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Introduction

Introduction

@ State of the art machine translation systems are based on
mathematical translation models , which account for all
the elementary operations that rule the translation process

@ Translation models are usually enriched with statistical
parameters to drive the search

@ Translation models are also exploited in word/phrase
alignment, multilingual document retrieval, automatic
dictionary construction, bilingual corpora annotation, etc.
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Introduction

Introduction (cont'd)

@ Early translation models based on finite-state machinery :

@ IBM model, word to word [Brown et al. 1993]
@ Phrase-based [Och et al. 1999, Och and Ney 2002]

@ Finite state techniques cannot easily model translations
between languages with strong differences in word
ordering
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Introduction

Introduction (cont'd)

@ Recent shift towards more powerful hierarchical translation
models :

o
o
o

©

Inversion Transduction Grammars [Wu 1997]

Head Transducer Grammars [Alshawi et al. 2000]
Tree-to-string models [Yamada and Knight 2001], [Galley et
al. 2004]

Loosely tree-based model [Gildea 2003]

Multi-Text Grammars [Melamed 2003]

Hierarchical phrase-based models [Chiang 2005]
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Introduction

Introduction (cont'd)

@ Most of the translation models above can be abstractly
viewed as synchronous context-free grammars

@ Synchronous context-free grammars are rooted in the
theory of compilers, where they are called
syntax-directed translation schemata  (SDTS)
[Lewis and Stearns 1968], [Aho and Ullman 1969]
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SCFGs Definitions
Computational problems

Synchronous context-free grammars

@ A synchronous context-free grammar  (SCFG) is based
on three components :

@ Context free grammar (CFG) for source language
@ CFG for target language
@ Pairing relation (bijection) on the productions of the two
grammars and their nonterminals
@ Each rule pair called synchronous production

@ Pairing relation between nonterminals represented by
superscript integers called indices
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SCFGs Definitions
Computational problems

Fragment SCFG (English to Japanese,
[Yamada and Knight 2001])

s1: [VB — PRPY vB1 vB2(), vB — PRP(Y) vB2C) vB1(?))

s; . [VB2— vB® TO®), VB2 — TO®) vBM gg
s3: [TO— TO® NN®@), TO — NN® TO®)]
S4: [PRP — he, PRP — kare ha

ss: [VB1 — adores, VB1 — daisuki desu]
Sg: [VB — listening, VB — kiku no]

s7: [TO — to, TO — wo|

sg: [NN — music, NN — ongaku]
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SCFGs Definitions
Computational problems

Derivations

@ A SCFG generates pairs of strings/trees, representing the
desired translation

@ The derive relation applies a synchronous production to
simultaneously rewrite two paired nonterminals
(nonterminals with same index)

@ Pairing relation must be updated after each application of a
synchronous production
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Definitions
Computational problems

Example (cont'd)

Fragment derivation:

[vBM), vB@)]
=2 [PRP? vB1® vB2®W, PRP() vB2*) vB1G)]
=% [hevB1® vB2¥, kare haVvB2*) vB1®)]
=% [he adores VB2, kare haVB2*) daisuki desu]
=2 [headores VB® TO®), kare haTO® VB®) ga daisuki desu]
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Definitions
Computational problems

Example (cont'd)

Parse trees :

v
PRT(Z) VBZ|L(3) /\’52(4)\ PRP()
he adores ve® 756 kare ha

PN

|
listening T0(M NN(®)

to music

ve®

|
NN(®) 707 kiku no

ongaku wo

ga

vB1®

daisuki dest
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SCFGs Definitions
Computational problems

Translation

@ Let G be a SCFG and w a string

@ Translation relation : Set of all string pairs generated by
G

T(G) = {luv] | [sW,sW] =5 [uv]}
@ Image of w : Set of strings that are translations of w

Tw,G) = {v | [w,v]eT(G)}
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SCFGs Definitions
Computational problems

Probabilistic SCFGs

@ In a Probabilistic SCFG , each synchronous production
associated with a probability

Pe([A1 — a1, Az — a2])

@ Normalization conditions for each pair [A1, Az]

> pellAr— a1, A —ag]) = 1

1,02
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SCFGs Definitions
Computational problems

PSCFGs (cont'd)

@ In PSCFG we can define several joint distributions (t; trees,
w; strings, y = yield)

Pa([ts, t2]

H Pc(si)
i=1
Pe([wi, wa]) = > pa([t1, t2])

Y ([tz,t2]) =[w1,W2]

po(fwi, ) = D pe(ltrt2])

y(t1)=wy
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SCFGs Definitions
Computational problems

Computational Problems

@ Translation problem : given SCFG G and string w,
compute parse forest for strings in T (w, G)

