Christopher McCune Structural Option Eight Tower Bridge Faculty Advisor: Dr. Hanagan November 7th, 2005

Structural Technical Report #1 Structural Concepts/Existing Conditions Report

Executive Summary

The following report is an in-depth summary and preliminary analysis of the structural system for Eight Tower Bridge, a 16-story steel high-rise office building located in Conshohocken, Pennsylvania. Completed in April of 2002, Eight Tower Bridge sits on the shore of the Schuylkill River, next to the Fayette Street Bridge, leading to both interstates I-476 and I-76. This prime location for a multi-tenant office building is less than 15 minutes outside of Centre City Philadelphia. The building was designed by the high profile architecture firm of Skidmore, Owings and Merrill, who have been responsible for such structures as the Sears Tower in Chicago, and are currently designing the new Freedom Tower in New York City. Eight Tower Bridge is the most recent office building to be constructed in the Conshohocken area by the real estate development company Oliver Tyrone Pulver Corporation. The company has built nearly \$400 million worth of new office, commercial and retail space in the area over the past 10 years, adding nearly 1.2 million square feet of rentable space. The 315,000 square foot Eight Tower Bridge was the largest single function structure of the Tower Bridge buildings to be constructed, falling second in overall size to the mixed-use One Tower Bridge.

The scope of this report is limited to construction documents issued for construction on March 25th, 2001 and in some cases, revision bulletins one through seven. This report is intended to provide an overview of the existing structural system of the building, including information relative to design concepts and required loadings, as well as design assumptions. This report includes a summary of the building's structural components including the general floor framing, structural slabs, lateral load resisting system, foundation system, and bracing system. Spot checks have been completed for a typical floor beam, column and lateral braced frame. Additionally, both wind and seismic load analysis have been conducted on the structure to further analyze the effectiveness of the lateral reinforcing system. Copies of these calculations can be found in Appendices A and C, while sections, plan drawings and framing details can be found in Appendix B and within the body of this report. All loads for analysis have been developed through use of ASCE7-98, BOCA National Building Code and through use of construction documents.

<u>Code and Code Requirements</u>

Both the gravity and lateral structural systems of Eight Tower Bridge were designed in accordance with requirements set forth by the BOCA National Building Code, 1996 edition. Structural steel members were designed using AISC "Load and Resistance Factor Design Specification for Structural Steel." For the development of lateral load analysis for this report, load development procedures were taken from ASCE7-98, chapters 6 and 9. Material properties have been specified within the construction documents and adhere to ASTM and AISC standards for steel, and with ACI 318 standards for concrete construction.

Gravity and Lateral Loads

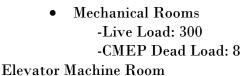
As mentioned in "Code and Code Requirements" above, the gravity and lateral loads for this report were developed using methods and standards set forth by ASCE7-98. Additional loading cases and requirements were obtained from the structural documents. A combination of loads from both sources provided the necessary loadings for the structural system design. The following loads were obtained from ASCE7-98 and are the primary loads used within the scope of this report:

Live Loads (psf):

- Typical Offices: 50
- Partitions: 15
- Lobbies/Corridors (1st floor): 100
- Lobbies/Corridors (above 1st floor): 80
- Stairs: 100
- Roof: 20
 - Mechanical Rooms: 125

Dead Loads (psf):

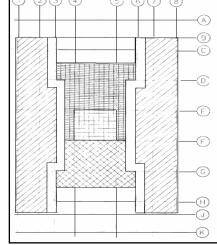
- Superimposed Dead Load: 20
- Ceiling, Mechanical, Electrical and Plumbing: 5
- Carpet/Misc: 5
- External wall load: 150


Additional load cases have been specified in the structural documents, but are not used within the scope of this report. They are as follows:

Terrace at Level 15 -Superimposed Dead Load: 75 -Live Load: 50

Roof/Mechanical Penthouse Level-

• Roof


-Live Load: 30 -Superimposed Dead Load: 12

-Live Load: 150 -Dead Load: 8 **Figure 1.1**- Shows the load distribution over the penthouse level of the structure.

- Cooling Tower -Live Load: 150 -Dead Load: 62 -CMEP Dead Load: 8 Roof Drift Snow -Dead Load: 62 -Superimposed Dead Load: 12 - Roof Load - Mechanical Load
 - -Elevator Room Load
 - -Cooling Towers

-Snow Drift

The additional loadings listed above under apply strictly to the areas specified. Areas to which to loads apply are hatched on the penthouse plan layout in figure 1.1 above.

Lateral Loads:

Wind and seismic lateral loads for the structure were derived from the methods set forth in ASCE7-02, chapters 6 and 9. A copy of ASCE7-98 was not obtained. A table summarizing the results of the both wind and seismic analysis in the E-W direction can be found below. For a complete table of all factors, assumptions and derivations, as well as the results of N-S seismic analysis, please refer to Appendix A.

Location:	Co	onshohocken, PA	Penthouse	ASCE7-02 Chapter 6: Wind Analysis Method 2- Analytical Procedure					
Dimension	N-S	118 ft	N-S 114 ft	Story Fo	rces	Storey Shear		Moment	
	E-W	196 ft	E-W 44 ft	N-S	E-W	N-S	E-W	N-S	E-W
Tot	tal Height, h	214 ft	Height 22 ft						
	ry Height, h _s	12.08 ft	3	(kips)	(kips)	(kips)	(kips)	(ft-kips)	(ft-kips)
,	J	12111		11.34	25.92			2,426.93	5,545.55
				30.18	27.14	11.34	25.92	5,799.92	5,216.01
	12	10	711.004	32.53	47.50	41.52	53.06	5,859.47	8,556.52
Velocity Pressi	K _{at}	1.0	(Table 6-4) Assume area is flat	32.13	46.84	74.05	100.56	5,398.38	7,871.23
	K₀	0.85	(Table 6-4)	31.72	46.18	106.18	147.40	4,946.93	7,201.70
	V	90 mph	(Figure 6-1)	31.31	45.51	137.90	193.58	4,505.30	6,548.23
	Group	П	Office Building	30.84	44.73	169.21	239.09	4,064.39	5,895.95
Importan	nce Factor, I	1.0	(Table 6-1)	30.33	43.90	200.05	283.83	3,631.06	5,256.08
	Exposure	В	Assume area is flat	29.82	43.07	230.38	327.73	3,210.00	4,636.27
- 44 - 0.0005		-	Moourric area to riat	29.28	42.18	260.20	370.80	2,797.65	4,030.71
qz/Kz = 0.00258	j6K _{et} K _d V*I =	17.6256		28.67	41.18	289.47	412.98	2,393.11	3,437.93
				27.91	39.95	318.14	454.16	1,992.96	2,852.34
				27.10	38.62	346.05	494.11	1,607.57	2,290.89
<u> Fable 1.1</u> - /	Results	s of a wind	l load analysis	26.24	37.21	373.15	532.73	1,239.62	1,757.97
				25.14	35.42	399.39	569.95	884.05	1,245.31
				23.69	33.04	424.54	605.36	546.80	762.63
				22.44	30.99	448.23	638.41	246.80	340.88

Total Shear

51,550.96

Fotal Momer

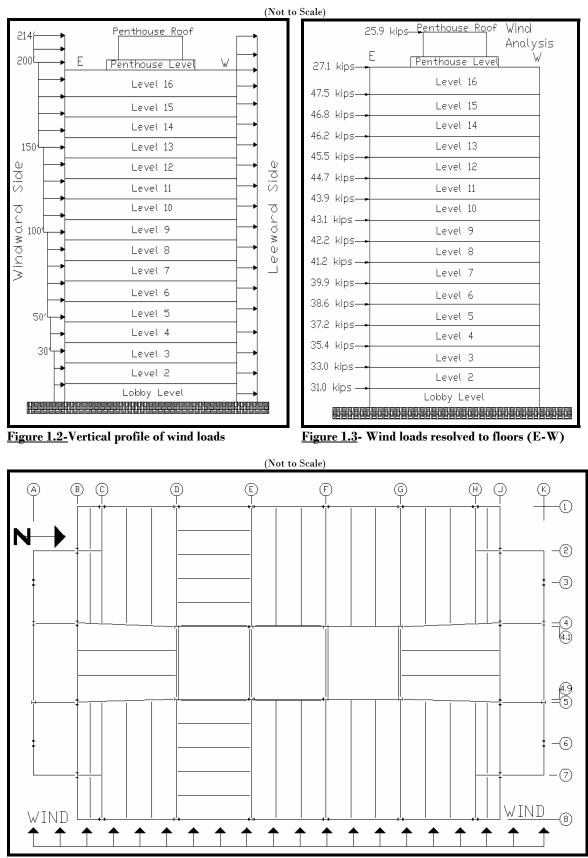


Figure 1.4- Wind force on E-W side of structure

Discussion of Wind Analysis

As mentioned above, the wind analysis of Eight Tower Bridge was conducted in accordance with the provisions set forth in ASCE7-02, Method 2. Several assumptions and interpolations were made during the wind analysis. To obtain the topographic factor (K_{zt}) and exposure category, the area surrounding the structure was assumed to be flat. Eight Tower Bridge was determined to be a use group of II (office building), and the lateral load resisting system was classified as "other structural system" in table 9.5.5.3.2.

