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Structural, Electronic, Optical and Transport
Properties of Pristine and Alloyed Ultrathin
Nanowires of Noble Metals

1 Introduction

In the last two decades, nanoscience and nanotechnology have initiated much
interest in fundamental research of the properties of nanomaterials and their
industrial applications. As a result nanostructured materials as a foundation
of nanoscience and nanotechnology, have become the hottest topics of research
[2, 3,49, 147]. Normally, nanostructures are defined as the structures with at
least one dimension less than 100 nm. In this dimension, the number of atoms
are countable, making the properties of nanostructures different from those of
their bulk counterparts due to distinct density of states (DOS) and increased
surface to volume ratio. According to the number of dimensions less than 100
nm, nanostructures can be classified into two-dimensional (2D, nanofilm), one-
dimensional (1D, nanotube or nanowire), and zero-dimensional (0D, quantum
dot) structures.

1.1 One-dimensional nanostructures

In a 1D nanostructure there is a confinement in two dimensions perpendicu-
lar to the longitudinal extent of the structure. This confinement is quantum
mechanical in nature. Due to the combination of both quantum confinement
in the nanoscaled dimensions and the bulk properties in the third dimension,
many interesting properties and applications can be expected based on a wide
variety of 1D nanostructures. Also it has been observed [1] that 1D nanostruc-
tures represent the smallest dimension structure that can efficiently transport
electrical carriers and can be exploited as both the wiring and device elements
in future architectures for functional nanosystems.

Depending on the topology and morphology, the 1D nanostructures can be
classified into following main groups:
e Nanotubes [3].

e Nanowires [4,5].

Coaxial cable structures [6].

Side-by-side biaxial nanowires [7].

Nanobelts (or nanoribbons) [8].



The first three nanostructures listed above have a common characteristic of
cylindrical cross section, biaxial nanowires have the stacking of two parallel
nanowires of different materials and nanobelts have a rectangular cross section
(belt like morphology). The distinctive geometrical shapes of these 1D nanostuc-
tures are important as their mechanical, electrical, optical, and thermal trans-
port properties are geometry dependent. To investigate the uniqueness offered
by these shapes, new techniques have been developed to measure the properties
of individual wire-like structures quantitatively and their structures are well
characterized by electron microscopy techniques [2].

1.2 Review of Literature

The quantum confined nanowires have a wide range of applications in electron-
ics [60-69], optoelectronics [10-13], thermoelectrics [70, 71], optics [62, 72, 73],
chemo and bio-sensing [18, 21,2527, 74,75, 77], magnetic media [78-85], pho-
tocatalysis [30-32] and piezoelectronics [33-39] etc. As a result of the rapid
progression of modern nanoelectronics, nanowires (NWs) have begun to draw
the attention of researchers in cross disciplinary areas of physics, chemistry and
engineering. In nanoelectronics, nanowires can function as interconnects in the
fabrication of integrated circuits [64, 65], resonators [66-69], diodes [9-13, 60],
light emitting diodes (LED) [61], multifunctional devices [63], logic gates [18—-23]
using nanowire field-effect transistors (NW-FETSs) [62] and single electron tran-
sistors [24]. Their small size and their high electrical conductivity makes them
very attractive for applications in nanoelectronics [76].

Sensing is another area in which the application of nanowires is expected to
have a great impact. Nanowire sensors have been reported, that can detect the
presence of many gases like Oy, NOy and N Hjy [74] at very low concentrations.
Nanowires also have been used for the detection of ultraviolet light [75] as well
as highly sensitive biological and chemical species [77]. These sensors often
function on the basis of changes in the electrical or physical properties of the
nanowires when they come in contact of targeted chemical/biological [74-76]
species. The sensing capabilities of nanowires can be controlled by selective
doping that raises their affinities to certain substances. Also the nanowires
of noble metals particularly have been used as barcode tags for optical read
out [86,87]. Single-crystalline NW have also been used in batteries [47], solar
cells [48] and photoelectrochemcal cells [31] for effective charge separation and
collection.

In these areas, NW structures exhibit unique and superior properties com-
pared to their bulk counterparts, resulting from 1D confined transport of elec-
trons or photons, large surface area, quantum confinement, and excellent me-
chanical properties [40-46].

