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1.0	
   INTRODUCTION	
  

1.1 RESEARCH	
  MOTIVATION	
  
It is essential that rolling sheet metal access doors in metal buildings, and the door jambs 

they are attached to, resist high pressures during an extreme wind event. Catastrophic damage to 

the building and its contents can occur if the door fails, as documented by recent post-­‐hurricane 

surveys conducted after Hurricanes Ike and Katrina (FEMA 2005a; FEMA 2005b; RICOWI 

2006; RICOWI 2007; RICOWI 2009). Once the door is breached, pressure accumulates inside 

the building that can fail the walls and roof (Figure 1).  Estimated yearly damage from wind-

induced damage in the U.S. is 5.4 billion dollars (NOAA 2011), reinforcing the need for reliable 

wind resistance structures and accurate wind design procedures.  

     
Figure 1. Metal building roof failures caused by internal wind pressure (RICOWI 2009) 

1.2 ACCESS	
  DOOR	
  ANATOMY	
  
The most common access door failure mode during a high wind pressure event is 

disengagement of the door from the track attached to the jamb as shown in Figure 2a (FEMA 

2005).  To avoid track disengagement in hurricane-prone regions, steel J-hooks called wind-

locks (Figure 2b), are riveted to the door curtain and placed in tracks attached to the door jambs.  

The wind-locks float freely within the tracks during service, allowing the door to roll up and 

down.  During an extreme wind event the curtain deflects out of plane, and the wind-locks 

engage a wind-bar attached to the door jambs (Figure 3, Section A-A). This engagement limits 

out-of-plane door deflection through the development of catenary forces that can overload the 

door jamb if not designed properly (Figure 2c). 

The Door and Access Systems Manufacturers Association (DASMA) provides a method to 

predict wind-lock demand forces on door jambs, see Appendix A.  This procedure calculates the 

wind pressure required to deflect the door enough to close the gap between the wind-lock and 
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wind-bar.  Once the wind-locks have engaged, the geometry of the door is assumed fixed, i.e., 

there is no additional out-of-plane curtain deformation. Wind-lock reactions are calculated based 

on this fixed geometry with catenary equations and an evenly distributed pressure on the door.  

(a)  (b)   (c)  
Figure 2. (a) Access door failure by disengagement of the door from the jamb track, (b) wind-locks, (c) jamb failure 

of an access door with wind-locks 

 

Figure 3. Typical access door details 
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1.3 ACCESS	
  DOOR	
  EXPERIMENTS	
  
An experimental evaluation of the DASMA prediction equations for wind-lock force and 

door deflection was performed in 2009 (Gao and Moen 2009; Gao and Moen 2010).   A 10 ft by 

10 ft access door with wind locks was tested in both negative pressure (pulling door out of the 

building) and positive pressure (pushing the door into the building) with a custom vacuum 

chamber at DBCI in Douglasville, GA, see Figure 4a.  The door had 18 wind locks along each 

vertical edge of the door, and the door jambs were cold-formed steel C-sections braced by Z-

section girts (Figure 5).   DBCI shop drawings for this door are provided in Appendix B. 

(a)    (b)   
Figure 4. (a) Rolling sheet metal door experiment, (b) Deformed jamb after test (Gao and Moen 2009) 

 
Figure 5. Cold-formed steel door framing (Gao and Moen 2009) 
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Each wind lock was instrumented with strain gauges, and strains were recorded as pressure 

was applied to the door.  Maximum measured forces in the wind-locks were approximately 50% 

lower than that predicted by the DASMA procedure, compare 380 lbs per wind-lock in the 

experiments (Gao and Moen 2009) to 760 lbs per wind-lock predicted by DASMA at a pressure 

of 60 psf (see Appendix C).   Measured out-of-plane door deflections were more than double that 

of the DASMA predictions, compare 12 in. (Gao and Moen 2009) to 5.3 in. predicted by 

DASMA (see Appendix C) at 60 psf.    

The difference between the measured and predicted behavior was attributed to deflection of 

the cold-formed steel C-section jambs (Figure 4b), which accommodated additional in-plane 

movement of the door after the wind locks engaged.  A small in-plane movement results in a 

large out-of-plane deformation, approximately 0.5 in. to 6 in. for the door studied in 

Douglasville. Therefore, as the C-section jamb deflected from the applied wind-lock forces, 

curtain deflection was amplified.   The additional door deflection accommodated a funicular 

shape that reduced the in-plane component of the catenary force transferred to the door jamb.  It 

was concluded from this experimental program that wind lock forces and door deflection are 

sensitive to jamb stiffness, and this stiffness should be included in a design approach for 

vehicular access doors. The DASMA design procedure was determined to be viable when the 

door jambs are rigid, however it underestimates door deflections and overestimates catenary 

forces for access doors with flexible door jambs. 

1.4 RESEARCH	
  STRATEGY	
  
This research program aims to complement the existing DASMA access door wind analysis 

approach with a general procedure applicable to a wider range of access doors and jamb details, 

including doors attached to flexible jambs, e.g., cold-formed steel framing. The generalized 

analysis procedures are founded on an analytical framework of nonlinear Euler-Bernoulli elastica 

differential equations.  Jamb stiffness boundary conditions are approximated with hand 

calculations employing existing cantilever and torsional stiffness engineering expressions. The 

analytical framework is validated with thin-shell finite element modeling and the Douglasville 

experimental data, and then implemented as a custom built, freely available Matlab program.  

The elastica analytical framework is introduced in the following section. 
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2.0	
   ANALYTICAL	
  FRAMEWORK	
  

2.1 FORMULATION	
  
The access door experiments in Douglasville, GA (Gao and Moen 2009) demonstrated that 

away from the top and bottom of the door, curtain deflections due to wind pressure resulted in 

primarily one-way deformation across the span of the door.   If one-way action is assumed, the 

prediction of catenary forces and deflections in a vehicular access door can be simplified to an 

inextensible beam strip model like that shown in Figure 6.  This assumption is consistent with 

the existing DASMA prediction approach, except translational springs have been added to the 

beam ends to simulate door jamb flexibility.  

 

Figure 6.  Curtain strip model notation 

Beam strip behavior can be represented with the elastica solution for beams, which employs 

Euler-Bernoulli beam theory and accommodates large flexural deformations (Timoskenko and 

Gere 1961). Shear deformations are neglected.  Defining X and Y as the door’s deflected shape in 

Cartesian coordinates, t as the curvilinear distance along the curtain, and the slope of the door 

curtain as θ(t), the change in X and Y at location t is 

 X(t)' =  cos(! (t))  (1) 
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 Y(t)' =  sin(! (t)) , (2) 

where t is a relative indicator of position over the half span ranging from 0 to 1. 

