurrent.

• Combine the maximum modal responses using some
statistical technique, such as square root of the sum of
the squares (SRSS) or complete quadratic combination
(CQC). 

• The technique is approximate.

• It is the basis for the equivalent lateral force (ELF) method.

The next several slides introduce the modal response spectrum approach.  
Here, the individual modal displacements are obtained from a response 
spectrum and then the modal quantities are statistically combined.  The 
method is approximate but generally accurate enough for design.
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Mode 3
T = 0.45 sec

Mode 2
T = 0.65 sec

Mode 1
T = 1.82 sec

Displacement Response Spectrum
1940 El Centro, 0.35g, 5% Damping

Example 2 (Response Spectrum Method)
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MODAL RESPONSE

This slide shows the coordinates of the 5% damped El Centro displacement 
response spectrum at periods corresponding to Modes 1, 2 and 3 of the 
example structure. 
In the response spectrum approach, these modal maxima are used in lieu of 
the full response histories obtained from direct integration of the uncoupled 
equations of motion.
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+ + = −&& & &&
1 1 10.345 11.88 1.22 ( )gy y y v t

+ + =&& & &&
2 2 20.966 93.29 0.280 ( )gy y y v t

+ + = −&& & &&
3 3 31.395 194.83 0.060 ( )gy y y v t

= =1 1.22 * 5.71 6.966"y
= =2 0.28 * 3.02 0.845"y
= =3 0.060*1.57 0.094"y

Modal Equations of Motion Modal Maxima

Example 2 (continued)
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Before the response spectrum coordinates can be used, they need to be 
scaled by the appropriate factors shown on the right hand side of the 
individual modal equations of motion.  Recall that these scale factors are the 
modal participation factors.  There is no need to retain the signs because the 
signs will be lost when the modes are combined.
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Mode 1

Mode 2

Mode 3

T = 1.82

T = 0.65

T = 0.45

The scaled response
spectrum values give
the same modal maxima
as the previous time 
histories.

Example 2 (continued)
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This slide shows that the scaled response spectrum coordinates are the 
same as the maxima obtained from the response history calculations.   It 
also emphasizes that the modal maxima occur at different points in time.
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⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

1.000 6.966
0.802 6.966 5.586
0.445 3.100

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− −⎩ ⎭ ⎩ ⎭

1.000 0.845
0.555 0.845 0.469
1.247 1.053

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

1.000 0.094
2.247 0.094 0.211

1.802 0.169

Mode 1

Mode 2

Mode 3

Example 2 (continued)
Computing Nonconcurrent Story Displacements

The modal displacements are obtained by multiplying the mode shapes by 
the values from the response spectrum.   
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⎧ ⎫+ + ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭+ +⎪ ⎪⎩ ⎭

2 2 2

2 2 2

2 2 2

6.966 0.845 0.108 7.02
5.586 0.469 0.211 5.61

3.283.100 1.053 0.169

Square root of the sum of the squares

+ +⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+ +⎩ ⎭ ⎩ ⎭

6.966 0.845 0.108 7.919
5.586 0.469 0.211 6.266
3.100 1.053 0.169 4.322

Sum of absolute values:

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

6.935
5.454
2.800

“Exact”

Example 2 (continued)
Modal Combination Techniques (For Displacement)

At time of maximum displacement

Envelope of story displacement

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

6.935
5.675
2.965

This slide shows two of the most common modal combination techniques, 
sum of absolute values and square root of the sum of the squares (SRSS).  
For very complicated structures with closely spaced modes, the complete 
quadratic combination (CQC) is preferred.  The CQC method  reduces to the 
SRSS method when the modes are not closely spaced.  SAP2000, ETABS, 
RAMFRAME, and most commercial programs use the CQC approach.  
Note the similarity between SRSS and the response history results.  The 
comparison is particularly good when the response spectrum values are 
compared with the ENVELOPE values from the response history.
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−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎩ ⎭

6.966 5.586 1.380
5.586 3.100 2.486

3.100 0 3.100

− −⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − − =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− − −⎩ ⎭ ⎩ ⎭