In recent years, long metallic nanowires with well defined structures and
a diameter of several nanometers have been fabricated using different meth-
ods [88-91]. For example, stable gold nanobridge with 0.8-3 nm in thickness
and 5-10 nm in length has been produced by electron beam irradiation of gold
(001) oriented thin film [88]. Also suspended gold nanowire with 6 nm in length



and diameter down to 0.6 nm have been made and the novel multishell structure
were observed [91]. In 1998, Ohnishi et. al. [53] used scanning tunneling micro-
scope and Yanson et. al. [54] through mechanically break-junction experiments
produced atomically thin bridge of gold atoms and calculated the conductance
equal to G, = 2¢%/h and the interatomic distance was reported as 2.6 A [92].
The break-junction experiments have also been performed for Ag [55], Cu [52]

and Pt [52] chains, with conductance nearly 1G, (G, = %) for Cu, Ag and Au
and 1.5G,, to 2.5G,, for Pt chains.

Noble metal nanowires, which is the subject matter of the proposed work,
have been drawing a great deal of attention due to their significantly different
structural, electronic, magnetic, optical and transport properties compared to
their bulk manifestation [49,50]. The increased surface to volume ratio and
increased density of states (DOS) makes them different from their corresponding
bulk materials. Also the DOS does not vanish at subband edges and remain
finite. This makes these materials an interesting and exciting subject to explore
optical properties. Noble metal nanowires, particularly, can also be used to
create materials that exhibit negative index of refraction in the near-infrared
region [51]. The finite monoatomic chains of noble metals can be produced by
mechanical break junction experiments [52-55] for Cu, Ag, Au and Pt chains.
Many innovative experimental studies on one dimensional systems [53,54,56,57],
revealing their fascinating properties, have boosted related theoretical research.
Depending upon the type of structure, the electronic, magnetic, optical and
transport properties of these systems show interesting variations [58, 59].

Very few studies have been made of the properties of metal alloys at the atomic
scale (alloyed metal nanowires) [93-98]. In 2002 and 2003, point contact studies
were made of random alloys of a transition metal and a noble metal, namely
gold and palladium [93], copper and nickel [94] and gold and platinum [96] for
different concentration ratios. In these experiments peak has been found at
1G,, that is characteristic of the noble metals, survives for transition metal
concentrations well over 50%. The interpretation for this observation requires
further study. There is an evidence for segregation of the noble metals away
from the contact under the application of a high bias current [98].

2 Theoretical Background

The universe around us is made of condensed matter i.e. matter whose en-
ergy is low enough that it gets condensed to form stable system of atoms and
molecules usually in solid or liquid phases. These atoms and molecules are fur-
ther made up of electrons and nuclei. The quantum mechanics has proven to be
the best formulation to describe interacting system of electrons and nuclei. The
Schrédinger equation is the fundamental quantum mechanical equation that de-
scribes a system of electrons and nuclei in terms of wave function 1, which is
fundamental entity in quantum mechanics.



The systems under study are indeed many electron systems and for a multi-
electron system the Schrodinger wave equation can be written as:
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Here ¢ and j are indices used for electrons and A and B are the indices used for
nuclei. On the left hand side of above equation first two terms represent the ki-
netic energy of electrons and nuclei respectively and the following terms describe
the inter-nuclear, electron-electron and electron-nuclear Coulomb interaction en-
ergies respectively. If we use atomic units i.e. (e = m, = h = 4we, = 1), the
Schrodinger equation becomes
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The ultimate aim of any physicist or a chemist for a typical system is to solve
this equation.

However, as Paul Dirac at the dawn of theoretical quantum mechanics has said
that all the answers of chemistry could be calculated from schrédinger equation
[103], but it is the most challenging task to solve this equation analytically.
Unfortunately the schrodinger equation can be solved exactly for only a few
systems such as hydrogen atom and even numerically to systems containing
small number of electrons [102].

2.1 Approximations

To solve the equation (1) one uses various approximations, which do not sig-
nificantly affect the involved physics of the system under study and facilitate
meaningfully the study of variety of many body problems.