Summing the changes in X and Y by integrating Eqs. (1) and (2) results in expressions for the 

deflected shape as a function of t 

 X(t) =  cos(!(t))
0

t
! dt  (3) 

 Y (t) =  sin(!(t))
0

t
! dt . (4) 

Euler-Bernoulli beam theory dictates that the beam moment M(t) is proportional to curvature 

dθ(t)/dt and flexural rigidity EI as given by 

 ! (t)'=M (t)
EI . (5) 

For a vehicular access door, the moment of inertia, I, would be calculated with the height of door 
attributed to one wind-lock, i.e., a tributary width as shown in Figure 7.   

 

 
Figure 73. Windlock tributary distance Ws is 6.5 in. for DBCI Series 5000 test door 
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The relationship between slope θ(t) and moment M(t) is obtained by integrating Eq. (5) 

 ! (t) = M(t)
EI

dt
0

t
! ,

 
(6)  

and the beam shear, V(t), is calculated as the derivative of the moment 

 ! (t)'' =M(t)' =V(t) . (7) 

Beam shear V(t) is equilibrated with components of the uniform pressure P and horizontal 

reaction FX as shown in Figure 8  

 V(t) =M(t)' = [-Ptcos(! (t))+FXsin(! (t))] , (8) 

leading to an equation for moment along the door curtain as a function of pressure P and spring 
force FX 

 M(t) = [-Ptcos(! (t))+FXsin(! (t))] dt0

t
! . (9) 

 

Figure 8. Free body diagram, support reaction (FX, FY), internal beam cut (V, C)   

The horizontal reaction FX is related to the jamb stiffness kjamb and the X displacement. The jamb 

stiffness is assumed to be bi-linear, i.e., zero before the jamb engages and kjamb after the door 

deflects enough to close the gap between the wind-lock and the wind-bar, WGAP 

 

 
FX = 0 , WM   < WGAP (10) 

 
FX = kjamb WM !WGAP( ) , WM   ≥ WGAP. (11) 

2.2 GOVERNING	
  EQUATIONS	
  
To accommodate the statement of governing equations for the elastica beam problem and to 

simplify their numerical solution, the following non-dimensional quantities are defined 
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x = X

L 2  
(12) 

 
y = Y

L 2  
(13) 

 
m =

MS
2EI   

(14) 

 
v =

V L 2( )2

EI   
(15) 

 
fX =

FX L 2( )2

EI   
(16) 

 p =
P L 2( )3

EI  
(17) 

 k =
kjamb L 2( )3

EI  
(18) 

 wGAP =
WGAP

L 2  
(19) 

The nondimensional forms of the governing equations, i.e., Eqs. (1), (2), (5), and (8), can then be 

written as: 

 x(t)' = cos(! (t))  (20) 

 y(t)' = sin(! (t))  (21) 

 ! (t)' =m(t)  (22) 

 m(t)' = [ ! ptcos(! (t))+ fXsin(! (t))] . (23) 

2.3 INITIAL	
  CONDITIONS	
  
The solution of the governing equations required four initial conditions. The beam is simply-

supported at its ends, and therefore the moment m at the beam end is zero 

 0m(1) = .  (24) 

The beam has zero slope at midspan, i.e.,  

 ! (0) = 0 . (25) 
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Out-of-plane deflection is restricted (roller support) at the beam ends, and therefore 

 y(1) = 0 . (26)  

The in-plane displacement at the beam end is  

 
x(1) = 1! fX

k
!wGAP .

 
(27) 

2.4 SOLUTION	
  
This nonlinear system of ordinary differential equations is a boundary value problem.  Eqs. 

(20) to (23) can be numerically integrated with the function bvp4c in Matlab (Matlab 2011a), 

resulting in the displacements, slope, and moment along the beam. See Appendix D for the coded 

implementation.   An example of the Matlab predicted door deflection with increasing pressure 

and including wind-lock engagement is shown in Figure 9.   These beam strip results will be 

validated with the Douglasville experiments and full scale finite element simulations after 

simplified methods for predicting jamb stiffness (kjamb) are derived in the following section. 

 

Figure 9. Door deflection using curtain beam strip analytical framework 
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3.0	
   FLEXIBLE	
  JAMB	
  STIFFNESS	
  PREDICTION	
  

3.1 TYPICAL	
  JAMB	
  DETAILS	
  
Vehicular access door jamb details vary widely from manufacturer to manufacturer and 

building to building.  The wind-bar may be screw-fastened to a hot-rolled steel jamb (Figure 10a) 

or a cold-formed steel C-section (Figure 2).  Another common detail is to use sleeve anchors to 

fasten the wind-bar directly to a masonry wall (Figure 10b).  A rational assumption when using 

the beam strip approach with a masonry wall or a hot rolled section would be to set kjamb=∞.   For 

a cold-formed steel framing system, the selection of kjamb is more difficult and requires 

calculation. 

(a) (b)  
Figure 10. Door jamb details - (a) hot-rolled steel and (b) masonry (Allen 2008) 

In this chapter, a prediction method is presented for calculating the in-plane stiffness of 

flexible door jambs, and specifically, jambs constructed from open cross-section cold-formed 

steel structural members, e.g., Cee and Zee sections.  The goal is to develop a hand calculation 

method that an engineer could use to approximate kjamb. The approach is based on the jamb 

details encountered in the experimental program (Section 1.3), however the equations are 

formulated to be general with the goal of accommodating a broad range of cold-formed steel 

framing details.  

3.2 PREDICTION	
  METHOD	
  
Jamb stiffness in the plane of the door (X direction) can be approximated by assuming that 

the jamb behaves as two springs in series, one spring representing in-plane stiffness dictated by 

cross-section bending, kb, shown in Figure 11a, and the other representing in-plane stiffness from 

jamb twist, kt, as shown in Figure 11b.   The total in-plane jamb stiffness kjamb is 	
  

 
kjamb =

1
kb
+
1
kt

!

"
#

$

%
&

'1

 . (28) 
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When a very flexible spring is in line with a very stiff spring, then the form of Eq. (28) dictates 

that the very flexible spring will govern system stiffness.  For example, when the jamb is very 

flexible in torsion, i.e., an open cross-section with only a few girts bracing the jamb along the 

wall, then kjamb will be similar in magnitude to kt.  The following sections provide guidelines for 

calculating kt and kb. 

