Structured Discriminative Models for Speech Recognition

Mark Gales - work with Anton Ragni, Austin Zhang, Rogier van Dalen

April 2012

Cambridge University Engineering Department

NTT Visit

Overview

- Acoustic Models for Speech Recognition
 - dependency modelling
 - generative and discriminative models
- Sequence (dynamic) kernels
 - discrete and continuous observation forms
- Combining Generative and Discriminative Models
 - generative score-spaces and log-linear models
- Training Criteria
 - large-margin-based training
- Initial Evaluation
 - AURORA-2 and AURORA-4 experimental results

Acoustic Models

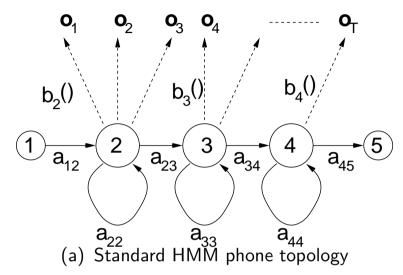
Dependency Modelling for Speech Recognition

- Sequence kernels for text-independent speaker verification used GMMs
 - for ASR interested modelling inter-frame dependencies
- Dependency modelling essential part of modelling sequence data:

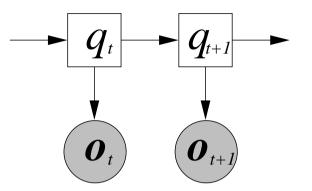
 $p(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_T;\boldsymbol{\lambda}) = p(\boldsymbol{o}_1;\boldsymbol{\lambda})p(\boldsymbol{o}_2|\boldsymbol{o}_1;\boldsymbol{\lambda})\ldots p(\boldsymbol{o}_T|\boldsymbol{o}_1,\ldots,\boldsymbol{o}_{T-1};\boldsymbol{\lambda})$

- impractical to directly model in this form
- Two possible forms of conditional independence used:
 - observed variables
 - latent (unobserved) variables
- Even given dependencies (form of Bayesian Network):
 - need to determine how dependencies interact

Hidden Markov Model - A Dynamic Bayesian Network



• Notation for DBNs [1]:



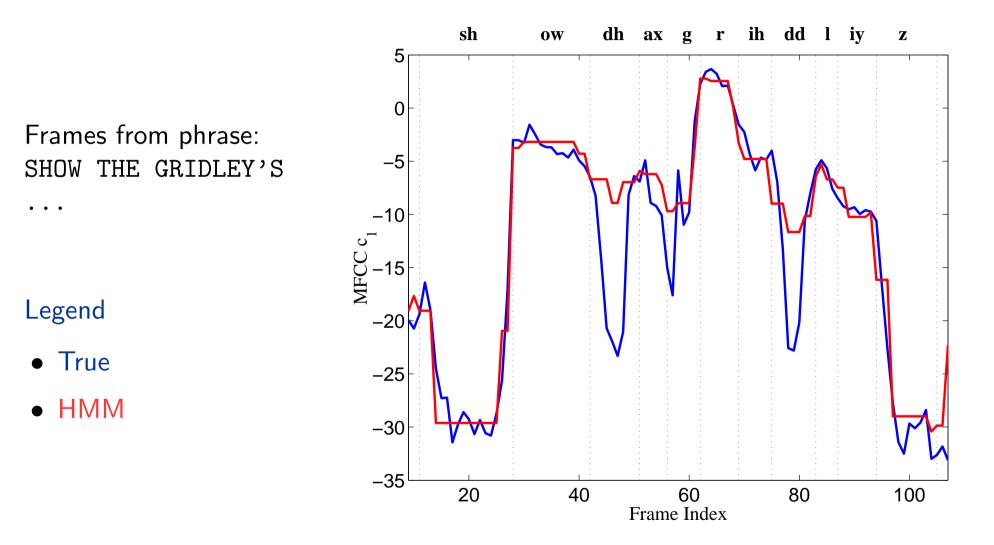
(b) HMM Dynamic Bayesian Network

circles - continuous variablesshaded - observed variablessquares - discrete variablesnon-shaded - unobserved variables