2.1.1 Born-Oppenheimer approximation

One of the most simplifying approximation is based upon the idea that mass of
electron is much smaller than that of the nucleus and thus electrons move much
more rapidly than nucleus. Thus for a given set of positions of nuclei, electrons
adjust almost immediately to movement of nuclei. This is known as Born-
Oppenheimer approximation [99]. In other words we can say that forces on
both electrons and nuclei due to their charge are of same order of magnitude, so
changes which occur in their momenta as a result of these forces must also be
of the same magnitude. But since nuclei are much more massive than electrons
so accordingly they have much smaller velocities. While solving the schrodinger
equation given by equation (1), one can assume that nuclei are stationary and
solve it for electronic ground state first and then calculate the energy of the
system in that configuration and then later solve for nuclear motion. This helps
to separate the electronic and nuclear motion. Furthermore, this allows us to
separate the wavefunction as a product of nuclear and electronic terms. The
electronic wave function ¢.(r, R) is solved for a given set of nuclear coordinates
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and the electronic energy obtained contributes a potential term to the motion
of nuclei described by the nuclear wave function ¢y (R).
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2.1.2 Independent Electron Approximation

Another approximation called independent electron approximation [120] which
assumes electrons to be non-interacting with each other has quantum manifes-
tation because electrons obey Pauli’s exclusion principle. This manifestation
of Pauli’s exclusion principle resulted in Hartree-Fock method and allows one
to express total Hamiltonian for N-electron system (H) as summation of single
electron Hamiltonian (H;) i.e. H =), H; and total wave function as Slater de-
terminant of single electron wave functions. The slater determinant approxima-
tion does not take into account Coulomb Correlation leading to a total electronic
energy different from the exact solution of non-relativistic Schrédinger equation
within Born-Oppenheimer Approximation. Therefore, Hartree-Fock Energy is
always above the exact energy. This difference is called the Correlation Energy,
a term coined by Loéwdin [100].

2.2 Density Functional Theory: An Ab initio Approach

To overcome the difficulty of correlation energy and problem of 3N variables,
a new approach ‘Density Functional Theory (DFT)’ was adopted for elec-
tronic structure calculations. In 1964 Hohenberg and Kohn, showed in a con-
ference paper [101] that schrodinger equation (for N electron system containing
wave function of 3N variables) could be reformulated as an equation of electron
density with only three variables. This theory gives approximate solutions to
both Exchange and Correlation Energies. The main objective of DFT is to re-
place the many-particle electronic wavefunction with the electronic density as
the basic quantity. Our interest is in solving Schrodinger’s equation by means
of ab initio Density Functional Theory (DFT) as described below.

The term Ab initio used here originates from Latin word which means ‘from
the beginning’. A method is said to be Ab initio or from first principles if it
relies on basic and established laws of nature without additional assumptions
or special models based upon particular material. Density functional theory
(DFT) is an extremely successful ab initio approach to compute properties of
matter at microscopic scales. DFT is a quantum mechanical modelling method
used in physics to investigate the electronic structure (principally the ground
state) of many-body systems, in particular atoms, molecules, and the condensed
phases (bulk, surfaces, chains).



The fundamental pillars of density functional theory are two physical theo-
rems proved by Kohn and Hohenberg [101,118,119]. The first Hohenberg Kohn
(HK) theorem states that: The ground-state energy from Schrédingers equa-
tion is a unique functional of the electron density. This theorem provides one
to one mapping between ground state wave function and ground state charge
density. The first HK theorem is stated as: the ground state charge density can
uniquely describe all the ground state properties of system. The fundamental
concept behind density functional theory is that charge density (3-Dimensional)
can correctly describe the ground state of N-particle instead of explicit usage of
wave function (3N-Dimensional) [117]. Thus by using charge density instead of
wave functions a 3N dimensional problem reduces to just a three dimensional
problem.

The second HK theorem states that: The electron density that minimizes the
energy of the overall functional is the true electron density corresponding to the
full solution of the Schrodinger equation. If the true functional form of energy
in terms of density gets known, then one could vary the electron density until
the energy from the functional is minimized, giving us required ground state
density. This is essentially a variational principle and is used in practice with
approximate forms of the functional designed by quantum chemists/physicists
to study different types of systems [120]. The simplest possible choice of a
functional can be a constant electron density all over the space.