0.845 ( 0.469) 1.314
0.469 ( 1.053) 0.584

1.053 0 1.053

− −⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎩ ⎭

0.108 ( 0.211) 0.319
0.211 0.169 0.380

0.169 0 0.169

Mode 1

Mode 2

Mode 3

Example 2 (continued)
Computing Interstory Drifts

In this slide, modal interstory drifts are obtained from the modal 
displacements.  These will be used to compute modal story shears.
Note that the interstory drifts are NOT obtained from the SRSSed
displacements shown in the previous slide.
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Mode 1

Mode 2

Mode 3

Example 2 (continued)
Computing Interstory Shears (Using Drift)

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

1.380(150) 207.0
2.486(150) 372.9
3.100(150) 465.0

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− −⎩ ⎭ ⎩ ⎭

1.314(150) 197.1
0.584(150) 87.6
1.053(150) 157.9

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− = −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

0.319(150) 47.9
0.380(150) 57.0

0.169(150) 25.4

Computation of modal story shears from modal interstory drift.  To obtain the 
shears the drifts remultiplied by story stiffness.
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⎧ ⎫+ + ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭+ +⎪ ⎪⎩ ⎭

2 2 2

2 2 2

2 2 2

207 197.1 47.9 289.81
372.9 87.6 57 387.27

491.73465 157.9 25.4

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

130.1
310.5
525.7

“Exact”

At time of
max. shear

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

222.2
398.1
420.0

“Exact”

At time of max.
displacement

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

304.0
398.5
525.7

“Exact”

Envelope = maximum
per story

Example 2 (continued)
Computing Interstory Shears: SRSS Combination

Calculation of total story shear using SRSS.  Note that the story shears were 
not obtained from the SRSS response of the modal displacements.
Note the remarkable similarity in results from the exact envelope values, and 
from the response spectrum approach.  This degree of correlation is 
somewhat unusual.
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ASCE 7 Allows an Approximate
Modal Analysis Technique Called the
Equivalent Lateral Force Procedure

• Empirical period of vibration
• Smoothed response spectrum
• Compute total base shear, V, as if SDOF
• Distribute V along height assuming “regular”

geometry
• Compute displacements and member forces using 

standard procedures

In the next several slides the equivalent lateral force method of analysis will 
be derived and demonstrated.  The basis of the method is presented on this 
slide.

The appeal of this method is that the structural analysis requires only an 
application of static lateral forces to the structure, similar to the application of 
wind loads.  
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Equivalent Lateral Force Procedure

• Method is based on first mode response.
• Higher modes can be included empirically.
• Has been calibrated to provide a reasonable 

estimate of the envelope
of story shear, NOT to provide accurate 
estimates of story force.

• May result in overestimate of overturning
moment.  

Additional features of the ELF method are described. 
The overestimate of overturning moment resulted in “overturning moment 
reductions” in previous versions of the code.  ASCE 7-05 still allows an 
overturning moment reduction of 25% at the foundation but no longer allows 
reductions in the above-grade structure.  See Section 12.13.4 of ASCE 7-05.
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T1

Sa1

Period, sec

Acceleration, g
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Equivalent Lateral Force Procedure
• Assume first mode effective mass = total Mass = M = W/g

• Use response spectrum to obtain total acceleration @ T1

The first step in the ELF analysis is the computation of the base shear.  The 
base shear is simply the spectral acceleration (expressed as a fraction of 
gravity) times the weight of the system.  The acceleration, Sa1, is determined 
from the 5% damped elastic spectrum (modified for inelastic effects, as 
explained in a separate topic).  T1 is the first mode period of vibration of the 
structure.
Note that a modal participation factor for the first mode is assumed to be 1.0, 
and that 100% of the weight is assigned to the first mode.  
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Equivalent Lateral Force Procedure