To resolve the total wind pressures to forces on the 16th floor and mechanical penthouse roof, half of the 16th story height and half of the mechanical penthouse height were multiplied by the corresponding reduction in area of the mechanical penthouse in both directions. The penthouse roof forces were obtained by multiplying half the penthouse story height by its corresponding width, and multiplying by the directional wind pressure. This procedure resulted in an adjusted and more accurate wind forces for these levels. Figures 1.2 through 1.4 above further illustrate the results of the wind analysis.

			w = C _{s,EW} W = 5)/(2.5 - 0.5) =		kips			238.6 kips E	Penthouse Level W
Level, x	Wr	h,	w,h, ^k	Cvi	F,	V,	M,		Level 16
LoroyA	(kips)	(t)	npi	ΨVI	(kips)	(kips)	(ft-kips)	109.5 kips—-	
Roof	3100	192	2,443,848	0.235	238.6	(viles)	45,853	100.2 kip s -	
16	1545	180	1,121,544	0.108	109.5	238.6		91.2 kips	Level 14
15	1545	168	1,026,681	0.099	100.2	348.1			level 13
14	1545	156	933,987	0.090	91.2	448.3	<u> </u>	82.3 kips—-	Level 12
13	1545	144	843,202	0.081	82.3	539.5		73.6 kips—	
12	1545	132	754,442	0.073	73.6	621.8			level 11
11	1545	120	667,841	0.064	65.2	695.4		65.2 kips—•	Level 10
10	1545	108	583,557	0.056	57.0	760.6		57.0 kips -	
9	1545	96	501,778	0.048	49.0	817.6		49.0 kips—	
8	1545	83	422,733	0.041	41.3	866.6		41.3 kins	Level 8
7	1545	71	346,708	0.033	33.8	907.8			Level 8 Level 7
6	1545	59	274,071	0.026	26.8	941.7	1,587	33,8 kips -	
5	1545	47	205,321	0.020	20.0	968.4	947	26.8 kips—	Level 6
4	1545	35	141,173	0.014	13.8	988.5	485	200 kips	Level J
3	1545	23	82,771	0.008	8.1	1002.2			Level 4
2	1545	11	32,334	0.003	3.2	1010.3		13.8 kips -	
BASE			_			1013.5		8.1 kips —	Level 3
	∑=		Σ=	∑=	∑=		∑=	3.2 kips —	
	26268		10381990	1.000	1013.5		145903		Lobby Level

Seismic Loads (ASCE7-02)

Figure 1.5-Seismic loads resolved to floors (E-W)

Discussion of Seismic Analysis

The seismic analysis of Eight Tower Bridge also required several making several assumptions. Due to the combination of both braced frames and moment resisting frames, a C_t and an x value of 0.02 and 0.75 respectively from table 9.5.5.3.2. These values determine that the approximate period in both directions was sufficient to classify the building as a rigid structure.

In order to simplify the seismic analysis, the structure was analyzed as a 16-story structure, with a height totaling only 193 feet and neglecting the 22 foot mechanical penthouse. Instead, the mechanical penthouse was calculated as a dead load on the 16th story of the building added to the total floor weight for that story. The analysis was then conducted as normal. Table 1.3 above displays the results of the seismic analysis. Figure 1.5 illustrates the resolution of each of the seismic forces to each floor level. A complete table of factors used during the seismic analysis, as well as the tabulation of building loads and weights can be found in Appendix A.

Description of Structural System

Eight Tower Bridge is a steel framed high-rise office tower. The structural system of supports 16 stories stretching 192' into the air. The superstructure also supports a mechanical penthouse level that rises 22' above the lower roof, topping the building out at 214'. The mechanical penthouse protects two massive cooling towers, a fan room, and an elevator machine room that controls the six general access elevators. The structural framing of Eight Tower Bridge provides strong lateral support, as well as opening the floor plan of the building in order to maximize rentable space to nearly 19,800 square feet per floor. In addition to mechanical roof loads, gravity floor loads, and lateral forces, the perimeter of the building must support a façade of pre-cast concrete panels and glazed windows.

Foundation

The building foundation system of Eight Tower Bridge consists of reinforced normal weight concrete pile caps ranging from 36" to 54" in depth. The pile caps range in dimension from approximately 7'x7' to 11'x10'. These pile caps are supported by four to eight 16" diameter auger-cast piles driven to an average bearing depth of thirteen feet below grade. The piles are made of normal weight concrete with a compressive strength of 4,000psi, and have been designed to a capacity of 100 tons.

The core of the building is supported by a 4'3" reinforced concrete mat foundation, supported by additional auger-cast piles. The entire building is supported by a total of 328 piles. Reinforced concrete grade beams connect all of the pile caps, as well as the interior core mat foundation.

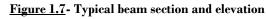
Slab at the lobby level consists of a 5" concrete slab-on-grade reinforced with one

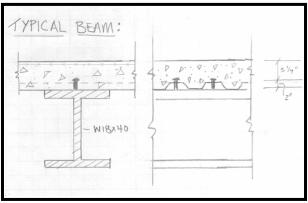
layer of 4x4 welded wire fabric. The slab sits over a loose granular fill, which sits over compacted sub-grade soil. The inner core slab-on-grade is similar, but is cast 8" thick and has two layers of welded wire fabric as reinforcement. The lobby level also functions as a parking garage, eliminating the space for HVAC equipment underneath the building, thus forcing placement on the roof. The mechanical equipment loading creates an additional dead load on the structure, as well as adding to the complexity of wind and seismic calculations.

Superstructure Frame

Eight Tower Bridge is a steel framed structure. The framing in this system is fairly straight forward in design. The simple design has allowed for 13 of the 16 stories to be designed with a typical framing plan. Beam sizes for this system are most commonly W 18x40 and typically spanning 44'4" and spaced at 9'4". Variations in this framing system occur at the extreme north and south end of the building, as well as in the buildings core due to mechanical system loads, and the insertion of six elevator towers through the height of the building. Exterior girders have been sized to W21x44 with spans ranging from 28' to 12'. Interior girders are primarily sized as W18 shapes with weights ranging from 26 to 86 pounds per foot. Interior beam-to-column and beam-to-girder connections are typically simple shear connections. Beam-to-column connections in the moment resisting frames are fully welded moment connections, or as an alternate, have bolted end-plate moment resisting connections. All structural steel beams spanning over 35' are designed with an upward camber and have been specified to ASTM A992 grade 50 steel. Figure 1.6 below shows a typical floor framing plan.

Figure 1.6- The typical framing plan found at levels 3 to 15


Lateral System


The lateral system of Eight Tower Bridge is actually two separate concentric frame systems. The inner framing structure is an 18-story core tower comprised of a combination of moment and braced frames. The braced frames span 28' along column lines D, E, F and G in the east-west dimension of the building. Additional braced frames span 56' along column lines 4.1 and 4.9 in the north-south direction between column lines D and F. The braced frames can be seen in the typical framing plan in Figure 1.6 above. The typical frame is made of W 14x90 through W 14x550 columns, W18x50 beam members, and braced diagonally with two 8 x 6 x ³/₄ welded angles of A36 Steel. The core tower supports the elevator machine room, as well as the mechanical fan room.

