Mario Paz • Young Hoon Kim

Structural Dynamics

Theory and Computation

Sixth Edition

Contents

	System			
1	Undar	nped Single Degree-of-Freedom System	3	
_	1.1	Degrees of Freedom	3	
	1.2	Undamped System	5	
	1.3	Springs in Parallel or in Series	6	
	1.4	Newton's Law of Motion	7	
	1.5	Free Body Diagram	8	
	1.6	D'Alembert's Principle	9	
	1.7	Solution of the Differential Equation of Motion	10	
	1.8	Frequency and Period	12	
	1.9	Amplitude of Motion	14	
	1.10	Response of SDF Using MATLAB Program	18	
	1.11	Summary	20	
	1.12	Problems	21	
2	Damp	ed Single Degree-of-Freedom System	29	
	2.1	Viscous Damping	29	
	2.2	Equation of Motion	29	
	2.3	Critically Damped System	30	
	2.4	Overdamped System	31	
	2.5	Underdamped System	32	
	2.6	Logarithmic Decrement	33	
	2.7	Response of SDF Using MATLAB Program	39	
	2.8	Summary	40	
	2.9	Problems	41	
3	Respo	onse of One-Degree-of-Freedom System to Harmonic		
	Loadi	ing	45	
	3.1	Harmonic Excitation: Undamped System	45	
	3.2	Harmonic Excitation: Damped System	47	
	3.3	Evaluation of Damping at Resonance	54	
	3.4	Bandwidth Method (Half-Power) to Evaluate Damping.	55	
	3.5	Energy Dissipated by Viscous Damping	57	
	3.6	Equivalent Viscous Damping	58	

Part I Structures Modeled as a Single-Degree-of-Freedom

	3.7	Response to Support Motion	60
		3.7.1 Absolute Motion	60
		3.7.2 Relative Motion	65
	3.8	Force Transmitted to the Foundation	69
	3.9	Seismic Instruments	71
	3.10	Response of One-Degree-of-Freedom System to	
		Harmonic Loading Using MATLAB	73
	3.11	Summary	76
	3.12	Analytical Problem	78
	3.13	Problems	79
4	Respo	nse to General Dynamic Loading	85
	4.1	Duhamel's Integral – Undamped System	85
		4.1.1 Constant Force	86
		4.1.2 Rectangular Load	88
		4.1.3 Triangular Load	90
	4.2	Duhamel's Integral-Damped System	95
	4.3	Response by Direct Integration	95
	4.4	Solution of the Equation of Motion	97
	4.5	Summary	104
	4.6	Analytical Problems	105
	4.7	Problems	108
5	Respo	nse Spectra	115
•	5.1	Construction of Response Spectrum	115
	5.2	Response Spectrum for Support Excitation	113
	5.3	Tripartite Response Spectra	110
	5.4	Response Spectra for Elastic Design	123
	5.5	Influence of Local Soil Conditions	125
	5.6	Response Spectra for Inelastic Systems	120
	5.7	Response Spectra for Inelastic Design	120
	5.8	Seismic Response Spectra Using MATLAB	131
	5.9	Summary	135
	5.10	Problems	139
			-
6		ear Structural Response	143
	6.1	Nonlinear Single-Degree-of-Freedom Model	143
	6.2	Integration of the Nonlinear Equation of Motion	145
	6.3	Constant Acceleration Method	146
	6.4	Linear Acceleration Step-by-Step Method	148
	6.5	The Newmark: β Method	150
	6.6	Elastoplastic Behavior	156
	6.7	Algorithm for Step-by-Step Solution for Elastoplastic	
		Single-Degree-of-Freedom System	158
	6.8	Response for Elastoplastic Behavior Using MATLAB	163
	6.9	Summary	166
	6.10	Problems	167