Once the base shear is determined, the next step is to distribute the shear 
along the height of the structure.  This is done by assuming that the first 
mode shape is a straight line and that total accelerations can be 
approximated as the displacements times the frequency squared.
Given the displacement at any height, the acceleration is determined and the 
inertia force is computed as the weight at that height times the acceleration.  
The inertial force are summed to produce the total base shear.  The ratio of 
the story force to the base shear is given by the final expression.
Note that the linear shape assumption is only valid for structures with T <= 
0.5 sec.  For longer periods the exponent k adjusts for higher modes.
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k3=180 k/in

k1=60 k/in

k2=120 k/in

m1=1.0 k-s2/in

m2=1.5

m3=2.0
3h

ELF Procedure Example

Recall
T1 = 1.37 sec

The example that was analyzed using response history analysis and 
response spectrum analysis will not be analyzed using ELF.
Note that this example has significant vertical irregularities in both mass and 
stiffness, and theoretically, can not be analyzed by ELF according to the 
code.  See Table 12.6.1 of ASCE 7-05.  For the purpose of this course, the 
analysis will proceed even though the code provision is violated.
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ELF Procedure Example
Total weight = M x g = (1.0 + 1.5 + 2.0) 386.4 = 1738 kips
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1.37sec

Spectral acceleration = w2SD = (2p/1.37)2  x 3.47 = 72.7 
in/sec2 = 0.188g

Base shear = SaW = 0.188 x 1738 = 327 kips

Instead of using the code spectrum, the example uses the actual 5% 
damped El Centro spectrum.  This is done to provide better comparison with 
the previous analysis methods.  
Note that unlike the response spectrum method, the modal participation 
factor is not used in the ELF method.  Effectively, the participation factor is 
taken as 1.0 (and it is assumed that the first mode shape is normalized to 
have a value of 1.0 at the top of the structure). 
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ELF Procedure Example (Story Forces)

125 k

125 k

77 k

327 k

125 k
(220 k)

250 k
(215 k)

Story Shear (k)

327 k
(331 k)

The story forces and shears are computed as shown.   The values in red (in 
parenthesis) are from the response spectrum analysis using SRSS. The 
forces in the lower two levels compare pretty well, but the ELF method has 
done a very poor job predicting the shear in the upper level. 
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Time History
(Envelope)
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Modal Response
Spectrum
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ELF

ELF Procedure Example (Story Displacements)
Units = inches
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5.15
3.18
1.93

The displacement computed from the various methods are compared here.  
The ELF method has done a reasonably good job predicting the 
displacements.
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• ELF procedure gives good correlation with 
base shear (327 kips ELF vs 331 kips modal
response spectrum).

• ELF story force distribution is not as good.
ELF underestimates shears in upper stories.

• ELF gives reasonable correlation with displacements.

ELF Procedure Example (Summary)

A basic summary of the ELF method is provided (with respect to the 
Response Spectrum approach).  The fundamental question is  whether the 
method is good enough for design.  The answer is probably yes with the 
exception of the very poor prediction of the shear in the upper level of the 
structure.
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Equivalent Lateral Force Procedure
Higher Mode Effects

1st Mode 2nd Mode Combined

+ =

The main reason for the poor performance for the example is that the ELF 
method as developed so far is based on first mode behavior only. If higher 
modes are included, accelerations and inertial forces will be higher at the 
top.   As explained later, the code adjusts the ELF method by assuming a 
“combined” first and second mode as shown.



FEMA 451B Topic 4 Notes MDOF Dynamics 4 - 116

Instructional Material Complementing FEMA 451, Design Examples MDOF Dynamics 4 - 116

ASCE 7-05 ELF Approach

• Uses empirical period of vibration
• Uses smoothed response spectrum
• Has correction for higher modes
• Has correction for overturning moment
• Has limitations on use

The ELF method as presented in ASCE-7 is very similar to that presented 
earlier.  The following slides explain the differences and the limitations on 
use.
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Approximate Periods of Vibration

= x
a t nT C h

= 0.1aT N

Ct =  0.028, x = 0.8 for steel moment frames
Ct =  0.016, x = 0.9 for concrete moment frames
Ct =  0.030, x = 0.75 for eccentrically braced frames
Ct =  0.020, x = 0.75 for all other systems
Note: For building structures only!