The outer frame is comprised of structural steel moment resisting frames located around the building perimeter. All structural steel is specified as ASTM A992 grade. These moment connections have been designed with single shear plate slip-critical connections in order for the beam to resist lateral and gravity loads and develop the total designed beam end reaction.

Structural Slab

Eight Tower Bridge employs the use of reinforced concrete slab poured over metal deck for the flooring system. The typical floor slab is 5-1/4" thick with 3-1/4" light-weight concrete poured over 2" non-cellular metal deck. The system uses 6x6-W1.4xW1.4 welded-wire mesh and shear studs spaced along the span of the beam to develop a full composite structural slab. Designing the slab to

act with full composite strength allows the W-shape floor beams to develop a larger moment capacity, thus capable of spanning longer distances. The ability of a beam to span a longer distance results in further column spacing, allowing for flexibility in the floor plan which is a desirable trait in office building design. The concrete slab described above is shown in Figure 1.7 and is used as primary flooring system in all office spaces.

Special Design Cases and Concerns

Additional slab systems were designed for the mechanical penthouse and mechanical fan room. The mechanical fan room located on each level of Eight Tower Bridge requires and 8" thick normal weight concrete slab with 2" deep metal deck. Reinforcing for this slab is specified as #5 bars spaced at 12" for both top and bottom reinforcing. The slab also acts in composite with W-shape floor beams, and also required shoring during construction.

A similar slab system was used for the mechanical penthouse. Differences include the increase in slab depth to 9" total, and reinforcing of #4 bars spaced at 12". The thickened slab and increase in reinforcing is required to support the large cooling towers which are treated as live loads. Additional thickened slabs at the penthouse level occur in the mechanical fan room and elevator machine room, where shoring was required during construction due to the increase in service loads.

Eight Tower Bridge also incorporates a window washing system onto the roof of the structure. Strategically placed davit pedestals comprised of 18"x1"x1 plates with $\frac{1}{2}"$ vertical stiffener plates have been attached at various locations on the rooftop. These davit pedestals will be used to lower window washing equipment along the side of the building, which will affect the loading on the structural members to which they are attached. The exact location and effects of this system on the structure was coordinated with a special consultant.

Structural Member Check

Typical Beam Check

A check of a floor beam found within a typical bay was conducted. The beam was arbitrarily chosen from a typical bay on the sixth level in between column lines 4.9 and 8, and G and F. The loads previously listed in this report were used to develop the member loading. These loads were factored using the equation 1.6L+1.2D. Live load reductions were applied where necessary. Although several different members could have been selected, a W18x40 beam was chosen in order to verify that the member does work for this framing system. The member was also checked for defection and results indicate that each of these typical beams must be fabricated with an upward camber. Detailed calculations can be found in Appendix C.

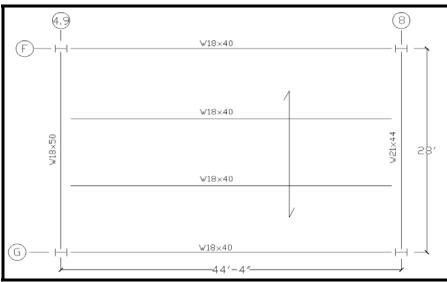
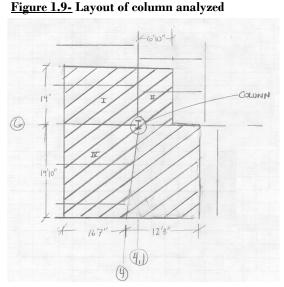



Figure 1.8- A typical bay from the 6th floor.

Typical Column Check

A column check was performed on level 6 of the structure at column mark G-4.1. Columns of eight Tower Bridge are typically two stories high with an average height of 24'2". However, the maximum un-braced length is only 12'1" due to the flooring systems acting as column bracing. A maximum live load reduction of 0.4 was used in development of column axial forces and moment. The column being analyzed supports some of the large mechanical dead loads on the roof, resulting in a column size of W14x311. This column is also part of the laterally braced frame that runs

along column line G. However, these two factors were not taken into account in the spot check, resulting in a much smaller W 14x 82 column being selected as the initial size. Additionally, the area contributing to the column compression was not symmetrical. The dimensions of the tributary area for the column check are shown above in figure 1.9. Detailed calculations for the column check can be found in Appendix C.

Lateral Bracing Check

The lateral braced frame along column line F between column lines 4.1 and 4.9 was checked for ability to withstand the seismic and wind loads developed in the previous sections of this report. The frame was analyzed at level 6, where it was found that a total combined wind and seismic shear force of 1319kips was acting on the story. The frame being analyzed is just one of four like frames resisting shear and moment in the same direction. A reasonable assumption was determined that a quarter of that story shear was being resisted by the two A36 steel 8x6x3/4 angle members welded back to back. A detailed calculation is included in Appendix C. The frame is shown below in Figure 1.10.

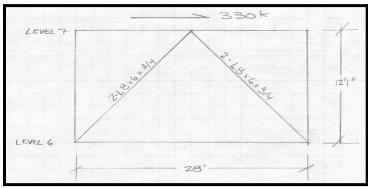


Figure 1.10-Analyzed braced frame on level 6

<u>Appendix A</u>

Table A.1-	Basic win	l analysis	factors and	pressure d	istribution

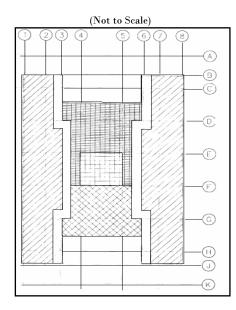
Location		Conshohoc	ken, PA			
			-		Penthouse	
Dimension	N-S E-W	196 118		N-S E-W	114 1	-
Total Hei		214		Height	44 1 22 1	-
Inter-story Heig		12.08		rioigni		
			-			
Velocity Pre	ssure	K _{z1}	1.0		(Table 6-4) Assumed	area is flat
		Ka	0.85		(Table 6-4)	
		V Group	90 m II	npn	(Figure 6-1) Office Building	
Im	portanc	ce Factor, I	1.0		(Table 6-1)	
		Exposure	В		Assumed area is flat	
$q_{p}K_{z} = 0$	0.00256	6Kz i KdV²l =	17.6256			
		г		F 144	1	
			N-S	E-W		
Gust	Facto	rEffect,G[0.832	0.821	J	
ASCE7-0	02 Cł	napter 6:	Wind A	nalysis	Resultant p	ressure
Meth	10d 2-	Analytica	al Procedo	ure	N-S	E-W
Externa	al Pres	sure Coeffi	cients, C _P	Windward		0.8
				Leeward	-0.5	-0.36
Story No.	z (ft)	Kz	q₌ (lb/ft*)	qn (lb/ft*)	q₂CpG-qhCpG (lb/ft‴)	qzCpG-qhCpG (lb/ft‴)
Penthouse Roof	214	1.222	21,544	21.544	23.313	20.595
Penthouse Level	192	1.188	20.945	21.544	22.914	20.201
16	180	1.170	20.625	21.544	22.701	19.991
15	168	1.146	20.200	21.544	22.418	19.712
14	156	1.122	19.775	21.544	22.135	19.432
13	144	1.098	19.349	21.544	21.851	19.152
12	132	1.070	18.851	21.544	21.520	18.825
11	120	1.039	18.318	21.544	21.165	18.475
11 10	120 108	1.039 1.009	18.318 17.786	21.544 21.544		18.475 18.125
					21.165	
10	108	1.009	17.786	21.544	21.165 20.811	18.125
10 9	108 95.6	1.009 0.977	17.786 17.215	21.544 21.544	21.165 20.811 20.430	18.125 17.750
10 9 8	108 95.6 83.5	1.009 0.977 0.940	17.786 17.215 16.576	21.544 21.544 21.544	21.165 20.811 20.430 20.005	18.125 17.750 17.330
10 9 8 7	108 95.6 83.5 71.4	1.009 0.977 0.940 0.896	17.786 17.215 16.576 15.785	21.544 21.544 21.544 21.544	21.165 20.811 20.430 20.005 19.478	18.125 17.750 17.330 16.811
10 9 8 7 6	108 95.6 83.5 71.4 59.3	1.009 0.977 0.940 0.896 0.847	17.786 17.215 16.576 15.785 14.934	21.544 21.544 21.544 21.544 21.544 21.544	21.165 20.811 20.430 20.005 19.478 18.911	18.125 17.750 17.330 16.811 16.252
10 9 8 7 6 5	108 95.6 83.5 71.4 59.3 47.2	1.009 0.977 0.940 0.896 0.847 0.796	17.786 17.215 16.576 15.785 14.934 14.034	21.544 21.544 21.544 21.544 21.544 21.544	21.165 20.811 20.430 20.005 19.478 18.911 18.312	18.125 17.750 17.330 16.811 16.252 15.660
10 9 8 7 6 5 4	108 95.6 83.5 71.4 59.3 47.2 35.2	1.009 0.977 0.940 0.896 0.847 0.796 0.731	17.786 17.215 16.576 15.785 14.934 14.034 12.884	21.544 21.544 21.544 21.544 21.544 21.544 21.544	21.165 20.811 20.430 20.005 19.478 18.911 18.312 17.546	18.125 17.750 17.330 16.811 16.252 15.660 14.905