@ Size of parse forest for T (w, G) can be a double
exponential function in the size of w

@ Highly compressed representation of parse forest is
needed; we consider context-free grammars [Lang 1994]
or, equivalently, hyper-graphs [Klein and Manning 2001]
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SCFGs Definitions
Computational problems

Computational Problems (cont'd)

@ Recognition/Parsing problem : given SCFG G and string
pair [u, V]
o decide whether [u,v] € T(G)
@ construct parse forest for all derivations of [u,v] by G

@ The parsing problem is used in word/phrase alignment
applications, bilingual dictionary construction, parallel
corpora annotations, etc.
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SCFGs Definitions
Computational problems

Computational Problems (cont'd)

@ We introduce a new problem called the intersection
problem ; this generalizes the translation and the
recognition/parsing problems, and several others

@ We provide an abstract framework for the solution of the
intersection problem

@ Many of the (superficially different) translation and parsing
algorithms proposed in the literature can be viewed as
special cases of the above framework

@ Similar attempts to define abstract frameworks for
translation algorithms in [Bertsch and Nederhof 2001] and
[Melamed and Wang 2005]
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SCFG Projection
SCFG Intersection

Intersection Algorithms

SCFG Projection

@ We can project SCFG G into its left and right grammar
components

proj(G,1),  proj(G,2)

which are both CFGs

@ We can similarly project the translation T (G) into its left
and right language components (i = 1, 2)

proj(T(G),i) = {wi | [wi, wo] € T(G)}
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SCFG Projection
SCFG Intersection

Intersection Algorithms

SCFG Projection (cont'd)

@ In general the left grammar and the left language are not
equivalent

L(proj(G,1)) # proj(T(G),1)

(similarly for right case)

@ This is because in synchronous derivations the left and
right grammars interact; this is called mutual controlled
rewriting
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SCFG Projection
SCFG Intersection

Intersection Algorithms

SCFG auto-projection

@ We can efficiently construct the left and right
auto-projection of SCFG G

auto-proj(G,1),  auto-proj(G,2)

@ The left auto-projection grammar and the left language are
equivalent (similarly for right case)

@ auto-proj(G, 1) and auto-proj(G, 2) are CFGs; this proves
the weak language preservation property
[Rambow and Satta 1996]

Giorgio Satta Grammar-Based MT



SCFG Projection
SCFG Intersection

Intersection Algorithms

Intersection construction

@ Let M1, M5 be Finite Automata (FAS); define the Cartesian
product

L(M1) x L(Mz) = {[u, v] | u€L(Ms), v € L(My)}.

@ Given SCFG G and FAs M1, M5, the intersection
construction provides a new SCFG G, such that

T(Gr) = T(G)N(L(M1) x L(M2))

@ Parse trees are also preserved (modulo node relabeling)
@ G, is called the intersection SCFG
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SCFG Projection
SCFG Intersection

Intersection Algorithms

Intersection construction (cont'd)

@ G has nonterminals of the form

(qlv A) QZ)

for qq, g, states of the source FAs and A a nonterminal of
the source SCFG

@ Gn has productions of the form

[(910,A10,91r) —  (A10,A11,911)™) - (Qar_1, Asr, Az, ) ™),
(020,A20,02c) — (020, A21,021) ) - (Aar 1, Agr, Gar ) 0]
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SCFG Projection
SCFG Intersection

Intersection .
Algorithms

Translation algorithm

@ Input: SCFG G, string w

@ Algorithm:

construct M; such that L(M;) = {w}
construct M such that L(M») = V;

*]
@ construct G by intersection of G with M; and M,
@ output parse forest (CFG) auto-proj(Gn, 2)

©
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SCFG Projection
SCFG Intersection

Intersection .
Algorithms

Parsing algorithm

@ Input: SCFG G, strings u, v
@ Algorithm:
@ construct M; such that L(M1) = {u}
@ construct M, such that L(M) = {v}
@ construct G, by intersection of G with M; and M,
*]

output parse forests (CFG) auto-proj(Gn, 1),
auto-proj(Gn, 2) and synchronous parse forest (SCFG) G,
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Upper bounds
Hardness
Lower bounds

Complexity

Computational analysis

@ Parameters:

@ SCFG G with maximum right-hand side length r, called
rank

@ FA M; with states Q; and transitions ¢;

@ FA M, with states Q. and transitions 6,

@ Auto-projection can be constructed in time O(|G|)

@ In the worst case, construction of intersection grammar
takes time

O(IG] - (JQul"™** +181]) - (1Q2|"™ +1621))

Giorgio Satta Grammar-Based MT



Upper bounds
Hardness

. Lower bounds
Complexity

Applications

@ One of the very first translation algorithms has been
proposed in [Wu and Wong 1998] for Stochastic Inversion
Transduction Grammars (SITG)