 
Figure 114. Jamb flexibility occurs from (a) cross-section bending and (b) cross-section twist.  Note that deff is the 

effective web bending distance at the location where stiffness is being calculated, i.e. Go. 
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3.3 SECTION	
  WEB	
  BENDING	
  
The in-plane jamb flexibility contribution from bending deformation of open cold-formed 

steel cross-sections can be approximated by using the same “springs in series” analogy discussed 

in the previous section, except now the two springs represent web flexural stiffness, kbp, and web 

rotational stiffness, kbm 

 

1
11

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

bmbp
b kk
k . (29) 

In the following derivations, it is assumed that the dominant reaction affecting jamb 

stiffness is the in-plane component Fx (see Figure 12). Using a cantilever model for the web with 

a point load at the tip in the direction of Fx 

 
kbp =

3EIw
deff( )

3 ,
 

(30) 

where Iw is the sheet curtain moment of inertia over the tributary width, Ws, of a wind-lock (see 

Figure 7) 

 
3

12
1 tWI sw = ,

 
(31)

 
and t is the jamb base metal thickness. The length of the cantilever, deff, is assumed to be an 

effective web length linearly varying from dw if the wind-lock is located at the girt, to H/2 if the 

wind-lock under consideration is located far from the girts (see Figure 11) 

 

deff =
Go

Gs

!

"
#

$

%
& H ' dw 2( )+ dw  , 0≤ Go ≤ Gs/2. (32) 

The location of the wind-lock being studied relative to the nearest girt is Go, and the girt spacing 

is Gs as shown in Figure 11.  

 
Figure 12. Jamb cross-section stiffness notation 
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The out-of-plane jamb web displacement associated with the moment Mb=Fxda is  

 
!bm =

Mb deff( )
2

2EIw
=
Fxda deff( )

2

2EIw  
(33) 

where da is the moment arm between the  FX component of the wind-lock force and the jamb 

(Figure 12).  Rearranging Eq. (33) such that kbm=FX/Δbm, then 

 
kbm =

2EIw
da deff( )

2 .
 

(34)
 
  

3.4 JAMB	
  TWIST	
  
Wind-lock forces can apply torsion to a door jamb, resulting in twist that affects in-plane 

system flexibility, i.e., kjamb.  For most practical cases, the jamb torsional stiffness, kt, in Eq. (28) 

is expected to be much higher than kb, especially because one flange of a cold-formed steel jamb 

will typically be through-fastened to the exterior metal sheeting of the building.  For this case, 

kt=∞ is a reasonable assumption that can be made at the discretion of the engineer.  

When kt is expected to have an impact on jamb stiffness, it can be approximated with 

existing equations in AISC Design Guide 9: Torsional Analysis of Structural Steel Members 

(AISC 2003).  The equations include the St. Venant torsional constant, J, and the warping torsion 

constant, Cw, both of which are tabulated for typical SSMA cross-sections (SSMA 2010), and 

which can be calculated for any general open thin-walled cross section with freely available 

section property calculators, e.g., CUFSM (Schafer and Ádány 2006). 

If twist and warping are assumed fixed between girts as shown in Figure 13, and the 

wind-lock forces are assumed to act as a continuous torsion per unit length on the girt, then the 

twist angle, θ, at any location z between 0 and Gs is 

 

!(z) =
TjGs ECw GJ( )0.5

2GJ

1+ cosh Gs

ECw GJ( )0.5
!

"
#
#

$

%
&
&

sinh Gs

ECw GJ( )0.5
!

"
#
#

$

%
&
&

!

"

#
#
#
#
#

$

%

&
&
&
&
&

cosh z
ECw GJ( )0.5

!

"
#
#

$

%
&
&'1.0

!

"

#
#

$

%

&
&+

z
ECw GJ( )0.5

1' z
Gs

!

"
#

$

%
&' sinh

z
ECw GJ( )0.5

!

"
#
#

$

%
&
&

(

)

*
*
*
*
*
*
*
*
*

+

,

-
-
-
-
-
-
-
-
-

. (35)      

 



 

16 
 

 
Figure 13.  Jamb assumed as twist fixed warping fixed between girts  

 

To approximate kt at a specific wind-lock location z=Go, the angle of twist at θ(z=Go) is 

calculated with Eq. (35), where Tj is a torsion per unit length from a unit force per length in the 

direction of Fx, about the cross-section’s center of twist, i.e., its shear center, as shown in Figure 

14 

 
Tj =1

H
2
+ da

!

"
#

$

%
& . (36) 

 
Figure 14.  Torsion is created by the wind-lock force acting about the cross-section center of twist 

 

The angle of twist at the wind-lock location can be converted into a displacement, Δt, shown in 

Figure 15 by substituting θ=θ(Go) into 

 !t = Lt cos !a( ) " Lt cos !a +!( )  (37) 
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where  

 !a = sin
!1

H
2+ da
Lt

"

#

$
$

%

&

'
'

 

(38) 

and 

 ( )2
2

2 woat BxdHL ++⎟
⎠

⎞
⎜
⎝

⎛ += . (39) 

 
Figure 15. Cross section twist geometry  

The torsional stiffness, kt, at the location z=Go is calculated as a unit force causing the 

displacement Δt, i.e., 

 
kt =

1
!t

.                                                         (40) 

Torsional stiffness, as represented by Eq. (40), varies along the length of the jamb. When a 

wind-lock is near a girt connection, i.e., near the fixed support in Figure 11, Δt will be small, 

resulting in a high kt.  Vice versa, if the wind-lock under consideration is far from the girt 

support, then Δt will increase, resulting in a decrease in kt. The cumulative jamb stiffness, i.e., 

kjamb, is calculated for the door system in the Douglasville experiments in the next section using 

this simplified approach. 
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3.5 EXAMPLE	
  –	
  DOUGLASVILLE	
  EXPERIMENTS	
  	
  
Jamb stiffness is approximated for the tested door system described in Section 1.3.  The 

stiffness is calculated at the wind-lock positioned at mid-height of the door, which is 2.0 in. from 

the nearest girt, i.e., Go=2.0 in. as shown in Figure 16. Pertinent dimensions required to calculate 

kjamb are summarized in Table 1. 