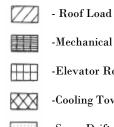
Location		Conshohocken	DA				
		Constonocken	PA	P enthouse			
Dimension	N-S	118		114			
	E-W	196		44			
Inte	Total Height, h r-story Height, h₅	214 12.08	-	22	π		
iii.e	a-story margine, mg	12.00	n				
Velocity Pressu	ı K _{zi}	1.0		(Table 6-4) Assur	n e area is flat		
2	Ka	0.85		(Table 6-4)			
	V	90	mph	(Figure 6-1)			
	Group	п		Office Building			
Imp	ortance Factor, I	1.0		(Table 6-1)			
	Exposure	B		Assume area is fl	lat		
q _z /K _z = 0	.00256K₂K₄V²I =	17.6256					
ASCE7 02 Chanter 6: Wind Analysis							
ASCE7-02 Chapter 6: Wind Analysis							
Method 2- Analytical Procedure Story Forces Storey Shear Moment							
Story Forces N-S E-W		N-S	E-W	N-S E-W			
	2.11		2.00				
(kips)	(kips)	(kips)	(kips)	(ft-kips)	(# kines)		
				(it-topo)	(ft-kips)		
11.28	25.83			2,414.13	· · ·		
11.28 30.02	25.83 27.04	11.28	25.83	2,414.13	5,525.38		
		11.28 41.30	25.83 52.87				
30.02	27.04			2,414.13 5,769.32	5,525.38 5,197.03		
30.02 32.36	27.04 47.33	41.30	52.87	2,414.13 5,769.32 5,828.56	5,525.38 5,197.03 8,525.39		
30.02 32.36 31.96	27.04 47.33 46.67	41.30 73.66	52.87 100.20	2,414.13 5,769.32 5,828.56 5,369.90	5,525.38 5,197.03 8,525.39 7,842.59		
30.02 32.36 31.96 31.55	27.04 47.33 46.67 46.01	41.30 73.66 105.62	52.87 100.20 146.87	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50		
30.02 32.36 31.96 31.55 31.15	27.04 47.33 46.67 46.01 45.35	41.30 73.66 105.62 137.17	52.87 100.20 146.87 192.88	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41		
30.02 32.36 31.96 31.55 31.15 30.67	27.04 47.33 46.67 46.01 45.35 44.57	41.30 73.66 105.62 137.17 168.32	52.87 100.20 146.87 192.88 238.22	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50		
30.02 32.36 31.96 31.55 31.15 30.67 30.17	27.04 47.33 46.67 46.01 45.35 44.57 43.74	41.30 73.66 105.62 137.17 168.32 198.99	52.87 100.20 146.87 192.88 238.22 282.79	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95		
30.02 32.36 31.96 31.55 31.15 30.67 30.17 29.66	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92	41.30 73.66 105.62 137.17 168.32 198.99 229.16	52.87 100.20 146.87 192.88 238.22 282.79 326.54	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41		
30.02 32.36 31.96 31.55 31.15 30.67 30.17 29.66 29.12	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92 42.03	41.30 73.66 105.62 137.17 168.32 198.99 229.16 258.82	52.87 100.20 146.87 192.88 238.22 282.79 326.54 369.45	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07 2,782.89	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41 4,016.05		
30.02 32.36 31.96 31.55 31.15 30.67 30.17 29.66 29.12 28.52	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92 42.03 41.03	41.30 73.66 105.62 137.17 168.32 198.99 229.16 258.82 287.95	52.87 100.20 146.87 192.88 238.22 282.79 326.54 369.45 411.48	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07 2,782.89 2,380.48	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41 4,016.05 3,425.42		
30.02 32.36 31.96 31.55 31.15 30.67 30.17 29.66 29.12 28.52 27.77	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92 42.03 41.03 39.80	41.30 73.66 105.62 137.17 168.32 198.99 229.16 258.82 287.95 316.46	52.87 100.20 146.87 192.88 238.22 282.79 326.54 369.45 411.48 452.51	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07 2,782.89 2,380.48 1,982.45	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41 4,016.05 3,425.42 2,841.97		
30.02 32.36 31.96 31.55 30.67 30.17 29.66 29.12 28.52 27.77 26.96	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92 42.03 41.03 39.80 38.48	41.30 73.66 105.62 137.17 168.32 198.99 229.16 258.82 287.95 316.46 344.23	52.87 100.20 146.87 192.88 238.22 282.79 326.54 369.45 411.48 452.51 492.32	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07 2,782.89 2,380.48 1,982.45 1,599.09	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41 4,016.05 3,425.42 2,841.97 2,282.55		
30.02 32.36 31.96 31.55 31.15 30.67 30.17 29.66 29.12 28.52 27.77 26.96 26.10	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92 42.03 41.03 39.80 38.48 37.08	41.30 73.66 105.62 137.17 168.32 198.99 229.16 258.82 287.95 316.46 344.23 371.18	52.87 100.20 146.87 192.88 238.22 282.79 326.54 369.45 411.48 452.51 492.32 530.79	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07 2,782.89 2,380.48 1,982.45 1,599.09 1,233.08	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41 4,016.05 3,425.42 2,841.97 2,282.55 1,751.57		
30.02 32.36 31.96 31.55 31.15 30.67 30.17 29.66 29.12 28.52 27.77 26.96 26.10 25.01	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92 42.03 41.03 39.80 38.48 37.08 35.29	41.30 73.66 105.62 137.17 168.32 198.99 229.16 258.82 287.95 316.46 344.23 371.18 397.29	52.87 100.20 146.87 192.88 238.22 282.79 326.54 369.45 411.48 452.51 492.32 530.79 567.87	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07 2,782.89 2,380.48 1,982.45 1,599.09 1,233.08 879.38	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41 4,016.05 3,425.42 2,841.97 2,282.55 1,751.57 1,240.78		
30.02 32.36 31.96 31.55 31.15 30.67 30.17 29.66 29.12 28.52 27.77 26.96 26.10 25.01 23.57	27.04 47.33 46.67 46.01 45.35 44.57 43.74 42.92 42.03 41.03 39.80 38.48 37.08 35.29 32.92	41.30 73.66 105.62 137.17 168.32 198.99 229.16 258.82 287.95 316.46 344.23 371.18 397.29 422.30	52.87 100.20 146.87 192.88 238.22 282.79 326.54 369.45 411.48 452.51 492.32 530.79 567.87 603.16	2,414.13 5,769.32 5,828.56 5,369.90 4,920.83 4,481.53 4,042.95 3,611.91 3,193.07 2,782.89 2,380.48 1,982.45 1,599.09 1,233.08 879.38 543.92	5,525.38 5,197.03 8,525.39 7,842.59 7,175.50 6,524.41 5,874.50 5,236.95 4,619.41 4,016.05 3,425.42 2,841.97 2,282.55 1,751.57 1,240.78 759.86		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		actor Effect Calcu Direction	ilatioi	ı	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B =	118	ft	L/B = 1.661	
$C_1 =$ 0.02 (Table 9.5.5.3.2) Steel Mome x = 0.75 Frames/Braced Frame Core E stim ated Frequency $f = 1/C h^3 = 0.894$ From Table 6-2 Zmin 30 c 0.33 b 0.45 g_0 3.40 (Given) g_v 3.40 (Given) χ_z 0.2	L =	196	ft		
x = 0.75 E stim ated Frequency $f = 1/C h^x = 0.894$ Frames/Braced Frame Core Estim ated Frequency Frames/Braced Frame Core Table 6-2 Zmin 30 c 0.30 I 30 c 0.30 I 30 g 0.33 B 0.45 g 0.45 g 0.33 g 0.45 g 0.45 g 0.045 0.66 0.66 0.61 g 0.0239 0 Q (10.645 0.821 Vz = b(z/33) ⁶ V(88/60) = 83.426 n_1 = f = 0.894 9 0.46 0.46	h=	214	ft		
