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Abstract 

The topology optimization method of continuum structures is adopted for the mor-
phogenesis of dendriforms during the conceptual design phase. The topology opti-
mization model with minimizing structural strain energy as objective and subject to 
structural weight constraint is established by the independent continuous mapping 
method (ICM) which is a popular and efficient method for the topology optimization 
of continuum structures. This optimization model is an optimization problem with a 
single constraint and can be solved by the iteration formula established based on the 
saddle condition. Taking the morphogenesis of a plane dendriform as an example, 
the influences on topologies of the dendriform are discussed for several factors such 
as the ratio of the reserved weight to the total weight, the stiffness and the geometry 
shape of the roof structure, the height of the design area, and so on. And several ex-
amples of application scenarios are presented, too. Numerical examples show that 
the proposed structural topology optimization method for the morphogenesis of 
dendriforms is feasible. It can provide diversiform topologies for the conceptual de-
sign of dendriforms. 
 

Keywords 

Dendriforms, Topology Optimization, Morphogenesis 

1. Introduction 

Dendriforms, which was put forward first by a German Frei Otto in the 1960s, is a kind 
of bionic structure designed based on the shapes and mechanical characteristics of nat-
ural trees. The Stuttgart airport terminal (Figure 1(a)) in Germany built in 1991 is a 
typical engineering designed by Frei Otto. The roof supported by dendriforms with 
three layers of branches provides a broad space for the airport terminal [1]. Dendri-
forms have advantages such as the reasonable paths transmitting loads, the broad space  
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(a)                                      (b) 

    
(c)                                      (d) 

Figure 1. Engineering buildings adopted dendriforms. (a) Stuttgart Airport Terminal, Stuttgart, 
Germany [1]; (b) Changsha railway station in China [3]; (c) Qatar national convention center [9]; 
(d)Tote restaurant, Bombay [2]. 
 
achieved by a few bars. Many large-span space structures, such as airports, railway sta-
tions, public centers, and so on, adopted dendriforms as supported structures. For ex-
ample, the Changsha railway station for high-speed trains in China (Figure 1(b)), the 
Qatar national convention center (Figure 1(c)) and the Tote restaurant in Bombay 
(Figure 1(d)), etc. 

The morphogenesis of the dendriforms is the most important problem during its 
structural design for its many branches and complicated form. The height, the layer, the 
number and the location of branches need to be designed. The suitable supported loca-
tion of the roof structure needs to be determined. Thus, every component of the den-
driform conforms to the optimal paths of transmitting loads; and the functional re-
quirements of the building are also met. 

There are three kinds of methods for the morphogenesis of dendriforms: the experi-
mental methods, the geometric methods and the numerical methods. Experimental 
methods have the wet thread method, dry thread method, the beaded thread method 
and so on. The application of the experimental methods is restricted for their results in-
fluenced by model scales [1]. Geometric methods adopt the fractal theory to generate 
the geometric shapes of dendriforms. Gawell generated geometric shapes of dendri-
forms based on the L-system fractal theory and introduced an engineering application 
on the Tote restaurant in Bombay [2]. The dendriforms generated by the fractal me-
thod are focused on only the shape characteristics of the trees. Their geometric confi-
gurations can be improved by the structure optimization technology to consider the 
mechanics characteristics of the trees [3]. With the development of the numerical anal-
ysis and structural optimization technology, numerical methods are applied to generate 



X. R. Peng 
 

528 

the forms of dendriforms, and researches and applications on this aspect become the 
hotspots. Von Buelow put forward a method of generating the dendriforms by using a 
genetic algorithm to find the shortest paths [4]. Yue Wu put forward a reverse hanging 
method for form finding of dendriforms [5]. Qian Zhang studied the form finding of 
dendriforms based on the sliding cable element [6]. Using the optimization method of 
skeleton structures, Changyu Cui proposed the form finding method of dendriforms 
based sensitivity [7]. Meanwhile, he improved the evolutionary structural optimization 
method (ESO) method, which was a topology optimization method of continuum 
structures, to generate the optimal topology of dendriforms [8]. Sasaki applied the im-
proved ESO method to design the Qatar national convention center (Figure 1(c)) [9]. 