The total charge density can be written in terms of single particle wave func-

tions as:
n(r) =Y () (r) (4)

An important step towards applying DFT to real systems was taken by Kohn
and Sham in 1965 in the form of Kohn-Sham (KS) [119] equations. The Kohn-
Sham equation reformulate the Schrodinger equation of interacting electrons
moving in an external ion potential into a problem of non interacting elec-
trons moving in an effective potential. The KS equations are defined by a
local effective external potential (called Kohn-Sham potential) in which the
non-interacting particles move. The Kohn-Sham equations have the form

<2h;v2 + Veff(l")> Yu(r) = euibu(r) (5)

where

Ve (r) = V(r) + Vu(r) + Vxc(r) (6)

The contribution to the total energy here gets divided into two parts. The
first part contains terms: the kinetic energy (—%VQ), the hartree potential en-
ergy (Via(r)) and classical Coulomb energy (V(r)) and second part contains the
exchange correlation energy (Vxc(r)) which includes many body and quantum
effects. It is customary to divide the exchange correlation into exchange part
(for which there exists an exact expression although computationally expensive
to calculate) and correlation part (which is unknown).



Kohn and Sham introduced a set of orbitals from which electron density can
be calculated. These Kohn -Sham orbitals do not in general correspond to actual
electron density. The only connection the Kohn-Sham orbitals have to the real
electronic wave function is that they both give rise to the same charge density.
To calculate the kinetic energy term, the Kohn-Sham orbitals are used as shown
below:

T, [0 = ﬁ_vj [ v (—f;vz) () (7)

On the right-hand side of equation (6) there are three potentials, V', Vi, and
Vxc. The first potential defines the interaction of an electron with different
atomic nuclei present which is basically Coulomb potential. One takes care of
this term with the help of a trick which replaces Coulomb potential by a Pseu-
dopotential [120]. Tt is well known that since core electrons do not participate
in bond formation, it was natural to assume that they can be replaced with a
pseudo core. That means we have to deal with fewer number of electrons (va-
lence electrons). Thus a pseudopotential is an approximation for the full core
potential. How good a pseudopotential is, infact successful for the generated
pseudopotential decided by how well it reproduce the results from all electron
calculations. The effort in generating a pseudopotential lies in the fact that,
all electron wave function must match with the pseudo wave function after a
certain cut off radii.

The second potential is called the Hartree potential. This potential describes
the Coulomb repulsion between the electron being considered in one of the
Kohn-Sham equations and the total charge density defined by all electrons in the
problem. The Hartree potential includes a so called self-interaction contribution
because the electron we are describing in the Kohn-Sham equation is also part of
the total electron density, so part of Vi involves a Coulomb interaction between
the electron and itself. The self interaction is unphysical, and the correction for
it is one of several effects that are lumped together into the final potential in
the KS equations, Vx¢, which defines exchange and correlation contributions
to the single electron equations.

To solve KS equation we need Hartree potential which depends upon the
charge density of the system and to know the charge density we need the single
particle wave functions, which can be obtained only after solving KS equations.
Thus the problem reduces to solving a set of self consistent equations. They
are solved in an iterative way by starting with a trial set of single particle wave
functions from which Hartree potential is obtained. The solution obtained in
this way is called self consistent solution. The algorithm used to solve it is as
given in figure 1.

2.3 Local Density Approximation(LDA)

The most important potential term in KS equations is Vx¢ [103] which is used
to describe exchange and correlation effects. Unfortunately, exact form of the
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Figure 1: Algorithm to solve Kohn Sham equations in DFT Codes

exchange correlation functional whose existence is ensured by the Hohenberg-
Kohn theorem is not known. There is only one case of uniform electron gas
where this functional can be derived exactly as the electron density is constant
at all points in space. Therefore, the exchange-correlation potential at each po-
sition is set to be obtained from the electron density observed at that position.
Since this approximation uses only the local density to define the approximate
exchange correlation functional, so it is called the local density approximation
(LDA) [121]. Although, LDA gives a way to completely define the Kohn-Sham
equations, but these equations do not exactly solve the true Schrédinger equa-
tion because the true exchange correlation functional are not being used rather
are always approximately known.