Estimated Frequency $f = 1/C h^{x} = 0.894$ From Table 6-2 Exposure B, Case 2 Zmin 30 c 0.30 l 320 ε 0.33 b 0.45 α 0.25 g_{0} 3.40 (Given) g_{v} 3.40 (Given) g_{v} 3.40 (Given) g_{v} 3.40 (Given) g_{z} 128.40 (Given) g_{z} 128.40 (Given) $z = 128.40$ $L_{z} = 1/2/33)^{z} = 503.3$ $I_{z} = c(33/z)^{36} = 0.239$ $Q = (1+0.63[(B+h)L_{z}]^{0.63})^{-0.5} = 0.821$ $V_{z} = b(z/33)^{e} \sqrt{(88/60)} = 83.426$ $n_{1} = f = 0.894$ $\eta_{h} = 4.6n_{1}h/V_{z} = 10.545$ $\eta_{g} = 4.6n_{1}B/V_{z} = 5.814$ $\eta_{L} = 15.4n_{1}L/V_{z} = 32.332$ $R_{h} = 1/\eta_{h} - (1-e^{-2n_{h}})/2\eta_{h}^{-2} = 0.090$ $R_{g} = 1/\eta_{g} - (1-e^{-2n_{h}})/2\eta_{g}^{-2} = 0.157$	C1=	0.02			
From Table 6-2 Exposure B, Case 2 Z_{min} 30 c 0.30 l 320 ε 0.30 l 320 ε 0.30 l 320 ε 0.30 ε 0.33 b 0.45 g_0 3.40 (Given) g_1 0.05 $0.6h =$ 128.40 >Zmh (OKI) $z =$ 0.239 Q = (1+0.63[(B+h)/L_2]^{0.63})^{0.5} = 0.821 $V_z =$ b(z/33) ⁶ V(88/60) = 83.426 n 1.5	× =	0.75			Core
Z_{min} 30 c 0.30 l 320 ε 0.33 b 0.45 α 0.25 g_{ϱ} 3.40 (Given) g_{ν} 3.40 (Given) β 0.05 0.6h = 128.40 >Z_{mh} (Okl) z = 128.40 >Z_{mh} (Okl) z = 128.40 L_z = 1(z/33) ^x = 503.3 Iz = c(33/z)^{36} = 0.239 Q = (1+0.63[(B+h)/L_2]^{0.63})^{0.5} = 0.821 V_z = $(z/33)^{6} \vee (88/60) =$ 83.426 N1 = 1.2(23)^{2} \vee (88/60) = 83.426 $n_1 = f =$ 0.894 $y_h = 4.6n_B/V_x =$ 10.545 $y_g = 4.6n_B/V_x =$ 5.814 $y_L = 15.4n_L/V_z =$ 32.332 R_h = 1/y_h - (1-e^{2n_h})/2y_h^2 = 0.090 R_B = 1/y_g = (1-e^{2n_h})/2y_g^2 = 0.157	Estinia	ted Frequency		f=1/Ch [*] = 0.894	
Z_{min} 30 c 0.30 l 320 ε 0.33 b 0.45 α 0.25 g_{ϱ} 3.40 (Given) g_{ν} 3.40 (Given) g_{ν} 3.40 (Given) β 0.05 0.6h = 128.40 >Z_{mh} (Okl) $z =$ 128.40 >Z_{mh} (Okl) z = 128.40 $L_z = 1(z/33)^{z} =$ 503.3 Iz = c(33/z)^{36} = 0.239 Q = (1+0.63[(B+h)/L_2]^{0.63})^{0.5} = 0.821 $V_z =$ b(z/33)^{6} (88/60) = 83.426 N_1 = f = 0.894 $\eta_h = 4.6n_h/V_z =$ 10.545 $\eta_g = 4.6n_s B/V_z =$ 5.814 $\eta_L = 15.4n_L L V_z =$ 32.332 R_h = 1/\eta_h - (1-e^{2nh})/2\eta_h^2 = 0.090 R_B = 1/\eta_g - (1-e^{2nh})/2\eta_g^2 = 0.157					
Z_{min} 30 c 0.30 l 320 ε 0.33 b 0.45 α 0.25 g_{ϱ} 3.40 (Given) g_{ν} 3.40 (Given) g_{ν} 3.40 (Given) β 0.05 0.6h = 128.40 >Z_{mh} (Okl) $z =$ 128.40 >Z_{mh} (Okl) z = 128.40 $L_z = 1(z/33)^{z} =$ 503.3 Iz = c(33/z)^{36} = 0.239 Q = (1+0.63[(B+h)/L_2]^{0.63})^{0.5} = 0.821 $V_z =$ b(z/33)^{6} (88/60) = 83.426 N_1 = f = 0.894 $\eta_h = 4.6n_h/V_z =$ 10.545 $\eta_g = 4.6n_s B/V_z =$ 5.814 $\eta_L = 15.4n_L L V_z =$ 32.332 R_h = 1/\eta_h - (1-e^{2nh})/2\eta_h^2 = 0.090 R_B = 1/\eta_g - (1-e^{2nh})/2\eta_g^2 = 0.157	From Table 6-2	Exposure B, Case	2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	с	0.30			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	320			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ε	0.33			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			~	->	
$ \begin{array}{c c c c c c c } \beta & 0.05 \\ \hline 0.6h = & 128.40 \\ z = & 128.40 \\ \hline L_z = 1(z/33)^z = & 503.3 \\ \hline I_z = c(33/z)^{36} = & 0.239 \\ Q = (1+0.63[(B+h)/L_2]^{0.63})^{0.5} = & 0.821 \\ \hline V_z = b(z/33)^{6} \vee (88/60) = & 83.426 \\ \hline n_1 = f = & 0.894 \\ \eta_h = 4.6n_1 h/V_z = & 10.545 \\ \eta_g = 4.6n_1 B/V_z = & 5.814 \\ \eta_L = 15.4n_1 L/V_z = & 32.332 \\ \hline R_h = 1/\eta_h - (1-e^{2\eta_h})/2\eta_h^2 = & 0.090 \\ \hline R_g = 1/\eta_g - (1-e^{2\eta_h})/2\eta_g^2 = & 0.157 \\ \end{array} $			'		
$\begin{array}{c cccc} 0.6h = & 128.40 \\ z = & 128.40 \\ L_z = 1(z/33)^z = & 503.3 \\ I_z = c(33/z)^{36} = & 0.239 \\ Q = (1+0.63[(B+h)/L_2]^{0.63})^{-0.5} = & 0.821 \\ V_z = b(z/33)^{60} (88/60) = & 83.426 \\ n_1 = f = & 0.894 \\ y_h = 4.6n_1 h/V_z = & 10.545 \\ y_g = 4.6n_k B/V_z = & 5.814 \\ y_L = 15.4n_1 L/V_z = & 32.332 \\ R_h = 1/y_h - (1-e^{2n_1})/2y_h^2 = & 0.090 \\ R_B = 1/y_h - (1-e^{2n_1})/2y_h^2 = & 0.157 \end{array}$			(GIVE	n)	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	~		>7	юки	
$\begin{split} I_z &= c(33/z)^{36} = 0.239 \\ Q &= (1+0.63](B+h)/L_2]^{0.63})^{0.6} = 0.821 \\ V_z &= b(z/33)^6 V(88/60) = 83.426 \\ n_1 &= f = 0.894 \\ \eta_h &= 4.6n_1 b/V_z = 10.545 \\ \eta_B &= 4.6n_1 B/V_z = 5.814 \\ \eta_L &= 15.4n_1 L/V_z = 32.332 \\ R_h &= 1/\eta_h - (1-e^{2h_0})/2\eta_h^2 = 0.090 \\ R_B &= 1/\eta_B - (1-e^{2h_0})/2\eta_B^2 = 0.157 \end{split}$			~ ~ mn	(010)	
$Q = (1+0.63](B+h)L_2]^{0.63})^{-0.5} = 0.821$ $V_z = b(z/33)^{66} V(88/60) = 83.426$ $n_1 = f = 0.894$ $\eta_h = 4.6n_1 b/V_z = 10.545$ $\eta_g = 4.6n_1 B/V_z = 5.814$ $\eta_L = 15.4n_1 L/V_z = 32.332$ $R_h = 1/\eta_h - (1-e^{-2\eta_h})/2\eta_h^2 = 0.090$ $R_g = 1/\eta_g - (1-e^{-2\eta_h})/2\eta_g^2 = 0.157$	L _z = l(z	v/33) ^z =		503.3	
$V_z = b(z/33)^{e_V} (88/60) = 83.426$ $n_1 = f = 0.894$ $\eta_h = 4.6n_1 h/V_z = 10.545$ $\eta_B = 4.6n_1 B/V_z = 5.814$ $\eta_L = 15.4n_1 L/V_z = 32.332$ $R_h = 1/\eta_h - (1 - e^{-2n_0})/2\eta_h^2 = 0.090$ $R_B = 1/\eta_B - (1 - e^{-2n_0})/2\eta_B^2 = 0.157$	I _z = c(3	(3/z) ¹⁶ =		0.239	
$n_{1} = f = 0.894$ $\eta_{h} = 4.6n_{1}h/V_{2} = 10.545$ $\eta_{B} = 4.6n_{1}B/V_{2} = 5.814$ $\eta_{L} = 15.4n_{1}L/V_{2} = 32.332$ $R_{h} = 1/\eta_{h} - (1 - e^{-2n_{1}})/2\eta_{h}^{2} = 0.090$ $R_{B} = 1/\eta_{B} - (1 - e^{-2n_{1}})/2\eta_{B}^{2} = 0.157$	Q = (1+	+0.63[(B+h)/L _z] ^{0.63})	^{0.5} =	0.821	
$\begin{split} \eta_{h} &= 4.6 n_{1} h / V_{z} = 10.545 \\ \eta_{g} &= 4.6 n_{1} B / V_{z} = 5.814 \\ \eta_{L} &= 15.4 n_{1} L / V_{z} = 32.332 \\ R_{h} &= 1/\eta_{h} - (1 - e^{-2n_{1}})/2 \eta_{h}^{-2} = 0.090 \\ R_{g} &= 1/\eta_{g} - (1 - e^{-2n_{2}})/2 \eta_{g}^{-2} = 0.157 \end{split}$	$V_z = b(z)$	z/33) ^{ø.} V(88/60) =		83.426	
$\begin{split} \eta_{h} &= 4.6 n_{1} h / V_{z} = 10.545 \\ \eta_{g} &= 4.6 n_{1} B / V_{z} = 5.814 \\ \eta_{L} &= 15.4 n_{1} L / V_{z} = 32.332 \\ R_{h} &= 1/\eta_{h} - (1 - e^{-2n_{1}})/2 \eta_{h}^{-2} = 0.090 \\ R_{g} &= 1/\eta_{g} - (1 - e^{-2n_{2}})/2 \eta_{g}^{-2} = 0.157 \end{split}$	n - f-			0.904	
$\eta_{\rm g} = 4 \delta_{\rm R} B / \nabla_z = 5.814$ $\eta_{\rm L} = 15.4 n_1 L / \nabla_z = 32.332$ $R_{\rm h} = 1 / \eta_{\rm h} - (1 - e^{-2 n_{\rm h}}) / 2 \eta_{\rm h}^{-2} = 0.090$ $R_{\rm g} = 1 / \eta_{\rm g} - (1 - e^{-2 n_{\rm h}}) / 2 \eta_{\rm g}^{-2} = 0.157$					
$\begin{split} \eta_{\rm L} &= 15.4 n_1 L \nabla_z = 32.332 \\ R_{\rm h} &= 1/\eta_{\rm h} - (1 - e^{-2n_{\rm h}})/2 \eta_{\rm h}^{-2} = 0.090 \\ R_{\rm B} &= 1/\eta_{\rm B} - (1 - e^{-2n_{\rm B}})/2 \eta_{\rm B}^{-2} = 0.157 \end{split}$	1				
$R_{\rm h} = 1/\eta_{\rm h} - (1 - e^{-2\eta_{\rm h}})/2\eta_{\rm h}^2 = 0.090$ $R_{\rm g} = 1/\eta_{\rm g} - (1 - e^{-2\eta_{\rm g}})/2\eta_{\rm g}^2 = 0.157$		1 2			
$R_{B} = 1/\eta_{B} - (1 - e^{-2\eta_{B}})/2\eta_{B}^{2} = 0.157$					
$R_{L} = 1/\eta_{L} - (1 - e^{-2\eta_{L}})/2\eta_{L}^{2} = 0.030$					
$N_1 = \eta_1 L_z N_z = 5.391$	$N_1 = \eta_1$	1/Lz/Vz =		5.391	
$R_n = 7.47 N_1 / (1+10.3 N_1)^{5/3} = 0.048$	R _n = 7.	.47N ₁ /(1+10.3N ₁) ^{5/3}	=	0.048	
$R = [(R_{h}R_{h}R_{g}(0.53+0.47R_{L})/\beta]^{0}] = 0.086$	R = [(R		^{ر م} [¢لان	0.086	
4.163				4.163	
g _R R =0.360	g _R R =			0.360	
0.832				0.832	