@ Translates an English sentence w into Chinese, using a
filtering 2-gram language model for target language

@ Algorithm runs in time O(|w|”) (grammar size ignored
here)

@ Improved to O(|w|®) in [Huang et al. 2005]
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Upper bounds
Hardness

. Lower bounds
Complexity

Application (cont'd)

@ We can provide a very simple account of previous upper
bound within our framework

@ SITG have rankr = 2
@ M; encodes w in |w| + 1 states
@ M, encodes Chinese 2-gram model in O(|w|) states; this is

restricted to Chinese words that are image of English words
inw

@ Intersection algorithm then runs in time

O(Q1™™ - Q2™ = o(w[°)
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Upper bounds
Hardness
Lower bounds

Complexity

Application (cont'd)

@ We can provide a similar polynomial time upper bound for
Head Transducer Grammars [Alshawi et al. 2000]

@ Polynomial time also holds if

@ SCFG is fixed; or else
@ there is a constant upper bound on the rank of the SCFG

@ Otherwise, intersection construction runs in exponential
time in the size of the input
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Upper bounds
Hardness
Lower bounds

Complexity

@ Result: SCFGs do not admit canonical forms with
bounded rank [Aho and Ullman 1969] (contrast with
Chomsky normal form for CFGs)

@ Higher rank (flat structure) used when language pair does
not satisfy direct correspondence assumption
[Hwa et al. 2002]

@ Question : Is constant upper bound on rank a plausible
hypothesis for natural language translation?

@ If you need unbounded rank, your translation relation may
be out of the reach of CFG analysis (scrambling, etc.)
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Upper bounds
Hardness

. Lower bounds
Complexity

Rank (cont'd)

@ Synchronous productions that cannot be reduced in rank
implement so-called simple permutations

@ Percentage of the r! permutations that are simple
approaches e 2 [Albert et al. 2003]

@ How many simple permutations are observed in real data?

@ Result: One can decompose a rank r synchronous
production into smallest rank components in time O(|r|)
[Gildea et al. 2006]

@ Above algorithm can also be used to decide whether a
permutation is simple
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Upper bounds
[ELCHESS

. Lower bounds
Complexity

Parsing

@ Result: Parsing problem for SCFGs is NP-hard
[Satta and Peserico 2005]

@ Proof: Reduction from 3SAT; complexity comes from
complex permutations

@ Result transfers to translation models in
[Yamada and Knight 2001], [Gildea 2003], [Melamed 2003]
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Upper bounds
[ELCHESS

. Lower bounds
Complexity

Translation

@ String-to-tree (1-best) translation problem :

@ Input a probabilistic SCFG G and a string w
@ Output the parse tree with highest probability that translates
w
argmax pe([w, t])

@ Result: String-to-tree problem is NP-hard
[Satta and Peserico 2005]

@ Proof: Reduction from the consensus problem
[Casacuberta and de la Higuera 2000]; complexity comes
from hidden layer of source parse trees
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Upper bounds
[ELCHESS

. Lower bounds
Complexity

Translation (cont'd

@ String-to-tree problem remains hard even in case of
constant upper bound on rank of SCFG

@ Becomes polynomial time if paired nonterminals are
always equal

@ Algorithm: Intersection construction + Viterbi search on
right auto-projection

@ Becomes undecidable if infinite ambiguity is allowed, even
for a fixed SCFG !!
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Upper bounds
Hardness

Complexity Lower bounds

Parsing

@ Parsing problem for SCFGs usually solved through tabular
methods (chart parsing)

@ if we parse left-to-right on the source sentence, we end up
with discontinuous constituents  on the target sentence

@ Discontinuous constituents (multiple edges) increase the
time complexity of the parser

@ Are there better strategies for tabular methods?
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Upper bounds
Hardness

Complexity Lower bounds

Parsing (cont'd)

@ In the worst case, tabular methods require time
O(IG| - jw[<()

@ We know that, unless P = NP, k(G) cannot be a constant

@ Result: In the worst case, standard tabular methods for
the SCFG parsing problem require an amount of time
(|G| n®v"), with r the rank of G and ¢ some constant
[Satta and Peserico 2005]

@ Proof: combinatorial argument
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Upper bounds
Hardness

Complexity Lower bounds

Conclusions

@ All hardness and lower bound results exploit constructions
that are quite artificial

@ If unbounded rank is needed, then the translation is
probably out of the reach of CFG analysis

@ Efficient algorithms exist for reducing rank to a minimum
(expected low)

@ Intersection construction extends to

@ specialized and efficient parsing strategies
@ estimation algorithm based on frequency count of
synchronous productions
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