2.3.1 Beyond LDA

Apart from LDA, many other functionals tailored to explain properties of par-
ticular systems have been tried for DFT calculations. After LDA, the best
known class of functional that has been defined is generalized gradient correc-
tion (GGA). GGA uses information about the local electron density and also
the local gradient in the electron density [122]. Though GGA includes more
physical information than LDA, it is not necessary that it must be more ac-
curate. There are a large number of distinct GGA functionals depending on
the ways in which information from the gradient of the electron density can be
included in a GGA functional.

2.3.2 Choosing a Functional

The choice of the functional is the main issue in DFT. The functionals which
use LDA are CA (Ceperley-Alder) [123] and PW92 [121] (Perdew-Wang-92)
and the functionals which use GGA are PBE [122] (Perdew-Burke-Ernzerhof),
revPBE [124] (Revised Perdew-Burke-Ernzerhof), PBEsol [125] (Perdew-Burke-
Ernzerhof for solids). The most popular functionals are pure density functionals
and hybrid functionals. Altough LDA and GGA are very useful but have prob-
lems in certain applications. The main problems with LDA and GGA are the
underestimation of band gaps, failure to describe localized electrons in both
solids and molecules, absence of Vander Waals interactions, etc. [126].



2.3.3 Choosing a Wavefunction

There is another very important aspect of Kohn-Sham equation which lies in
its solution described by wave function v, (r), which arises when one sets up a
simulation. The important question is how does one represent the wavefunction
inside the supercell. The wave function of the full macro-lattice is obtained by
combining these via Bloch functions [127] (k-point sampling). This is known
as basis set [120]. There are four main groups of basis sets used in literature
namely: plane wave [120], Gaussian [128], augmented [129] and numerical basis
set [130-132] and is the starting point of the solution of Kohn-sham equation.
The choice of numerical basis sets makes DFT applicable for realistic large
systems.

Atomic orbitals as a basis set have been used for a long time in the electronic
structure calculations of molecules and bulks. Especially, in covalent molecular
systems, one particle wave functions are well described by a linear combination
of atomic orbitals (LCAO) [130] because of the nature of localization in the
electronic states, which is a reason why chemists prefer to use the atomic or-
bitals. On the other hand, in the solid-state physics, LCAO has been regarded
as a somewhat empirical method such as a tool for an interpolation of elec-
tronic structure calculations with a high degree of accuracy. However, during
the last decade, LCAO has been attracting much interest from different points of
view, since great efforts have been made not only for developing order N (O(N))
methods of the eigen value problem, but also for making efficient and accurate
localized orbitals as a basis set being suitable for O(N) [130-132] methods to
extend the applicability of density functional theories (DFT) to realistic large
systems. Once atomic orbitals are chosen one can expand a Kohn-Sham (KS)
orbital ¢, of a given system using these atomic orbitals ¢;, in a form known as
linear combination of atomic orbitals (LCAO) as:

1%(1“) = Z cmiaqﬁia(r - ri) (8)

where i is a site index, a = (plm) is an organized orbital index, and ¢;,(r) =
Yim (0, #)Ripi(r). Here R,y is the radial wave function, which depends on angu-
lar momentum quantum number 1, site index i, and a multiplicity index p and
Yim spherical wave function. The spherical wave function is well defined (fixed
shape), also one can play with shape (number of atomic orbitals per atom),
range (spatial extension of the orbitals) and shape of the radial part of wave
function.

Density functional theory of electronic structure is widely and successfully
applied in simulations throughout engineering and sciences. However, for many
predicted properties, there are known failures [103] that can be traced to the
delocalization error and static correlation error of commonly used approxima-
tions. A clear understanding of the errors from the most basic principles has
enabled the development of functionals to open new frontiers for applications of
DFT.



2.4 DFT and Structural Properties

The most basic type of DFT calculation is the computation of the structural
properties of the system under study. One can begin with electron density, then
use the trial density to define the effective potential. The Kohn-sham equations
with this effctive potential are solved self consistently till self consistent solu-
tion for electron density is obtained as stated earlier. The electron density so
obtained has been used to calculate the ground state energy for a given system.
One can use various methods for structure optimization. Congugate gradient
is one such structure optimization method. In these calculations one can allow
the position of atoms to change keeping the shape of the supercell constant or
can allow both atoms and supercell to change. The structure corresponding to
minimum energy tell us about the structural parameters (for example lattice
type, lattice constant, bond length, bond angle etc.).