Table A.3- N-S Wind Gust Factor Effect

Table A.4- E-W Wind Gust Factor Effect


Gust Factor Effect 2. <u>E-W Direction</u>	t Calculation			
В=	196	ft	L/B = 0.602	
L=	118		270 - 0.002	
h=	214			
C1=	0.02	Ë.	(Table 9.5.5.3.2) Steel Mor	nent
X=	0.75		Frames/Braced Frame Core	а
Estimated Frequen	су	f	= 1/C h [*] = 0.894	
Even Table 0.0	Fundamenta D. Concert	n		
	Exposure B, Case 3 30	2		
Zmin				
c	0.30			
1	320			
ε	0.33			
b a	0.45 0.25			
g _o		(Give	n)	
g _v		(Give	,	
ß	0.05	(
0.6h =	128.40	≥Zmin	(OK!)	
Z =	128.40		< <i>y</i>	
$L_z = l(z/33)^z =$			503.3	
$I_z = c(33/z)^{16} =$			0.239	
Q = (1+0.63[(B+h)/	L _z] ^{0.63}) ^{-0.5} =		0.802	
V₂ = b(z/33) ^e V(88/6	60) =		83.426	
n ₁ =f=			0.894	
$\eta_{h} = 4.6 n_{i} h V_{z} =$			10.545	
$\eta_{B} = 4.6 n_{1} B/V_{2} =$			9.658	
$\eta_{\rm L} = 15.4 n_1 {\rm L/V_2} =$			19.465	
$R_h = 1/\eta_h - (1 - e^{-2\eta_h}).$			0.090	
$R_B = 1/\eta_B - (1 - e^{-2\eta_B})$			0.098	
$R_L = 1/\eta_L - (1 - e^{-2\eta_L})$	/2η_"=		0.050	
$N_1 = \eta_1 L_z N_z =$	7 0		5.391	
R _n = 7.47N ₁ /(1+10.			0.048	
$R = [(R_{\rm H}R_{\rm H}R_{\rm H}R_{\rm H}(0.53)$	4.1.4		0.069	
g _R =(21n(3600n ₁)) ⁰⁴	⁵+0.577 <i>1</i> (2ln(3600n₁)) ^{0.5} =	4.163	
g _R R =			0.287	
[1+1.7Iz((g _Q Q) ² +(g _R	(R) ²) ⁰⁵]/(1+1.7g,I ₂) =	[0.821	