 
Table 1. Listing of input parameters for Experimental door jamb stiffness calculation 

Input Value Units Note 
B 3.5 in. width of flange 
Bw 2.44 in. distance to hinge point  
H 12.00 in. depth of Cee 
da 0.94 in. depth of wind-bar 
dw 3.66 in. as measured on test door 
Gs 20 in. spacing of girt 
Go 2 in. include allowance for connection plate thickness 
xo 1.450 in. distance from web to shear center 
J 0.007098 in4 St. Venant torsion constant (SSMA) 

Cw 92.672 in6 warping torsion constant (SSMA) 
t 0.1017 in. thickness of base metal 
E 30,000 ksi elastic modulus 
G 11,200 ksi shear modulus 
z 2.00 in. torsion analysis location (middle wind-lock) 

 

Figure 165. Test door dimensions (Gao and Moen 2009) 
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It is concluded from the previous example that cross-section bending controls the jamb 

stiffness for the wind-lock considered because of its close proximity to a girt. The calculated 

jamb stiffness, kjamb=529 lb/in., will be used in the following validation section to compare the 

beam strip model predictions to finite element simulations and experimental results. 



 

22 
 

4.0	
   BEAM	
  STRIP	
  MODEL	
  VALIDATION	
  
 

The beam strip model developed in Chapter 2 provides a computational efficient approximate 

method for predicting access door deflections and catenary forces.   Up to this point, the 

method’s inherent assumption of 2D beam strip behavior is based primarily on observations from 

the experimental program.  To gain a more thorough understanding of access door behavior, a 

3D finite element modeling protocol is developed and validated in this chapter.  The protocol 

accommodates more detailed study of boundary condition effects, pressure loading types, and 

even the effect of the stiffening angle often present spanning across the bottom of an access door. 

The finite element modeling protocol is used to demonstrate that the beam strip model is a viable 

approach for predicting door deflections and catenary forces.  A custom Matlab finite element 

model generator was developed, which can produce and run 100s of finite element models for 

use in parameter studies.  The Matlab code could be useful for future work involving other door 

geometries and jamb stiffnesses.   

4.1 FE	
  MESHING	
  
The modeling protocol employs the commercial finite element code ABAQUS (ABAQUS 

2010).  The general four node S4 element was chosen based on studies summarized in Appendix 

E. The finite element mesh was generated with custom Matlab code that accepts the sheet curtain 

cross-section dimensions as input and extrudes the sheet curtain cross-section based on the door 

span.   A bottom stiffening angle can be added, as well as translational spring elements that 

simulate a flexible jamb at every wind-lock location. The spring model used was ABAQUS 

definition Spring Type 2. A Type 2 spring only activates stiffness in the direction of a defined 

degree-of-freedom (DOF).   
 

4.2 BOUNDARY	
  CONDITIONS	
  
The custom Matlab code applies boundary conditions around the perimeter of the door, 

including the assignment of springs to simulate wind-lock stiffness.   The boundary conditions 

evaluated in the experimental program are provided in Figure 17.  Wind-locks were simulated by 

fixing the nodes at the wind-lock locations in the out-of-plane 3-direction. Non-linear ABAQUS 

spring elements were attach to each wind-lock node and assigned the bi-linear spring stiffness in 

Figure 18 to simulate the effect of the wind-lock gap.  
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Figure 17. Access door FE boundary conditions 

 
Figure 18. Assumed DOF 1 jamb spring stiffness  
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4.3 LOADING	
  
Pressure is applied normal to the door curtain in ABAQUS as shown in Figure 19 to be 

consistent with the vacuum pressure applied in the experimental program. Note that this normal 

pressure loading may not be the same as a wind pressure on a building, which can be multi-

directional and not always normal to the curtain surface. 

In ABAQUS, as the pressure increases and the curtain deforms, the pressure direction adjusts 

to remain normal to the shell surface, i.e., a follower load is specified (Figure 20). Note that as 

surface area increases under load, for example as the sheet curtain expands, the curtain carries 

additional force.  This loading is different from that assumed in the analytical framework 

described in Section 2, where the curtain is inextensible and the load magnitude remains constant 

as the door deflects.  

 
Figure 19. Door surface loading, pressure applied perpendicular to mesh surface 

 
Figure 20.  Example of ABAQUS follower load formulation 



 

25 
 

4.4 SOLUTION	
  ALGORITHM	
  
A nonlinear quasi-static analysis was performed on the door curtain employing the follower 

surface pressure described in the previous section. The computational solver selected was the 

Riks arc length method, a modified Newton-Raphson approach that searches the load-

deformation space in an arc pattern to identify equilibrium at each load step.   Arc length solution 

methods are good at solving problems where the load-deformation response changes abruptly, 

e.g., before and after the wind locks engage in an access door.   

4.5 COMPARISON	
  OF	
  FE	
  MODEL	
  TO	
  EXPERIMENTS	
  
The modeling protocol described previously was implemented in this section to simulate 

the load-deformation response of positive pressure test #2 in Gao and Moen (2009).  The door 

dimensions are 10 ft by 10 ft with the curtain profile dimensions provided in Figure 21 and 

including the stiffening angle across the bottom of the door.  The model boundary conditions are 

consistent with those shown in Figure 17.  A bi-linear jamb spring stiffness was employed 

simulating a wind lock gap of 0.6125 in. (kjamb=0) and then kjamb=529 lb/in. after the wind locks 

were engaged. 

 
Figure 21. Experimental door curtain dimensions 

The simulated and experimental results demonstrate consistent bi-linear load-deformation 

responses as shown in Figure 22. Before the wind-locks engage, the door resists pressure with 

curtain bending stiffness. After windlock engagement, the curtain stiffness increases. 
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Figure 22. Test center door deflection compared with FEM center door deflection  

4.6 COMPARISON	
  OF	
  FE	
  MODEL	
  TO	
  BEAM	
  STRIP	
  MODEL	
  
The beam strip approach described in Chapter 2 is used to predict load-deformation 

response of positive pressure experiment P#2 with the goal of comparing the beam strip 

predictions to the experimental results.   The beam strip model is defined with the following 

parameters - door span from wind-bar to win-bar, L=120 in., wind lock gap WGAP=0.6125 in., 

kjamb=529 lb/in., and the curtain moment of inertia, Iw=.0093 in4 per wind-lock tributary width, 

and E=30000 ksi.  

The load-deformation response from the curtain beam strip model is compared to the 

experiments in Figure 23, with the beam strip model demonstrating an increasingly stiffer 

response before the wind locks engage when compared to the experiments and finite element 

model.  The wind locks engage at a smaller curtain out-of-plane deflection in the beam strip 

model, however after the wind locks engage, the curtain stiffness is consistent with the 

experiments.    