2.5 DFT and Electronic Properies

One of the primary quantities used to describe the electronic state of a material
is the electronic density of states (DOS):

p(E)dE = number of electronic states with energies in the interval (E, E+dE)

Once the DFT calculations have been performed, the electronic DOS can
be determined by integrating the resulting electron density in k-space. There is
another very important electronic property known as band structure, that can
also be estimated using DFT. The DFT does not gives us exact band structure,
but gives us Kohn-Sham band structure. The Kohn-Sham band structure is
generally one-electron band structure and which is the dispersion of the energy
levels n as a function of k in the Brillouin zone. The Kohn-Sham eigenvalues
and eigenstates are not one-electron energy states for the electron in the solid.
However, it is common to interpret the solutions of Kohn-Sham equations as
one-electron states: the result is often a good representation, especially con-
cerning band dispersion. The main problem with the band structure is the
underestimation of band gap. Band gap error is not due to LDA, but can be
attributed to the discontinuity in the exact Vxc [104-107]. DFT is, in principle,
an exact theory to reproduce and predict ground state properties (e.g., the total
energy, the atomic structure, etc.). However, DFT is not a theory to address
excited state properties, such as the band plot of a solid. Hence, in principle,
Kohn-Sham based DFT is not a band theory, i.e., not a theory suitable for cal-
culating bands and band-plots. In principle time-dependent DFT can be used
to calculate the true band structure although in practice this is often difficult.

2.6 DFT and Dielectric Properties

DFT also have been used to perform dielectric properties calculations of ma-
terials. The formula used for calculating dielecric function [108,110,111] was
given as:

87T62 |<k+q’n|eiqr‘k7 m>|2(fkm - fk+q n)
= ]_ ? ’ 9
6((,07 q) + qu Z Ek,m — Ek—l—q,n + hw ¥ Z(S ( )

k,n,m

10



where Fx ,, fxn and |k,n) are the band energies, fermi distribution func-
tion and Kohn-Sham eigenfunctions. These are calculated via band structure
calculations within density functional theory (DFT). For metals we split the
dielectric function into two parts interaband contribution (taking q — 0) and
interband contribution [109, 110}. Using this dielectric function becomes

. 87T€ ka n(]- _fk m)|<k7n|p|k7m>|2
— mntra k s s
W) = W S / Z Brm — Bion) [(Brom — Bron)? — ()2 + 0]
T T
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Here p is the momentum operator, 7 is the relaxation time and w, is the
plasma frequency. Plasma frequency is related to the fermi velocity, integrated
over the fermi surface

87T6 1 8Ek
2 n _

The interband part of e (w ) is calculated from equation (10) and €; (w) follows
using Kramers-Kroning transformations [146] as shown below.

WGQ
a) =1+ 2p [ 22 4 (12)

here P denotes the principal value.

2.7 DFT and Transport Properties

Density functional theory has found its application to study non equilibrium
electron transport [112] also. DFT methods in transport study in general are
limited to two aspects:

e the geometry is restricted to either finite or periodic systems and
e electronic system must be in equilibrium.

DFT also give us the information about the electron density and total en-
ergy of the system. To study the non equilibrium electron transport, one uses
total electron density and Kohn-Sham wave functions as calculated using DFT.
Also to study electron transport, the model must be able to describe the non
equilibrium situation and also it must be capable of treating an infinite and non
periodic system.

Consider a situation as shown in figure 2. Two semi infinite electrodes, left
(L) and right (R) are coupled via contact region (C). The main challenge is
that how to couple the finite contact to infinite electrodes. The solution is the
green functions at zero bias voltage (i.e. equilibrium). In case when there is non-
equilibrium situation ¢.e. when potential is applied or two electrodes at different
chemical potentials, then non-equilibrium formulation of green functions [112—
116] is used.
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Semi—infinite bulk