Part II Structures Modeled as Shear Buildings

7	Free V	ibration of a Shear Building	173
	7.1	Stiffness Equations for the Shear Building	173
	7.2	Natural Frequencies and Normal Modes	176
	7.3	Orthogonality Property of the Normal Modes	181
	7.4	Rayleigh's Quotient	186
	7.5	Summary	187
	7.6	Problems	188
8	Forced	Motion of Shear Buildings	193
	8.1	Modal Superposition Method	193
	8.2	Response of a Shear Building to Base Motion	199
	8.3	Response by Modal Superposition Using MATLAB	205
	8.4	Harmonic Force Excitation	207
	8.5	Harmonic Response: MATLAB Program	211
	8.6	Combining Maximum Values of Modal Response	214
	8.7	Summary	214
	8.8	Problems	215
9	Reduc	tion of Dynamic Matrices	219
	9.1	Static Condensation	219
	9.2	Static Condensation Applied to Dynamic Problems	222
	9.3	Dynamic Condensation	233
	9.4	Modified Dynamic Condensation	241
	9.5	Summary	245
	9.6	Problems	246

Part III Framed Structures Modeled as Discrete Multi-Degree-of-Freedom Systems

10	Dynan	nic Analysis of Beams	251
	10.1	Shape Functions for a Beam Segment	251
	10.2	System Stiffness Matrix	256
	10.3	Inertial Properties-Lumped Mass	259
	10.4	Inertial Properties—Consistent Mass	260
	10.5	Damping Properties	264
	10.6	External Loads	265
	10.7	Geometric Stiffness	266
	10.8	Equations of Motion	270
	10.9	Element Forces At Nodal Coordinates	276
	10.10	Program 13—Modeling Structures as Beams	278
	10.11	Summary	284
	10.12	Problems	285
11	Dynan	nic Analysis of Plane Frames	291
	11.1	Element Stiffness Matrix for Axial Effects	291
	11.2	Element Mass Matrix for Axial Effects	293
	11.3	Coordinate Transformation	297
	11.4	Modeling Structures as Plane Frames Using MATLAB.	304

	11.5	Dynamic Analysis of Plane Frames Using MATLAB	307
	11.6	Summary	312
	11.7	Problems	312
12	Dynan	nic Analysis of Grid Frames	317
	12.1	Local and Global Coordinate Systems	317
	12.2	Torsional Effects	318
	12.3	Stiffness Matrix for a Grid Element	320
	12.4	Consistent Mass Matrix for a Grid Element	320
	12.5	Lumped Mass Matrix for a Grid Element	321
	12.6	Transformation of Coordinates	321
	12.7	Modeling Structures as Grid Frames Using MATLAB	327
	12.8	Summary	330
	12.9	Problems	331
13	Dynar	nic Analysis of Three-Dimensional Frames	335
	13.1	Element Stiffness Matrix	335
	13.2	Element Mass Matrix	337
	13.3	Element Damping Matrix	337
	13.4	Transformation of Coordinates	338
	13.5	Differential Equation of Motion	342
	13.6	Dynamic Response	342
	13.7	Modeling Structures as Space Frames	
		Using MATLAB	342
	13.8	Summary	347
14	Dynar	nic Analysis of Trusses	349
	14.1	Stiffness and Mass Matrices for the Plane Truss	349
	14.2	Transformation of Coordinates	351
	14.3	Stiffness and Mass Matrices for Space Trusses	361
	14.4	Equation of Motion for Space Trusses	363
	14.5	Modeling Structures as Space Trusses Using MATLAB.	364
	14.6	Summary	368
	14.7	Problems	368
15	-	nic Analysis of Structures Using the Finite	
		ent Method	371
	15.1	Plane Elasticity Problems	372
		15.1.1 Triangular Plate Element for Plane	~~~
		Elasticity Problems	373
	15.2	Plate Bending	378
		15.2.1 Rectangular Element for Plate Bending	379
	15.3	Summary	384
	15.4	Problems	385
16		History Response of Multi-Degree-of-Freedom	0.00
	•	ns	389
	16.1	Incremental Equations of Motion	389
	16.2	The Wilson- θ Method	391