The difference in curtain stiffness before the wind-locks engage between the beam strip 

model and the experiments (also FE model) is the flattening of the curtain as it is pressurized as 

shown in Figure 24.  To compensate for this reduction in curtain flexural stiffness in the beam 

strip model, the moment of inertia Iw is reduced by 25% to produce results consistent with the 

experiments in Figure 25.  Even with the moment of inertia correction, windlock engagement 
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still occurs first in the beam strip model.   This trend occurs because the beam strip model 

assumes axial inextensibility while in the experiments, as the curtain flattens, it increases in 

length resulting in more out-of-plane deflection before wind-lock engagement.   Therefore, the 

beam strip model will modestly underpredict door deflection.  For the test door case considered, 

the beam strip predicts 11.3 in. while the FE model predicts 12.8 in. at 60 psf as shown in Figure 

34. 

 

Figure 23. Middle wind-lock, center deflection compared with FEM 

 

Figure 24. Door curtain moment of inertia loss (section cuts) 
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Figure 25. DBCI Series 5000 center door deflection assuming 25% I reduction for the beam strip model 

The in-plane jamb reaction FX predicted by the beam strip model and the finite element 

model demonstrate consistent trends, with the beam strip model underpredicting the forces from 

5% to 10% as shown in Figure 26.  The out-of-plane jamb reaction Fy is also underpredicted by 

the beam strip model prediction (Figure 27) relative to the finite element model as pressure 

increases, because the finite element compensates for the increased loading surface as the curtain 

flattens , which increases the total applied load to the door.   The difference between Fy at 50 psf 

is approximately 8%, compare 142 lbs to 155 lbs. This load accumulation effect from the 

flattening door is not considered in the current DASMA approach and is most likely small 

enough to disregard for typical wind design pressures; however an amplification factor could be 

added in the future if deemed necessary.  It is concluded that the beam strip model is a viable 

predictor of door behavior and wind-lock forces. 

(a) (b)  

Figure 26. DBCI Series 5000 (a) FX  and (b) FY assuming 25% I reduction in the beam strip model 
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4.7 COMPARISON	
  TO	
  DASMA	
  PREDICTION	
  
As discussed in Chapter 1, the current DASMA wind-lock force prediction approach is 

viable for cases when the jambs are rigid, i.e., when kjamb=∞.   To demonstrate the beam strip 

approach and the DASMA approach produce consistent results, a comparison is conducted with 

the design inputs summarized in Table 2 considering a pressure of 60 psf. The DASMA wind-

lock force per foot of door height was converted to forces per wind-lock to accommodate a 

comparison, see Appendix C for details of the conversion.   
 

Table 2. Prediction model inputs 

Design Input DASMA CBSM Units 
Door Pressure 60 60 psf 

E 30,000 30,000 ksi 
Iw 0.0093 0.0093 * 0.75 in4 

Ws 6.5 6.5 in 
L 120 120 in. 

WGAP 0.3125 0.3125 in. 
kjamb Not Applicable 4,000,000 lb / in. 

 

The DASMA and beam strip models results are compared in Table 3.  The beam strip 

reaction FX and FY and the out-of-plane door displacement D are within 3% of the DASMA 

predictions, demonstrating that the beam strip approach is applicable to both flexible and rigid 

jambs. 
Table 3. Results comparison, DASMA vs. curtain beam strip for rigid jambs 

Design Output DASMA (100% of I) CBSM (75% of I) % Difference 
(DASMA/CBSM) 

Fx 749 772 -2.98% 
Fy 162 163 -0.49% 
D 5.30 5.40 -1.85% 
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5.0	
   PREDICTION	
  METHOD	
  IMPLEMENTATION	
  
 

The analytical framework derived in Chapter 2 and validated in Chapter 4 requires a special 

numerical solver not available in common engineering software.   To ensure that the access door 

analysis approach can be used by engineers, a freely available Matlab tool was developed that 

implements the curtain beam strip model. A screenshot of the analysis tool is provided in Figure 

28 for the experimental test door with flexible jambs.   The user can input door dimensions, wind 

lock spacing, wind lock gap, jamb stiffness, and wind pressure, and obtain a full load-

deformation response including out-of-plane door deflection and wind lock forces.  

 
Figure 28.  Test door analyzed with CBSA program kjamb=529 lb/in. and WGAP = 0.6125 in 
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6.0	
   CONCLUSIONS	
  AND	
  FUTURE	
  WORK	
  
 

The goal of this research was to develop a fundamental understanding of vehicular access 

door structural behavior so that more general, accurate analysis tools and design procedures can 

be provided to the metal building industry.  It was demonstrated that the existing DASMA design 

approach is viable for rigid jambs, e.g., the wind-bar attached directly to a masonry wall, 

however for flexible jambs, e.g., a cold-formed steel framing system, the wind lock forces were 

over predicted and the door deflections were under predicted.   

A beam strip model based on an Euler-Bernoulli elastica solution was shown to be a viable 

predictor of primarily one way action of an access door under a wind pressure.   The beam strip 

model overpredicted curtain stiffness and underpredicted out-of-plane forces on the door because 

of its assumption of axial inextensibility, whereas the real behavior as observed in finite element 

simulations and experiments was for the door to stretch as pressure is applied. If a reduced 

curtain moment of inertia is assumed in the beam strip model, the beam strip model produced 

reliable results. 

A primary focus of future work should be the formalization of an access door limit state 

design approach coupled with the computer analysis tool developed in this research.   Based on 

the recent vehicular access door experiments, limit states that are most likely to control the 

capacity of a vehicular access door involve the jamb, specifically (1) jamb failure and (2) wind-

bar to jamb connection failure.   A cold-formed steel jamb can be designed with the wind lock 

forces calculated with the software in Chapter 5 and cold-formed steel design specifications, e.g., 

AISI-S100-07.   The forces on the jamb connections can also be readily approximated from the 

design approach and sized appropriately to resist demand forces.  Considering serviceability, it is 

a requirement for the door to roll up after an extreme wind event.   Permanent curtain 

deformation can occur if the door is stretched too much during a wind event.   With the curtain 

deflection predictions provided by the beam strip model, deflection limits could be developed 

that prevent this plastic deformation.   
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APPENDIX	
  A	
  -­‐	
  DASMA	
  PREDICTION	
  METHOD	
  	
  
 

DBCI Door Series 5000 - used in 8/09 MBMA Research 
Test 

Calculations by Joseph H. Dixon, Jr., 8/19/09 

 
Given:  

WL = Wind Load = +/-60.0 PSF 

L = Door Width = 10.5 Ft. 

P = Slat Pitch = 3.21 In. 

I = Slat Moment of Inertia = .00425 In4  (per slat) 

It= Total Moment of Inertia = 12/P x I = . 01589 In4  (per ft. door ht.)   

E = Slat Modulus Elasticity = 30,000,000 P.S.I. 