Figure 2: A model to study transport properties

3 Computational Method

Today many open source and proprietary computer codes are available which
provide a way to calculate and study various properties of materials using den-
sity functional theory. These codes differ in terms of their implementations
used to solve KS equations. Depending on how atomic electrons are treated
they are termed as full potential (FP-Wien2k [133] and ELK [134]), pseudopo-
tential (SIESTA [135], CASTEP [136]), atomic sphere approximation (ASA-
SPRKKR [137]) or Muffin tin (LMTO [138]) based. They are also classified
depending upon what basis set is used to expand wave function. Various meth-
ods use plane wave (PW: Quantum Essperso, ABINIT, VASP, CASTEP), aug-
mented plane wave (APW: ELK, Wien2k, EXCITING) or localised atomic or-
bitals as basis sets (SIESTA, FPLO) [139]. We in our study of nanowires have
decided to use SIESTA (Spanish Initiative for Electronic Simulations on Thou-
sands of Atoms) code which is an open source code, using atomic orbitals and
is very efficient, easy to run on a quad core machine in parallel mode. In the
following, is given a brief description of SIESTA code which we are using to cal-
culate the structural, electronic, optical and transport properties of Nanowires
using DFT.

3.1 SIESTA Code

SIESTA (Spanish Initiative for Electronic Simulations on Thousands of Atoms)
is a calculation method and computer code which solves problems of condensed
matter using density functional theory (DFT). These problems are, generally,
related to ground-state properties. Energy/volume curves, phase diagrams (e.g.,
magnetic ones), phonons are all related to ground-state structural properties and
ab initio molecular dynamics. It uses norm-conserving pseudopotentials in their
fully nonlocal (Kleinman-Bylander) form. As stated above atomic orbitals are
used as a basis set, allowing inclusion of unlimited multiple-zeta and angular
momenta, polarization and off-site orbitals. This is an efficient code to perform
DFT calculations on systems containing large number of atoms.

SIESTA falls into category of methods with atom-centered basis sets. It means
that it allows choice of big unit cell volumes. For doing calculations with large
systems, we have to only optimize basis set.

12



3.2 Possibilities with SIESTA

SIESTA can be used to study the structural (lattice constant, bulk modulus,
cohesive energy, phonon spectrum), electronic (band structure, DOS), magnetic
(magnetic moment) and optical (real and imaginary part of dielectric function)
properties of Bulk materials, surfaces, clusters, CNT, nanowires, liquids (radial
distribution function), biomolecules. It can also be used to study the transport
properties of nanosystems at zero bias voltage and at some finite bias voltage.
In other words we can say that SIESTA is a very efficient method and a tool to
study various properties of condensed matter.

3.3 Structural Properties using SIESTA

Several options for structural optimization have been implemented in SIESTA.
CG [140](Coordinate optimization by conjugate gradients), Broyden [141] (Co-
ordinate optimization by a modified Broyden scheme) and FIRE (Coordinate
optimization by Fast Inertial Relaxation Engine (FIRE) [142]. These different
relaxation methods moves the atoms (and optionally the cell vectors) trying
to minimize the forces (and stresses) on them. One can calculate the struc-
tural parameters (lattice constant, bond length and bond angle with the help
of visualization code known as Xcrysden [143]) of the relaxed structure

3.4 Electronic Properties using SIESTA

The band structure calculations have been performed after the geometry op-
timization. k-mesh is a very important parameter for doing band structure
calculations. However one needs to check the convergence, in terms of gradually
increasing the k-mesh density.

3.5 Dielectric Properties using SIESTA

Other important feature of SIESTA code is to study dielectric properties of
the materials. The dielectric properties calculations in the code is performed
by using first-order time-dependent perturbation theory [144,145] to find the
dipolar transition matrix elements between occupied and unoccupied single-
electron eigenstates as implemented in SIESTA, in which the exchange and
correlation effects are taken care of by plugging, the self consistent ground state
DFT energies and eigenfunctions into the dipolar transition matrix elements.
Thus the imaginary part of the dielectric function ey is obtained, which can
be further used to calculate real part e; of dielectric function and reflectance
spectra with the help of Kramers-Kronig transformations [146]. The electron
energy loss spectra (EELS) can be calculated from real and imaginary parts of
dielectric functions as

w) ) elw) +ew)

Using real and imaginary part of dielectric function, other optical properties
like refractive index (n), extinction coefficient(k), reflectance (R) ete. can also
be calculated using following relations:
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3.6 Transport Properties using SIESTA