The more rational design can be achieved by the form finding method based on the 
topology optimization of continuum structures because the optimal topologies with 
skeleton forms can be obtained, and it is unnecessary to specify some prior data such as 
the height, the layers and the numbers of branches. But the ESO method [10] adopted 
at past has some shortcomings such as the low efficiency for its too many optimization 
iterations, different optimal topologies obtained by taking different deleting rate, and 
unstable algorithm [11]. The independent continuous mapping (ICM) method, one of 
the topology optimization methods of continuum structures, has a high solving effi-
ciency because it establishes an optimization model and solves the model by the dual 
sequential quadratic programming method [12]. In this paper, a morphogenesis me-
thod of dendriforms is presented based on the ICM method which has high efficiency. 
Some factors affected the forms of dendriforms are discussed and some conclusions are 
followed, which are useful for the topology design of dendriforms. Finally, several ap-
plication examples are presented to illustrate the feasibility of the proposed method. 

2. Topology Optimization Method for  
Morphogenesis of Dendriforms 

2.1. Topology Optimization Model for Morphogenesis of Dendriforms 

The morphogenesis of dendriforms is used usually during the conceptual design phase. 
The usual way is to design a structural topology with maximum stiffness under the ver-
tical loads acting on the roof structures. Thus, it can be formulated as a topology opti-
mization problem of the continuum structure, namely: under the specified consump-
tion of material, within the specified design area, optimizing the topology to maximize 
the structural stiffness under the specified roof loads. Because the maximum structural 
stiffness is equivalent to the minimum structural strain energy, the topology optimiza-
tion model for generating a dendriform boils down to the topology optimization prob-
lem with minimizing structural strain energy objective subject to structural weight (or 
volume) constraint, as shown in Equation (1): 
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( )

Find
Make min
s.t.    

0 1

N

i

E
e
W W

t

 ∈


→


≤
 ≤ ≤

t
t
t

  
                        (1) 



X. R. Peng 
 

529 

where, it  is the topology design variable. e is structural strain energy, W is structural 
weight. 

2.2. Modeling and Solving of Topology Optimization Problem with  
Minimizing Strain Energy Objective Subject to Weight Constraint 

For the topology optimization problem with minimizing structural strain energy as an 
objective subject to a specified weight constraint, the optimization model can be estab-
lished by the ICM method as the following process. The discrete topology variables 
with values 0 or 1 are extended to the continuous topology variables with values in the 
interval [0, 1] by the approximation of the step function. The element weight and stiff-
ness matrix are identified by the filter functions of weight and stiffness respectively 
[12]: 

( ) 0
i w i iw f t w= , ( ) 0

i k i if t=k k                      (2) 

where iw  and ik  are the weight and stiffness matrix of the i-th element. 0
iw  and 

0
ik  are the inherent weight and inherent stiffness matrix of the i-th element. The filter 

functions of weight and stiffness can be taken as power functions: 

( ) w
w if t tα= , ( ) k

k if t tα=                       (3) 

where the power wα  and kα  can take 1 and 3, respectively. 
Thus, the elemental strain energy can be expressed as: 
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where ( )( )
k
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it
α

 and 
( )k
ie  are the topology variable and the strain energy of the i-th 

element at the k-th iteration respectively. 
The elemental weight can be expressed as: 

0w
i i iw t wα=                              (5) 

Therefore, the topology optimization model established by the ICM method is writ-
ten as: 
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To prevent the stiffness matrix to appear singular while the topology variable takes 
value 0, a small value it  

is adopted to replace with 0, and it can be taken as 0.01it = . 
Because of the Equation (4) is an optimization problem with a single constraint, the 

constraint must to be taken as the equality constraint. Otherwise the problem will be an 
unconstrained problem and become a meaningless problem. Note ( )( ) ( )k

k k
i i iA t eα= , 

and define the active set ( ){ }| 1 1, ,a i iI i t t i N= < < = 
, then, Equation (6) is written 
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as: 
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The augmented Lagrangian function of the problem is: 

( ) 0 0, k k w w
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The saddle point for the above function taking the extremum condition is: 
1 10 0k w

i k i i w i iL t A t w tα αα α λ+ −∂ ∂ = − + =                  (9) 

From it, we obtain: 

( ) ( )
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+ + =                  (10) 

Substitute Equation (10) into the equality constraint condition of Equation (7)  
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we obtain 
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Substitute Equation (12) into Equation (10), we have 
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Considering the interval constraints of topology design variables, namely 
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Update the active set, and return to Equation (13) to calculate it . Terminate the ite-
ration loop while the active set is unchanged. The optimal result *t  is the solution of 
Equation (6). Modify the structure according to the Equation (2), and enter into the 
next iteration. Iterate until the following convergence criteria is met: 

( ) ( )( ) ( )1 1k k ke e e e ε+ +∆ = − ≤                    (15) 

where ( )ke  and ( )1ke +
 are structural strain energy of the previous and current itera-

tion. ε  is the convergence accuracy, and 0.001ε =  is adopted here. 
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3. Morphogenesis of Dendriforms 
3.1. Example 1: The Morphogenesis of Plane Dendriforms 