WS = Windlock slip or Windlock Gap = .3125 In. 

SO= Guide standout or wall to wind bar dimension = 1.037 In. 

OFS = Guide dimension wind bar to edge of opening =  1.6875 In. 

 

Determine The Following: 

 

1. D = Slat deflection before windlocks engage. (Ft.) 
2. W1 = Bending load for slat deflection. (Lbs./ft2) 
3. W2 = Wind load resisted after windlocks engage. (Lbs./ft2) 
4. C = Catenary force for windlock slat tension load. (Lbs./ft. of door ht.) 
5. TH = Angle of windlock pull. (Deg.) 
6. FX = Force on windbar inside the guide in the “X” direction. (Lbs./Ft. of door ht.) 
7. FY = Force on windbar inside the guide in the “Y” direction. (Lbs./Ft. of door ht.) 
8. Pos M = Positive moment at corner of door opening with +WL interior mount (in-lbs.) 
9. Neg M = Negative moment at corner of door opening with  -WL interior mount (in-lbs) 
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1. Slat deflection before windlocks engage. (ft.) [based reference 4] 
 

D = (L x WS)1/2 /  4   =  .453 ft.  = 5.433 in.       

2. Bending load for slat deflection. (Lbs./ft2 ) [based on reference 1] 
 

                  W1 = (24 x E x It x D)/ (45 x L4)  = 6.7 psf 

 

3. Wind load resisted after wind locks engage. (Lbs./ft2 ) [simple sum of wind load forces] 
 

W2 = WL – W1 = 53.3 psf 

 

4. Forces on wind bar inside the guide in the “X” direction. (Lbs./Ft. of ht.) [based on reference 
3] 

 

FX = W2 x L2 / 8 x D = 1621 lbs./ft of door height 

 

5. Forces on wind bar inside the guide in the “Y” direction. (Lbs./Ft. door of ht.) [sum forces in 
the y direction equal zero] 

 

FY =  WL x L / 2 = 315 lbs./ft. of door height 

 

6. Catenary force for wind lock slat tension load. (Lbs./ft of door ht.) [based on reference 3] 
 

C = FX x (1 + (16 x (D / L)  2))  1/2= 1645 lbs./ft. of door height 

 

7. Angle of slat to guide. (Deg.) [resultant angle of two know forces] 
TH = Cos-1 (Fx / C) = 9.8 Degrees 

 

8. Wall Moments based on the guide standout value ( In-lbs/ ft. of door ht.) [Sum moments 
about the corner of the opening.  See guide drawing for location and direction] 

 

                   Pos M =  FX x SO - FY x OFS =  1150 in-lbs  
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                   Neg M =  FX x SO + FY x OFS = 2213 in-lbs  

 

Engineering References 

 

1. Source of the equations for deflection and moment: 

AISC Steel Construction Manual, Allowable Stress Design, Uniformly Loaded Beam Unrestrained at the ends 

Deflection = 5WL^4/384EI 

Moment = WL^2/8 

 

2. Roark & Young Formulae for Stress & Strain, Beams: Flexure of Straight Bars,  

for Moment = WL^2/8. 

 

*3. Source of catenary tension equation: 

Structural Engineering Handbook, Gaylord & Gaylord, 1989 

 

T = (QLw
2/8F) x (1+16(F/Lw)2)0.5 

 

T = Catenary tension, lbs 

Q = load, lbs/in 

Lw = distance between where windlocks engage, in 

F = deflection @ center of slat, in 

 

H = (QLw
2/8F) 

H = Horizontal Tension, lbs 

 

*4) Source for Deflection Equation: 

Based on Handbook of Engineering Mathematics, American Society of Metals (ASM) (Page 65 For Catenary) 

 

D = (Lw x WS)1/2 / 4, where D = Deflection (Ft.), Lw = Door Width (Ft.), WS = Windlock Slip (In.)        
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____________________________________________________________________________________ 

 

Solve for “D” 

S1 = S2 

S1=  Lw + 2WS/12 

S2 = Lw[ 1 + 2/3 (2D/Lw)2 ] 

Lw + (2WS/12) = Lw[ 1 + 2/3 (2D/Lw)2 ] 2/3 x 4D2/Lw
2  =  8D2/3Lw

2 

Lw+ (2WS/12) = Lw + Lw (8D2/3Lw2 ) 

2WS/12 = Lw + 8D2/3Lw – Lw Subtract Lw from both sides and factor out Lw 

WS/12 = (8D2/3Lw) / 2                        Divide by 2 each side = 8D2/6Lw 

WS = (8D2/6Lw) 12                             Multiply by 12 each side = 96D2/6Lw  

WS = 96D2/6Lw  = 16D2/Lw 

D2 = (LwWS) / 16 

D = (LwWS)1/2 / 4                               Square root each side 

 

* For ease of calculations, door width is used in place of Lw 

Drawing Illustrating Equation Variables 

 

S2

1

wL
S

WS WS

FX Force

Door Opening

Curtain

Windbar

Windlock

FY Force

+ Load Direction 

- Load Direction 

Moment

OFS

SO

WS
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  SERIES	
  5000	
  DOOR	
  DETAILS	
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APPENDIX	
  C-­‐	
  DASMA	
  METHOD	
  	
  
 

The following calculation is equivalent to that in Appendix A, except the catenary forces are calculated 
per wind-lock instead of per ft of door. 
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APPENDIX	
  D	
  -­‐	
  MATLAB	
  CODE	
  
function output = CBSM(OutputID, Pressure, SpanL, Kjamb, E, Ixx, Ireduction, WindlockTribLength, WindLockGap)  
%***************LOOK AT ODE************** 
 
%Index 1 = Output Pressure Applied  
%Index 2 = Output Center Door Deflection - used to check excessive movement 
%Index 3 = Output Edge Rotation (radians)- used to check windlock unhinging 
%Index 4 = RF1 Windbar Jamb Reaction     - used to design jamb connection 
%Index 5 = RF3 Windbar Jamb Reaction     - used to design jamb connection 
%Index 6 = Beam Strip Curtain Shear @ Support 
%Index 7 = Beam Strip Curtain Axial Force (Catenary) @ Support) 
%Index 8 = Edge Support Movement (Jamb Movement)   
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
B = SpanL/2;                                %find half span for sol method 
E = E*1000;                                 %change E from ksi (input) 
                                            %to psi (needed in program) 
 