One of the most interesting features of SIESTA is availability of a module to cal-
culate transport properties particularly of nano-systems, known as TranSiesta.
It is based on DFT and Non-equilibrium Green Function [112,114,115] (NEGF)
method which can be used for both structure relaxation and conductance cal-
culations. Using TranSiesta, one can calculate electronic transport properties
such as, zero bias conductances and the I-V characteristics, of a nanoscale sys-
tem in contact with two electrodes at different electrochemical potentials. Here
density functional theory (DFT) is used for the electronic structure calculations
and then combined with non-equilibrium Greens function (NEGF) theory for
the quantum transport. Various steps used by TranSIESTA are as follows:

e Calculation of the bulk electrodes, to get H (hamiltonian), charge density
(p), and Self-energies.

e Calculation for the open system
Reads the electrode data.
Builds H from p.

Solves the open problem using Non-equilibrium Greens Functions.

Builds new p.

A

If p self consistent, then stop, otherwise go to step 2.
e Postprocessing tool, which computes T(E), I and V.

In other words we can say that this method is based on non equilibrium
Greens functions (NEGF), that are constructed using the density functional
theory Hamiltonian obtained from a given electron density. A new density is
computed using the NEGF formalism, which closes the DFT-NEGF self consis-
tent cycle.

4 Motivations and Research Objectives

The structural, electronic and magnetic properties of transition metals and no-
ble metals NWs (free standing) with different topologies (linear, ladder, zigzag,
double zigzag) [147-151] have been studied extensively in the past. But there
is a dearth of reports on optical properties. These properties can prove to be
a useful tool in analyzing the electronic properties of bulk and low-dimensional
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structures. Also their study equips one with a better understanding of the
electronic structure. Literature shows that the optical studies have mainly con-
centrated on NWs of semiconductor materials. We are particularly interested
in the ultrathin NWs of the noble metals in pristine and alloyed form. Also
the alloyed nanowires have many applications in electronics and optoelectron-
ics [86,152]. But there is lack of theoretical /computational reports on electronic,
optical and transport properties of alloyed ultrathin nanowires of noble metals.

Our main objective is to study the structural, electronic, optical and transport
properties of pristine and alloyed free standing ultrathin nanowires of noble
metals with different topologies and morphologies.

5 Work Done So Far

Till date we have studied the bulk properties (structural, electronic and di-
electric) of FCC structured noble metal namely Cu, Ag, Au and Pt [58]. We
have also studied the structural, electronic and dielectric properties of pristine
free standing noble metal (Cu, Ag, Au and Pt) ultrathin nanowires in different
topologies.

Dielectric functions of bulk noble metals is in good agreement with exper-
imentally measured data. The binding energy has been found largest for Pt
nanowires and smallest for Ag nanowires. Dimer topology of Ag wire and lin-
ear topology of the Ag and Cu wires are found nearly semi metallic in nature
as compared to metallic nature of all other topologies of studied wires. The
partial DOS of all the studied topologies of noble metals have been found to
have contribution mainly from ‘d’orbitals, however, significant contribution from
‘s’orbitals have been found to come from linear and dimer topologies of all the
noble metals. The pronounced DOS has been found to increase in nanowires as
compared to their bulk counterparts. Ballistic conductance increases for ladder
and zigzag topology of Cu, Ag and Au as compared to other topologies, while it
remains same for all the topologies of Pt wire. The reflectance edge for all the
studied topologies of wires is found in infrared region except ladder topology of
Pt for which reflectance edge has been found near visible region. The percentage
decrease in the position of reflectance edge w.r.t. bulk has been found largest
for Pt ultrathin nanowires among all the studied ultrathin nanowires of noble
metals. Dielectric properties of nanowires has been found to change significantly
with the topology, therefore, suggesting that the optical properties can be used
as a tool for characterization of the nanowires.

6 Future Plan of Work

In future we will focus on structural, electronic and optical properties of free
standing alloyed nanowires of noble metals with different topologies (linear,
ladder, double zigzag). We will compare the results with the corresponding
pristine nanowires. Further we will study the transport properties of of these free
standing nanowires (both pristine and alloyed nanowire) using TRANSIESTA
a module in SIESTA to study electron transport of nanowires.
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