	16.3	Algorith	m for Step-by-Step Solution of a Linear	
		System	Using the Wilson- θ Method	393
		16.3.1	Initialization	393
		16.3.2	For Each Time Step	393
	16.4	Respons	e by Step Integration Using MATLAB	397
	16.5		wmark Beta Method	401
	16.6		astic Behavior of Framed-Structures	402
	16.7	-	Stiffness Matrix	402
	16.8		Mass Matrix	405
	16.9		of Plastic Hinges	407
	16.10		ion of Member Ductility Ratio	408
	16.11		ÿ	409
	16.12		S	409
Par	t IV S	tructures	s Modeled with Distributed Properties	
17	Dynan	nic Analy	sis of Systems with Distributed Properties	415
1,	17.1		Vibration of Uniform Beams	415
	17.2		of the Equation of Motion in Free Vibration	417
	17.2		Frequencies and Mode Shapes for	
	17.5			418
		17.3.1	Both Ends Simply Supported	418
		17.3.1	Both Ends Free (Free Beam)	421
		17.3.3	Both Ends Fixed	422
		17.3.4	One End Fixed and the Other End Free	122
		17.5.4	(Cantilever Beam)	424
		17.3.5	One End Fixed and the Other Simply	727
		17.5.5	Supported	425
	17.4	Orthogo	nality Condition Between Normal Modes	426
	17.4	-	Vibration of Beams	427
	17.5		c Stresses in Beams	432
			y	433
	17.7		y	434
	17.8			434
18	Discre	tization o	of Continuous Systems	437
	18.1	Dynami	c Matrix for Flexural Effects	437
	18.2	Dynami	c Matrix for Axial Effects	439
	18.3	Dynami	c Matrix for Torsional Effects	441
	18.4	Beam F	lexure Including Axial-Force Effect	443
	18.5	Power S	eries Expansion of the Dynamic Matrix	
		for Flex	ural Effects	445
	18.6	Power S	eries Expansion of the Dynamic Matrix	
			and for Torsional Effects	447
	18.7	Power S	eries Expansion of the Dynamic Matrix	
			g the Effects of Axial Forces	447

Including the Effects of Axial Forces44718.8Summary448

Part V	Special Topics: Fourier Analysis, Evaluation of Absolute
	Damping, Generalized Coordinates

19	Fourie	r Analysis and Response in the Frequency Domain	453
	19.1	Fourier Analysis	453
	19.2	Response to a Loading Represented by Fourier Series	454
	19.3	Fourier Coefficients for Piecewise Linear Functions	456
	19.4	Exponential Form of Fourier Series	457
	19.5	Discrete Fourier Analysis	458
	19.6	Fast Fourier Transform	461
	19.7	Response in the Frequency Domain Using MATLAB.	463
	19.8	Summary	469
	19.9	Problems	470
20	Evalua	ation of Absolute Damping from Modal	
	Dampi	ing Ratios	477
	20.1	Equations for Damped Shear Building	477
	20.2	Uncoupled Damped Equations	478
	20.3	Conditions for Damping Uncoupling	479
	20.4	Summary	487
	20.5	Problems	487
21	Gener	alized Coordinates and Rayleigh's Method	491
	21.1	Principle of Virtual Work	491
	21.2	Generalized Single-Degree-of-Freedom System-Rigid	
		Body	492
	21.3	Generalized Single-Degree-of-Freedom System-	
		Distributed Elasticity	495
	21.4	Shear Forces and Bending Moments	500
	21.5	Generalized Equation of Motion for a Multistory	
		Building	504
	21.6	Shape Function	506
	21.7	Rayleigh's Method	510
	21.8	Improved Rayleigh's Method	517
	21.9	Shear Walls	520
	21.10	Summary	523
	21.11	Problems	524
Par	t VI I	Random Vibration	
22	Randa	om Vibration	531
ha ha	manut	JALL Y LIVE GELEVAL	551