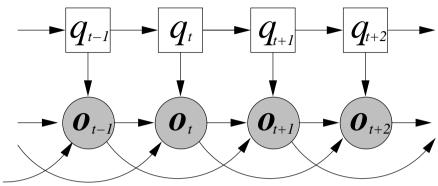
- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states.

$$p(\mathbf{O}; \boldsymbol{\lambda}) = \sum_{\mathbf{q}} \prod_{t=1}^{T} P(q_t | q_{t-1}) p(\boldsymbol{o}_t | q_t; \boldsymbol{\lambda})$$

HMM Trajectory Modelling



Dependency Modelling using Observed Variables



• Commonly use member (or mixture) of the exponential family

$$p(\mathbf{O}; \boldsymbol{\alpha}) = \prod_{t=1}^{T} \frac{1}{Z_t} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{o}_{t-n}, \dots, \boldsymbol{o}_t, q_t)\right)$$

- $\phi(o_{t-n}, \dots, o_t)$ are the sufficient statistic from window of n frames - α are the natural parameters, Z_t the (local) normalisation term

$$Z_t = \int \exp\left(\boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{o}_{t-n},\ldots,\boldsymbol{o}_t)\right) d\boldsymbol{o}_{t-n},\ldots,d\boldsymbol{o}_t$$

• What is the appropriate form of statistics $(\phi(\mathbf{O}))$ - needs DBN to be known

Discriminative Models

- Classification requires class posteriors $P(\mathbf{w}|\mathbf{O})$
 - Generative model e.g. HMM previously discussed

$$P(\mathbf{w}|\mathbf{O}; \boldsymbol{\lambda}) = \frac{p(\mathbf{O}|\mathbf{w}; \boldsymbol{\lambda}) P(\mathbf{w})}{\sum_{\tilde{\mathbf{w}}} p(\mathbf{O}|\tilde{\mathbf{w}}; \boldsymbol{\lambda}) P(\tilde{\mathbf{w}})}$$

- Discriminative model directly model posterior
- Log-Linear Model discriminative form of interest here

$$P(\mathbf{w}|\mathbf{O}; \boldsymbol{\alpha}) = \frac{1}{Z} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}, \mathbf{w})\right)$$

- normalisation term Z (simpler to compute than generative model)

$$Z = \sum_{\tilde{\mathbf{w}}} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}, \tilde{\mathbf{w}})\right)$$

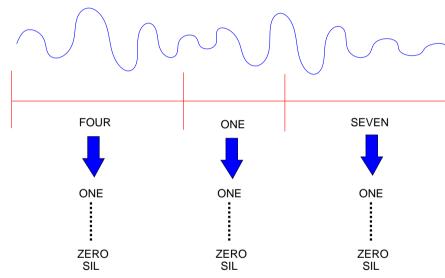
- BUT still need to decide form of features $\phi(\mathbf{O},\mathbf{w})$

Sequence Discriminative Models

- Applying discriminative models to speech data is non-trivial:
 - 1. Number of possible classes is vast
 - motivates the use of structured discriminative models
 - 2. Length of observation O varies from utterance to utterance
 - motivates the use of sequence kernels to obtain features
 - 3. Number of labels (words) and observations (frames) differ
 addressed by combining solutions to (1) and (2)
- To handle these a segmentation \boldsymbol{a} is often required
- A range of features are then possible based on:
 - word sequences $\phi(\mathbf{w})$ "language-model"-like
 - segmentation-word sequences $oldsymbol{\phi}(oldsymbol{a},\mathbf{w})$ "pronunciation-model"-like
 - segmentation-observation sequences $\phi(\mathbf{O}_{\{a_i\}}, a_i^{\mathtt{i}})$ "acoustic-model"-like