Table A.5- Seismic	analysis	factor	calculations
--------------------	----------	--------	--------------

	ASCE7-02 Chapter 9)- Seis	mic Analy	sis
Reference	Building Location :	ы	Consho	hocken, Pennsylvania
	Number of Stories : Inter-story Height	N h _s		16 12.08
	Building Height :	h _n		193 ft
Table 1.1	Seismic Use Group :	I		I
Table 9.1.4	Occupany Importance Factor : Site Classification :			1.00 D
Figure 9.4.1.1 a	0.2s Acceleration :	Ss		0.31 g-s
Figure 9.4.1.1b	1 s Acceleration :	S ₁		0.08 g-s
Table 9.4.1.2.4a	Site Class Factor :	F_		1.55
Table 9.4.1.2.4b	Site Class Factor :	Fv		2.40
	Adjusted Accelerations :	S _{MS}	= F _a S _s	0.481 g-s
		S _{M1}	$= F_v S_1$	0.180 g-s
	Design Spectral Response Accelerat	i S _{DS}	$= (2/3) S_{MS}$	0.320 g-s
		S _{D1}	$= (2/3) S_{M1}$	0.120 g-s
Table 9.4.2.1a Table 9.4.2.1b	Seismic Design Category : Both design category B			В
	N-S Direction			
Table 9.5.2.2	Response Modification Factor:	R _{№s}		3
	Seismic Response Coefficient :	C _{s N-S}	$= S_{DS}/(R_{N-S}/I)$	0.107
Table 9.5.5.3.2		C _{T.N+S}		0.028
Table 9.5.5.3.2	(moment frames only)	х		0.80
	Approximate Period of Structure :	T _{N+S}	$= C_{T, N-S}h_n^{x}$	1.89
	Seismic Response Coefficient need	_		
	not be greater than			0.021
		C _{Smin}	=0.044IS _{DS}	0.0141
	Seismic Re	esponse Co	pefficient (C _{s, N-S})	0.021
	E-W Direction			
Table 9.5.2.2	Response Modification Factor :	R _{№s}		3
	Seismic Response Coefficient :	C _{s, EW}	= S _{DS} /(R _{E-10} /I)	0.107
Table 9.5.5.3.2	·	С _{т. БW}		0.02
Table 9.5.5.3.2	(moment and braced frame)	Х		0.75
	Approximate Period of Structure :	T _{N+S}	= C _{T, E-W} h _n ×	1.04
	Seismic Response Coefficient need	_		
	not be greater than			0.039
		C _{Smin}	$= 0.044 IS_{DS}$	0.0141
	Seismic Re	sponse Co	efficient (C _{s, E-W})	0.039

Table A.6- Building Weight Calculations

ASCE7-02 Chapter 9		ic Analysis	
Load Summary for Building Weight			
i. Roof :			
Dead			
Membrane	1.0 ps		
Rigid Insulation	2.0 ps		
Metal Roof Deck	2.0 ps		
Roof Framing M&E Services	12.0 ps 5.0 ps		
Mae contros	0.0 p3	51	
TOTAL q _{roof} :	22 ps	sf of roof area	
ii. All other Floors :	-		
Dead			
Flooring Concrete Slab	1.0 ps 2.0 ps		
3" Metal Deck	2.0 ps 2.0 ps		
Structural Steel	5.0 ps		
0.5" Drywall Ceiling	5.0 ps	sf	
M&E Services	5.0 ps	sf	
Live Moveable Partition	20.0 ps	of	
Office Live Load	20.0 ps 30.0	51	
TOTAL q _{floor} :		sf of floor area	
iii. Perimeter Wall:			
Dead			
Exterior Wall, q _{wall} :	180.0 ps	sf	
in Weight of Deef	(DOE)		
iv. Weight of Roof Factored Roof Load	(PSF) Ar 68	rea 7500 ft ²	510000
Mechanical Load	330	2500 ft ²	825000
Elevator	250	790 ft ²	197500
Cooling Tower	350	2050 ft ²	717500
Snow	120	4000 ft ²	480000
Additional Dead Load	22	16840 ft ²	370480
		Total Roof Load (kips)	3100
Building Dimensions:	400 8		
Length Width	196 ft 118 ft		
Gross Floor Area	23128 ft ²		
Area of Voids	1065 ft ²		
Total Floor Area	22063 ft ²	2	
Weight of each floor	1545 kij	ps	
w _{floors} = (N-1)w _{per floor} =	23168 ki		
Total Building Weight	26268 ki	ps	

-Mechanical Load

- -Elevator Room Load
- -Cooling Towers

-Snow Drift

Figure A.1- Shows the load distribution over the penthouse level of the structure. This distribution was used to determine the weight of the roof for the seismic analysis.

Appendix B

(Drawings not to scale)

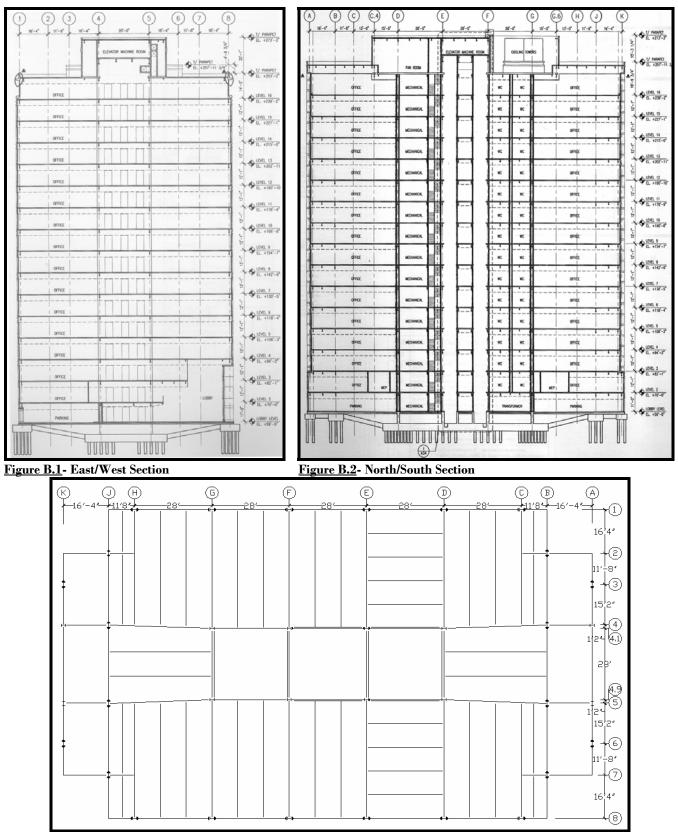
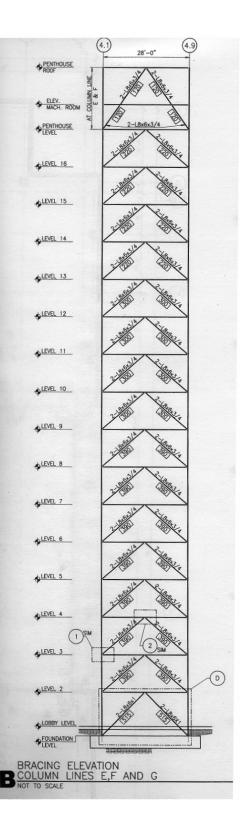
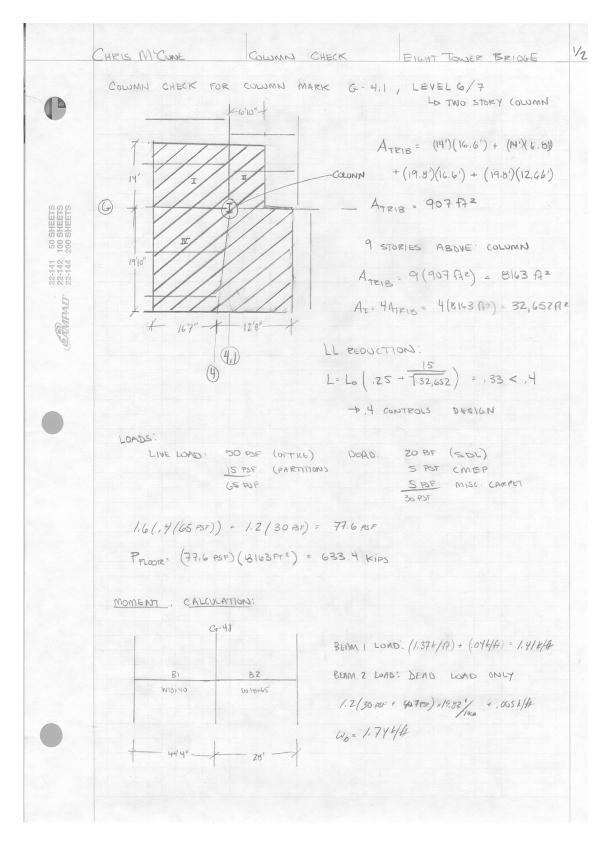
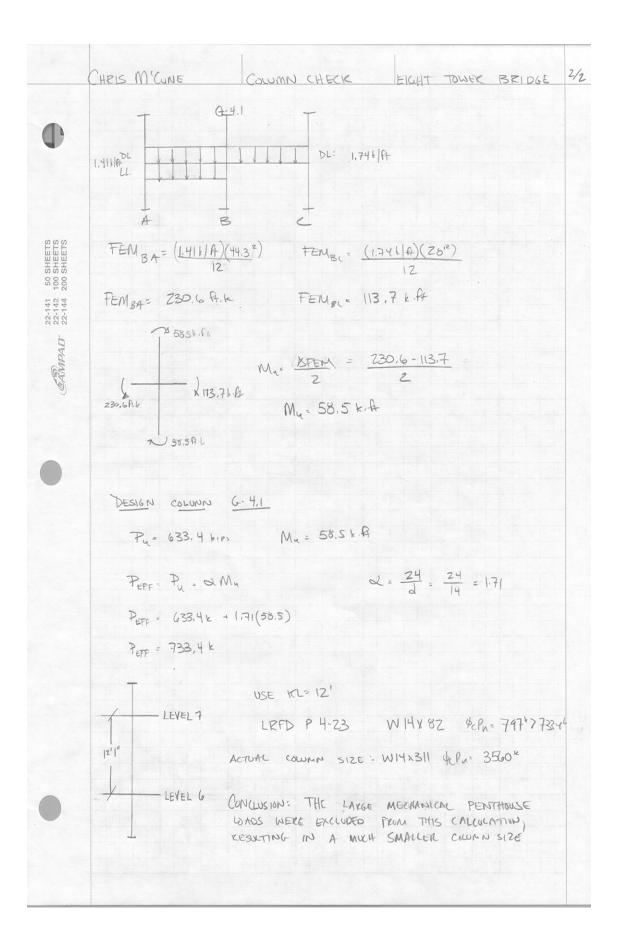