22	Rando	Random Vibration			
	22.1	Statistical Description of Random Functions	532		
	22.2	Probability Density Function	534		
	22.3	The Normal Distribution	536		
	22.4	The Rayleigh Distribution	537		
	22.5	Correlation	538		
	22.6	The Fourier Transform	542		
	22.7	Spectral Analysis	543		
	22.8	Spectral Density Function	547		

	22.9	Narrow-Band and Wide-Band Random Processes	550
	22.10	Response to Random Excitation: Single-Degree-of-	
		Freedom System	553
	22.11		
		Freedom System	559
		22.11.1 Relationship Between Complex Frequency	
		Response and Unit Impulse Response	559
		22.11.2 Response to Random Excitation: Two-	
		Degree-of-Freedom System	561
		22.11.3 Response to Random Excitation: N Degree	
		of Freedom System	565
	22.12	Summary	567
	22.13	Problems	568
Par	t VII	Earthquake Engineering	
	_		
23	•	nic Method	575
	23.1	Modal Seismic Response of Building	575
		23.1.1 Modal Equation and Participation Factor	575
		23.1.2 Modal Shear Force	576
		23.1.3 Effective Modal Weight	578
		23.1.4 Modal Lateral Forces	579
		23.1.5 Modal Displacements	579
		23.1.6 Modal Drift	579
		23.1.7 Modal Overturning Moment	580
		23.1.8 Modal Torsional Moment	580
	23.2	Total Design Values	580
	23.3	Scaling of Results	582
	23.4	Summary	588
	23.5	Problems	588
24	IBC-2	018 and ASCE 7-16	589
	24.1	Response Spectral Acceleration: S _S , S ₁	589
	24.2	Soil Modified Response Spectral Acceleration:	
		$S_{MS}, S_{M1}, \ldots, \ldots$	590
	24.3	Design Response Spectral Acceleration: S_{DS} , S_{D1}	590
	24.4	Site Class Definition: A, B F	591
	24.5	Risk Category and Seismic Importance Factor $(I_e) \dots$	592
	24.6	Seismic Design Category (A, B, C, D, E and F)	592
	24.7	Design Response Spectral Curve: S _a Vs. T	593
	24.8	Determination of the Fundamental Period	595
	24.9	Minimum Lateral Force Procedure [ASCE 7-16:	
		Section 1.4.3]	596
	24.10	Simplified Lateral Force Analysis Procedure	
		[ASCE 7-16: Section 12.14.8 and IBC 2018	
		Section 1613.2.5.2]	596
		24.10.1 Seismic Base Shear	597
		24.10.2 Response Modification Factor <i>R</i>	597
		24.10.3 Vertical Distribution of Lateral Forces	598

24.11	Equivale	ent Lateral Force Procedure [ASCE 7-16:	
	Section 1	12.8]	598
	24.11.1	Distribution of Lateral Forces [ASCE 7-16:	
		Section 12.8.3]	600
	24.11.2	Overturning Moments [ASCE 7-16: Section	
		12.8.5]	601
	24.11.3	Horizontal Torsional Moment	601
	24.11.4	<i>P</i> -Delta Effect (P– Δ) [ASCE 7-16: Section	
		12.8.7]	601
	24.11.5	Story Drift [ASCE 7-16: Sect. 12.8.6]	602
24.12	Redunda	ncy [ASCE 7-16: Section 12.3.4]	603
24.13	Earthqua	ke Load Effect [ASCE 7-16 Section 12.4.2]	604
24.14	Building	Irregularities [ASCE 7-16 Section 12.3.2.1]	604
24.15	Summar	y	609
Append	lices		611
Selected	d Bibliogr	aphy	625
Index .	•••••		629