For moment frames < 12 stories in height, minimum
story height of 10 feet.  N = number of stories.

In the code-based approach, the period is computed using the empirical 
formulas, and then adjusted for local seismicity (next slide).
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SD1                                       Cu
> 0.40g 1.4

0.30g 1.4
0.20g 1.5
0.15g 1.6
< 0.1g 1.7

= ≤a u computedT T C T
Adjustment Factor on Approximate Period

Applicable only if Tcomputed comes from a “properly
substantiated analysis.”

The period shown on this slide is the MAXIMUM period you are allowed to 
use, and this is only allowed if a detailed structural analysis has been used 
to provide a computed period. 
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ASCE 7 Smoothed Design Acceleration Spectrum
(for Use with ELF Procedure)
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Varies

The ASCE-7 spectrum has three basic branches.  Various formulas are 
provided for the third part and, hence, the equation is not shown on the slide. 
If the analyst used a true response spectrum, there are limitation on the 
base shear that is computed, and this limitation is tied to the ELF shear.  
More details are provided in the topic on seismic load analysis.
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R is the response modification factor, a 
function of system inelastic behavior.  This is covered
in the topic on inelastic behavior.  For now, use
R = 1, which implies linear elastic behavior.

I is the importance factor which depends on the 
Seismic Use Group.  I = 1.5 for essential facilities,
1.25 for important high occupancy structures,
and 1.0 for normal structures.  For now, use I = 1.

A preview of the terms R and I is provided.  More detail is given in later 
topics.
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Distribution of Forces Along Height
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ASCE 7 provides an empirical “fix” for the case where higher modes will 
influence the accuracy of the ELF method.  Computationally, the correction 
is provided by the use of the exponent k on the height term of the expression 
that is used to compute the relative value of base shear applied at each level 
of the structure.
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k Accounts for Higher Mode Effects

k = 1 k = 2

0.5 2.5

2.0

1.0

Period, sec

k

k = 0.5T + 0.75
(sloped portion only)

The higher the fundamental period, the more important the higher mode 
effect.  Hence, ASCE ties the exponent k to the period.  For short period 
structures (T < 0.5 sec), k=1 and the first mode shape is linear.  For higher 
period (presumably taller) structures (T > 2), the mode shape is parabolic 
with k = 2.
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W = 579k

W = 722k

ELF Procedure Example (Story Forces)

146 k

120 k

61 k

327 k

146 k

266 k

Story Shear (k)

327 k

V = 327 kips              T = 1.37 sec     k = 0.5(1.37) + 0.75 = 1.435

(125 k)

(125 k)

(77 k)

The example has been reworked to include the “higher mode effect.” Here 
the values shown in red (parenthesis) are for the case where k=1.   There is 
a slight improvement as there is now higher shear towards the top.  The 
shear is still less than that given be the response spectrum method, 
however.
A fundamental issue still not overcome in this example is that the structure 
has nonuniform mass and stiffness and, hence, is not particularly suitable for 
ELF analysis.  It is for this reason that ASCE-7 has restrictions on the use of 
ELF. 
Note that the structure with uniform mass and stiffness (Example 2) with 
exponent k=1.435 gives a much better match with ELF.
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ASCE 7 ELF Procedure Limitations

• Applicable only to “regular” structures with T
less than 3.5Ts. Note that Ts = SD1/SDS.

Adjacent story stiffness does not vary more than 30%.

Adjacent story strength does not vary more than 20%.

Adjacent story masses does not vary more than 50%.

If violated, must use more advanced analysis (typically
modal response spectrum analysis).

This slide shows the limitation on use of the ELF procedure as given in 
Table 12.3-2 of ASCE-7.
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ASCE 7 ELF Procedure
Other Considerations Affecting Loading

• Orthogonal loading effects
• Redundancy 
• Accidential torsion
• Torsional amplification
• P-delta effects
• Importance factor
• Ductility and overstrength

Aside for distributing forces along the height of the structure, the standard 
has additional requirements.  Many of these requirements are also 
applicable to designs based on response history and response spectrum 
analysis.
These items are covered in more detail in later topics.