Figure B.3- Typical Framing Plan (Floors 3-15)

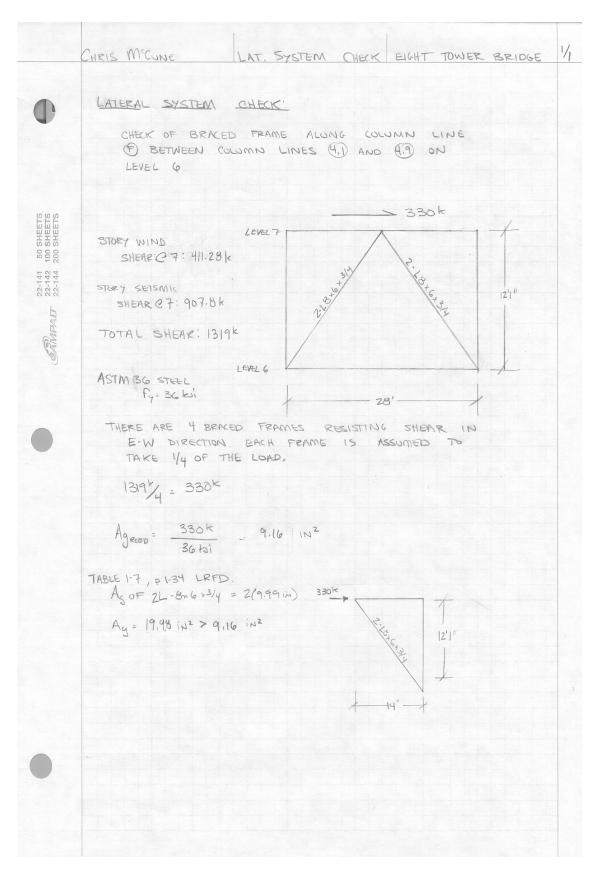
PELEV.	1 1	3	
MACH. ROOM		SIR	E E
	-	10	E BALL
PENTHOUSE		2-L8x6x	3/4
	And a state	-	The second
LEVEL 16	No all		E
	A star	3/0	E AL
LEVEL 15	The st	1 Alexandre	1 and 1
LEVEL 14	The star	3/81	18 AL
	The star	Sale	L'ERE.
LEVEL 13	No No No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	R
	A. M	3/8	E Contraction
LEVEL 12	The st		12 Contraction
LEVEL 11	Contra and a	.J.S	E.
Common 2016	The state	-	12 Les
LEVEL 10	No. No.	109	12
	The state	3/8	E CONTRACTOR
LEVEL 9	Rie 3	1	E
LEVEL 8	A A	3/8	E
6.4	The st	- The second sec	12 tes
LEVEL 7	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	18	18 Per
	Alter and	3/3	E E
LEVEL 6	Re all	2	E
LEVEL 5		1	E C
	The st		- Pl
LEVEL 4		19	6
	A Start Start	-6 -8'-6" (P.N. (TYP.)	The CTY
LEVEL 3	Re al		E
SIN		TF=7	55
	4-6	N de	F
LOBBY LEVEL	Elle 1980	18	E F
FOUNDATION			

Figures B.4 and B.5- Typical Braced Frame elevations


Appendix C


Beam Check

CHRIS MCONE 1/3 BEAM CHECK EIGHT TOWER BRIDGE BEAM CHECK P LIVE LOAD: 50 psf OFFICE 15 psf PARTITIONS TOTAL 65psf DEAD LOAD: 20 psf SUPERIM POSED 5 psf CEILING, MECH, ELEC, PLUMB 5 psf CARPET/MISC. THTAL 30psf CARPET/MISC. SHEETS SHEETS SHEETS CONC. SLAB: 115 pcf (314" + 2"2) = 40.7 psf 50 200 22-141 22-142 22-144 LIVE LOAD REDUCTION: (LEVEL 6) EAMPAD" $L = L_{0} (125 - \frac{15}{TAT})$ AI = ZATRIB L= Lo (125 + 51927) AT = 2(9.33') (44.33') L= ,35 Lo \$.6 LO Az: 827 AZ OK THIS USE REDUCTION OF 0.611. TOTAL FACTORED LOAD : Wu= 1.66 + 1.2 D Wu . 1.6 (.6 (65 pat)) + 1.2 (30 paf + 40.7 paf) . 9.33' 1000 Wu = 1.37 k/Pt SIMPLE BEAM! 1.37k/A 44.33'-


CHRIS MECUNE BEAM CHECK EIGHT TOUCK BRIDGE 3/3 BEAM CHECK (CONT) ; C 96M= 4961k 20n- 353K SHEAR STUD CAPACITY' 214/STUD *OF STUDS - 3534. = 16.8 or 17 STUDS 22-141 50 SHEETS 22-142 100 SHEETS 22-144 200 SHEETS DEFLECTION CHECK ! A: 5 WLY (1) 1.37 K/12 . 19/1 : .098 K/12 . 098 K/12 $\Delta = \frac{5(...114 \frac{1}{24})(537...)^{4}}{384 (24000) (612...4)} = 5.75 in$ CAMPAD" 2 340 = 1,5" ; MUST CAMBER! COMMENTS:

Column Check

Lateral Frame Check