As showed in Figure 2, the design area is a rectangular with sizes of 10 m × 7.5 m. A 
uniform vertical distribution load q = 1 kN/m is applied on the upper border. An edge 
with thickness of 0.3 m is used as the roof structure and is the non-design area. A fixed 
region with width 0.4 m located at the center of the bottom border is regarded as the 
root of the dendriform. The structural material is steel with the elastic modulus E = 2.1 
× 105 MPa and the Poisson’s ratio 0.3. Under a specified constraint of the weight ratio, 
the optimal topology of the dendriform is obtained by minimizing the structural strain 
energy, namely maximizing the structural stiffness. The weight ratio is defined as the 
ratio of reserved weight to the initial total weight. 

Figure 3 shows the optimal topologies of dendriforms while the weight ratio is 
changed and the stiffness of the roof structure is unchanged. Optimal topologies of 
dendriforms are different while the consumption of material is changed. With the in-
crease of the material, the topology of dendriforms is more complicated. 

Figure 4 shows the optimal topologies while the stiffness of the roof structures is 
changed and the weight ratio (10%) is unchanged. For the convenience of dealing with 
model, the different stiffness of roof structures is simulated by setting different elastic 
modulus of the material of the roof structure, rather than changing its geometric sizes. 
Data listed in Figure 4 are the elastic modulus of materials. It can be seen from Figure 
4 that the branches of optimal topology of dendriforms are decreased with the increase 
of the stiffness of roof structures, and are reduced to a pillar in the extreme case. 
 

 
Figure 2. Deign conditions of a plane dendriform. 

 

     
(a)                          (b)                         (c) 

Figure 3. Optimal topologies of dendriforms under different weight ratio (with the increase of 
the material, the topology is more complicated). (a) weight ratio 5%; (b) weight ratio 10%; (c) 
weight ratio 20%. 
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(a)                     (b)                   (c)                     (d) 

Figure 4. Optimal topologies of dendriforms under different stiffness of the roof structure 
(branches of optimal topology are decreased with the increase of the stiffness of roof structures, 
and is reduced to a pillar in the extreme case). (a) E = 2.1 × 105 MPa; (b) E = 2.1 × 106 MPa; (c) E 
= 2.1 × 107 MPa; (d) E = 2.1 × 108 MPa. 
 

Figure 5 shows the optimal topologies while the height of the design area is changed 
and the stiffness of the roof structures (E = 2.1 × 105 MPa) and the weight ratio (10%) 
are unchanged. In the cases that the height is small (Figures 5(a)-(c)), the main trunk 
of the dendriform will not appear. In the cases that the height is large enough (Figures 
5(c)-(f)), the main trunk appears; and with the increase of the height of the design area, 
the optimal topologies of branches of the dendriforms are unchanged, only the height 
of the main trunk is increased. 

Figure 6 shows the influence of the geometric shapes of roof structures on the op-
timal topology. An example of the roof structure with a slope shape is showed in Figure 
6(a). The optimal topology is different with that of the horizontal roof structure. The 
big branches are leaned to the high side of the roof. An example of the roof structure 
with an arc shape is showed in Figure 6(b). A fork shape branch appears, and it is not 
the case with all binary branch form. 

3.2. Example 2: Morphogenesis of Dendriforms for the  
Bearing Skeleton of Walls 

Adopting dendriforms as bearing skeleton structures of walls, not only the loads acting 
on the walls can be transmitted effectively along the branches of dendriforms, but also a 
beautiful visual can be achieved. The morphogenesis of plane dendriforms can present 
diverse options. Figure 7 is an engineering adopting plane dendriforms as the bearing 
skeleton of walls, Jiangwan Cheng, in Chongqing, China [13]. 

As showed in the left figure of Figure 8, the design area is four walls along a square 
with sizes of 10 m × 10 m and the heights of 8 m. A uniform vertical distribution load q 
= 1 kN/m is applied on the upper borders of the walls. Along the loading edges, the 
structures with heights of 0.2 m are used as the beams of the walls to carry the loads, 
and are non-design area. Fixed regions with the width of 0.2 m at the four corners of 
the bottom of the walls are taken as the roots of dendriforms. Structural material is steel, 
and the material properties are same with those in Example 1. The weight ratio of 10% 
is specified as a constraint, and the minimizing structural strain energy is taken as the 
objective. 