WindLockSlipGrab = WindLockGap;             %wind lock gap for door (inches) 
global WindLockSlipLimit;                   %make this variable accessable by all functions 
WindLockSlipLimit = (WindLockSlipGrab/B);   %non-dimensional windlockslip limit 
 
global WindlockTribArea;                    %make this variable accessable by all functions 
WindlockTribArea = WindlockTribLength/12;   %cetner to center spacing of windlock (units = feet) 
 
    %USE THIS Ix for constant Ix applied 
    I = Ixx*Ireduction;                     %moment of inertia for lock trib length 
     
    W = Pressure;                           %Start Value for WindLoading (psf) 
    WindLoad = W*WindlockTribArea/12;       %scale down PSF to applied section PSF 
 
    %Find Out If Windlock Engage 
    K=.0001;                                %Run Program With No Stiffness 
    %%%%%%%%%%%%%%%%%%%%%%%%%SOLVER%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Non-Dimensional 
    global w;                               %script w 
    global k;                               %script k 
    global windlockslip; 
    windlockslip = 0;                       %windlock slips is always zero for this run 
    w=WindLoad*B^3/(E*I); 
    k=K*B^3/(E*I); 
    P = 0.1;                                %initial guess for unknown value 
    solinit = bvpinit(linspace(0,1,100),@mat4init,P); 
                                            %solve boundary condition problem 
    sol = bvp4c(@mat4ode,@mat4bc,solinit);  
                                            %fprintf('The P Horizontal Force (lbs): %7.3f.\n',... 
                                            %sol.parameters*(E*I)/(B^2)) 
    xint = linspace(0,1);                   %space to look at from t = 0 to t = 1 
    Answer = deval(sol,xint);               %determine answers over space interval 
     
    %check to see if windlocks engage 
    windlockslip = 1 - Answer(1,100);       %find out how much edge moved in the X direction 
 
    if windlockslip < WindLockSlipLimit   
    %windlocks have not egaged so output data 
    switch OutputID 
        case 1   
            output =  W; 
        case 2 
            output =  Answer(2,1)*B;        %Hold Center Delfection Output for This Load 
        case 3 
            output =  Answer(3,100);        %Hold Beam Roation 
        case 4 
             
            output = (B - (Answer(1,100)*B))*K;    %output RF1 
            if output < 0.001                      %if output is just method error 
                output = 0; 
            end 
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        case 5 
            %Calculate Beam RF3 Reaction 
            endbeamshear = -(WindLoad*B)*cos(Answer(3,100))+(sol.parameters*(E*I)/(B^2))*sin(Answer(3,100)); 
            endaxialforce = (-sol.parameters*(E*I)/(B^2)+sin(Answer(3,100))*endbeamshear)/(cos(Answer(3,100))); 
            YBeamReaction = -cos(Answer(3,100))*endbeamshear-sin(Answer(3,100))*endaxialforce; 
            output = YBeamReaction; 
        case 6 
            %Find Out Beam End Shear 
            endbeamshear = -(WindLoad*B)*cos(Answer(3,100))+(sol.parameters*(E*I)/(B^2))*sin(Answer(3,100)); 
            output =  endbeamshear; %Hold Beam Shear 
        case 7 
            %Find Out End Axial Force 
            endbeamshear = -(WindLoad*B)*cos(Answer(3,100))+(sol.parameters*(E*I)/(B^2))*sin(Answer(3,100)); 
            endaxialforce = (-sol.parameters*(E*I)/(B^2)+sin(Answer(3,100))*endbeamshear)/(cos(Answer(3,100))); 
            output =  endaxialforce; %Hold End Beam Axial Force 
        case 8 
            output = (B - (Answer(1,100)*B)); %output edge movement 
    end 
 
else 
%windlocks have engaged so rerun model with new stiffness 
%ANOTHER RUN WITH STIFFNESS 
W = Pressure;                                       %reset pressure to applied pressure 
I = I;                                              %Keep Last I applied to curtain 
K=Kjamb;                                            %apply jamb stiffness 
WindLoad = W*WindlockTribArea/12;                   %lbs per inch 
%%%%%%%%%%%%%%%%%%%%%%%%%SOLVER%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
                                                    %Non-Dimensional 
B = SpanL/2; 
global w; 
global k; 
w=WindLoad*B^3/(E*I); 
k=K*B^3/(E*I); 
windlockslip = WindLockSlipLimit;                   %set windlock gap to closed 
P = 0.1;                                            %initial guess for unknown value                                                    
solinit = bvpinit(linspace(0,1,100),@mat4init,P); 
                                                    %solve boundary condition problem 
sol = bvp4c(@mat4ode,@mat4bc,solinit);                                                   
xint = linspace(0,1);                               %space to look at                                                  
Answer = deval(sol,xint); 
 
switch OutputID 
    case 1 
        output =  W; 
    case 2 
        output =  Answer(2,1)*B;                                    %Hold Center Delfection Output For Load 
    case 3 
         output =  Answer(3,100); %Hold Beam Roation 
    case 4 
         output =  (B - (Answer(1,100)+windlockslip)*B)*K;           %Hold RF1 Reaction 
    case 5 
        %Calculate Beam Y Reaction 
        endbeamshear = -(WindLoad*B)*cos(Answer(3,100))+(sol.parameters*(E*I)/(B^2))*sin(Answer(3,100)); 
        endaxialforce = (-sol.parameters*(E*I)/(B^2)+sin(Answer(3,100))*endbeamshear)/(cos(Answer(3,100))); 
        YBeamReaction = -cos(Answer(3,100))*endbeamshear-sin(Answer(3,100))*endaxialforce; 
        output = YBeamReaction; 
    case 6 
        %Find Out Beam End Shear 
        endbeamshear = -(WindLoad*B)*cos(Answer(3,100))+(sol.parameters*(E*I)/(B^2))*sin(Answer(3,100)); 
        output =  endbeamshear; %Hold Beam Shear 
    case 7 
        %Find Out End Axial Force 
        endbeamshear = -(WindLoad*B)*cos(Answer(3,100))+(sol.parameters*(E*I)/(B^2))*sin(Answer(3,100)); 
        endaxialforce = (-sol.parameters*(E*I)/(B^2)+sin(Answer(3,100))*endbeamshear)/(cos(Answer(3,100))); 
        output =  endaxialforce; %Hold End Beam Axial Force 
    case 8 
        output =  (B - (Answer(1,100)+windlockslip)*B); 
end 
end 
 
% ------------------------------------------------------------ 
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function dydx = mat4ode(x,y,P) 
global w; 
dydx = [cos(y(3)) 
        sin(y(3)) 
        y(4) 
        -w*x*cos(y(3)) + P*sin(y(3))]; 
% ------------------------------------------------------------ 
function res = mat4bc(ya,yb,P) 
global k; 
global windlockslip; 
%y(1) = y1 or X(t) 
%y(2) = y2 or Y(t) 
%y(3) = y3 or theta(t) 
%y(4) = y4 or moment(t) y4' shear(t) 
res = [  ya(1) %@ beggining value 
         ya(3) 
         yb(2) %@ ending value 
         yb(1)-1+(P/k)+windlockslip; 
         yb(4)]; %moment at the end of beam must be 0 
% ------------------------------------------------------------ 
function yinit = mat4init(x)  %return column matrix yinit for guess y and y' 
yinit = [  1  %guess for X(t) 
           1  %guess for Y(t) 
           x^2 %guess for theta(t) 
           1-x^2 %guess for moment(t) 
            ]; 
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APPENDIX	
  E	
  -­‐	
  	
  SHELL	
  ELEMENT	
  COMPARISONS	
  

ELEMENT	
  TYPES	
  
ABAQUS offers several finite element types.  Elements include 3D continuum, 3D shell, 

2D truss, 2D frame and 2D shell elements. Considering discussed door behavior, a quasi 3D 

shell/plate element is most applicable for curtain modeling.  An explanation of why this element 

type was chosen follows below. 

CURTAIN	
  SHELL	
  ELEMENT	
  
Consider a small section of door curtain.  This portion would be subjected to a uniform 

surface pressure.  Possibly internal plate edge moments and membrane force (Catenary Force) 

may develop as shown in Figure.   

 
Figure1. Forces applied to a small piece of door curtain 

Within Figure, it can be deduced that cross-sectional thickness area, plane 1-3 and 2-3 is 

much less than the area of applied pressure, surface 1-2.  Therefore, stress in the 3 direction is 

negligible as compared to developed bending stresses within cross-section planes 1-3 and 2-3.  

These assumptions fall in line with the assumptions of thin plate theory which include; (1) 

straight planes normal to the mid-surface remain straight after deformation, (2) straight planes 

normal to the mid-surface remain normal to the mid-surface after deformation, (3) the thickness 

of the plate does not change during deformation.  

The developed membrane force of the shell element is attributed to the axial force 

developed along the door curtain mid-plane when windlocks engage.  This statement aligns itself 

with shell theory. Shell theory includes all assumptions of plate theory but includes effects of 
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axial force within the element. Therefore, the door curtain should be modeled using one of 

ABAQUS’s quasi 3D shell elements. 

BEHAVIOR	
  OF	
  ABAQUS	
  SHELL	
  ELEMENTS	
  
This research pertains to thin steel sheet geometries, 20 to 26 gauge thicknesses.  Finite 

shell element research has been performed with success using the following ABAQUS standard 

elements, Table 1.  Table 1 and Figure 26 identify important formulation aspects of each 

element.   
Table 1. ABAQUS Shell Element Comparison 

Element Type Translation DOF Rotation DOF Plate Analysis  Small Strain 

S4 Linear 1 2 3 4 5 6 Thick OR Thin NO 

S4R Linear 1 2 3 4 5 6 Thick OR Thin NO 

S4R5 Linear 1 2 3 4 5 Thin YES 

S8R Quad 1 2 3 4 5 6 Thin YES 

S9R5 Quad 1 2 3 4 5 Thin YES 

STRI3 Linear 1 2 3 4 5 Thin YES 

 

 

Figure 26. Abaqus S4 element node detail shown left. Abaqus STRI3 element node detail shown right. 

Element selection is important because some elements will include the effect of 

transverse DOF 3 shear deformation and shell thickness change. Both shear deformation and 

shell thickness change can affect overall door deflection of the developed door model.  Hence, 

RX and RY will be inaccurately predicted.  From the research scope, it is apparent that span to 

curtain depth ratio will be large. Typical door spans are in the range of 10 to 20 feet.  In this 

range most deformation will occur from bending strain of DOF 1 and 2, Figure.  Therefore, it is 

not a requirement to select an element which includes insignificant shear deformation in the 
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direction of surface loading, DOF 3, Figure 26.  However, including this effect will increase 

solution accuracy. 

The assumption of small strain relates to the change in thickness of the shell element.  

For small strain elements, the thickness of material remains constant throughout problem 

solving. Poison’s effect is ignored.  The thickness of shell before loading is the same after it has 

been loaded. Therefore, small strain elements are less accurate at predicting nodal movement as 

elements capable of handling large strains such as element S4. 

Moreover, it is important to find an element that will support membrane forces (Catenary 

Curtain Force). Membrane forces occur in DOF 1 and 2.  When the curtain is restrained on jamb 

edges from windlock engagement, the door develops membrane force. This force will be tensile 

and will stiffen the deflection response of the door system resulting in a slower rate of deflection 

for each increment of pressure.  All elements shown in Table  are shell elements.  Shell elements 

are formulated to include membrane forces.   

Because each element uses a different formulation the chosen shell behavior must be 

verified before use. A shell element comparison was completed. Six different elements were 

used to mesh a 10 in. by 10 in. steel plate of 0.5 in. thicknesses. Mesh density was chosen by 

analyzing each plate model until the center node deflection converged to a common value for a 

decrease in element size. Figure 37 shows the mesh density of 0.5 in. by 0.5 in. used for all shell 

elements. 

 
Figure 37. Chosen mesh density rendering, 1 element for each 0.5 inch 
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An exact Navier-Stokes classical plate solution is provided in Appendix X based on 

Kirchhoff thin plate theory neglecting DOF 3 shear deformation (Figure 37). This solution was 

used to verify the performance of each chosen shell element.  Comparison plots are shown in 

Figure 48 through Figure 79. 

Element STRI3 neglects shear deformation.  Therefore, behavior of STRI3 behavior is 

verified by the exact match of solution output with classical solution in Figure 79. Elements S4 

and S4R5 both include effects of shear deformation.  Behavior is verified by the over prediction 

of center plate deflection as shown in Figure. Tensile stiffening due to membrane force was 

verified by applying a membrane load to the plate element in axial DOF 1 and 2. The stiffening 

effect is shown in Figure by a decrease in central plate deflection with applied axial edge force. 
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Figure 48: Exact plate solution versus ABAQUS element S4 and S4R 

 

Figure 5: Exact plate solution versus ABAQUS element S4 and S4R5 

 

Figure 6: Exact plate solution versus ABAQUS element S4, S8R and S8R5 
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Figure 79: Exact plate solution versus ABAQUS element S4 and STRI3 

 

Figure 8: Shell Element S4 Plate with Edge Membrane 
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