The optimal topology is shown in the right figure of Figure 8. Branches of dendri-
forms are stretched in the two vertical planes of each corner. In each side of the walls, 
branches of dendriforms are stretched and intersected at the middle part of the wall,  
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(a)            (b)            (c)            (d)             (e)              (f) 

Figure 5. Optimal topologies of dendriforms under different heights of design area (in the cases 
that the height is small (Figures 5(a)-(c)), the main trunk will not appear; in the cases that the 
height is large enough (Figures 5(c)-(f)), the main trunk appears; and with the increase of the 
height of the design area, the optimal topologies of branches of the dendriforms are unchanged, 
only the height of the main trunk is increased). (a) 5 m; (b) 7.5 m; (c) 10 m; (d) 12.5 m; (e) 15 m; 
(f) 20 m. 
 

                  
(a)                                         (b) 

Figure 6. Optimal topologies of dendriforms under different shapes of roof structures (left figure: 
meshes of finite elements; right figure: optimal topology). Different shapes of roof structures lead 
to different topologies. (a) Roof structure with slope shape; (b) Roof structure with arc shape. 
 

 
Figure 7. Bearing skeleton of walls of Jiangwan Cheng, Chongqing, China [13].  
 

       

Figure 8. Morphogenesis of dendriforms for the bearing skeleton of walls (left figure: meshes of 
finite elements; right figure: optimal topology). An arch structure is formed which are widely 
used in engineering for its wonderful mechanical performance. 
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and an arch structure is formed which are widely used in engineering for its wonderful 
mechanical performance. 

3.3. Example 3: Morphogenesis of 3-D Dendriforms 

As showed in the left figure of Figure 9, the design region is a cube with sizes of 20 m× 
20 m × 20 m. A uniform vertical distribution load q = 1 kN/m2 is applied on the upper 
side of the cube. Along the upper side, a layer with the thickness of 0.5 m is taken as the 
roof structure, and is specified as non-design region. An area with sizes of 1m×1m in 
the middle part of the bottom of the cube is fixed and taken as the root of the dendri-
form. Structural material is steel, and the material properties are same with those in 
Example 1. The constraint and objective of the model are same with those in Example 2. 

The optimal topology is shown in the right figure of Figure 9. It is a form with four 
branches at each node, and the branch height of the lower layer is greater than that of 
the upper layer. 

3.4. Example 4: Morphogenesis of Multiple Plane Dendriforms 

As showed in Figure 10(a), the design area is a rectangular with sizes of 50 m × 7.5 m. 
A uniform vertical distribution load q = 1 kN/m is applied on the upper border. An  
 

     
Figure 9. Morphogenesis of 3d dendriforms (left figure: meshes of finite elements; right figure: 
optimal topology). 
 

 
(a) 

 
(b) 

Figure 10. Morphogenesis of multiple plane dendriforms. (a) Design conditions of multiple 
plane dendriforms; (b) Optimal topology of multiple plane dendriforms. 
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edge with thickness of 0.3 m is used as the roof structure and is the non-design area. 
The structure is divided into four spans and 5 fixed points are set. Each fixed region has 
the width of 0.3m and is regarded as the roots of the dendriforms. Structural material is 
steel, and the material proper-ties are same with those in Example 1. The constraint and 
objective of the model are same with those in Example 2. 

The optimal topology is shown in Figure 10(b). Because the spans are not equal, 
forms of dendriforms are asymmetric. The adjacent dendriforms also stretch toward 
the middle part of the spans, and arch structures are formed. 

4. Conclusions 

1) It is showed from the numerical examples that it is feasible to generate dendri-
forms by the topology optimization method of continuum structures. Diverse options 
can be provided by the morphogenesis of dendriforms based on the topology optimiza-
tion method during the conceptual design phase. Comparing with the dendriforms ge-
nerating by the fractal methods which don’t consider the mechanical performance of 
dendriforms, the forms generated by the presented method achieve the maximum 
structural stiffness. Comparing with those methods based on mechanic models which 
need to specify design parameters such as the heights and the number of layers, 
branches at each node, and so on, the presented method can provide larger design 
space and seek more optimum topology of dendriforms because it is not necessary to 
specify design parameters. 

2) The stiffness of the roof structures has significant effects on the optimal topology 
of dendriforms. Therefore, the roof structure should be analyzed together with the de-
sign area and be involved in the optimization process, and its stiffness should be simu-
lated accurately. 

3) The ratio of the structural weight has significant effects on the optimal topology of 
dendriforms. By setting a proper weight ratio to make the stiffness of the dendriform be 
similar to that of the roof structure, an ideal topology can be achieved. 

4) The design region and the geometric shape of the roof structure have significant 
effects on the optimal topology of dendriforms. The parameters should be specified and 
simulated accurately during the conceptual design phase.  
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