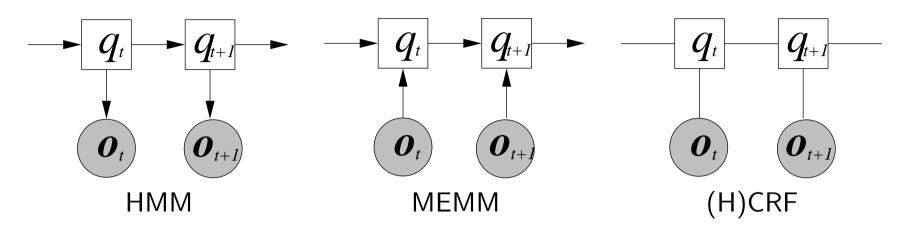
Code-Breaking Style

- Rather than handle complete sequence split into segments
 - perform simpler classification for each segment
 - complexity determined by segment (simplest word)



- 1. Using HMM-based hypothesis
 - word start/end
- 2. Foreach segment of *a*:
 - binary SVMs voting - $\underset{\omega \in \{\text{ONE},...,\text{SIL}\}}{\operatorname{arg\,max}} \alpha^{(\omega)^{\mathsf{T}}} \phi(\mathbf{O}_{\{a_i\}},\omega)$
- Limitations of code-breaking approach [2]
 - each segment is treated independently
 - restrict to one segmentation, generated by HMMs

Example Standard Sequence Models



- ullet The segmentation, a , determines the state-sequence ${f q}$
 - maximum entropy Markov model [3]

$$P(\mathbf{q}|\mathbf{O}) = \prod_{t=1}^{T} \frac{1}{Z_t} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(q_t, q_{t-1}, \boldsymbol{o}_t)\right)$$

- hidden conditional random field (simplified linear form only) [4]

$$P(\mathbf{q}|\mathbf{O}) = \frac{1}{Z} \prod_{t=1}^{T} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(q_t, q_{t-1}, \boldsymbol{o}_t)\right)$$

Features

- Discriminative sequence models have simple sufficient statistics
 - simple models second-order statistics (almost) a discriminative HMM
 - simplest approach extend frame features (for each state s_i)

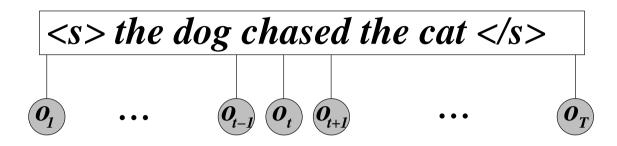
$$egin{aligned} \phi(q_t,q_{t-1},oldsymbol{o}_t) &= \left[egin{aligned} \delta(q_t,\mathbf{s}_i) & \delta(q_t,\mathbf{s}_i) \ \delta(q_t,\mathbf{s}_i) \delta(q_{t-1},\mathbf{s}_j) & \delta(q_t,\mathbf{s}_i) oldsymbol{o}_t \ \delta(q_t,\mathbf{s}_i) oldsymbol{o}_t \otimes oldsymbol{o}_t \ \delta(q_t,\mathbf{s}_i) oldsymbol{o}_t \otimes oldsymbol{o}_t \ \delta(q_t,\mathbf{s}_i) oldsymbol{o}_t \otimes oldsymbol{o}_t \otimes oldsymbol{o}_t \end{array}
ight] \end{aligned}$$

- still same conditional independence assumption as HMM

How to extend range of features?

- Consider features a particular segment of speech
 - size of each segment may vary from segment to segment
 - need to map to a fixed dimensionality independent of number of frames

Flat Direct Models

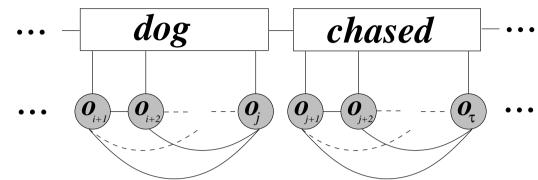


• Remove conditional independence assumptions

$$P(\mathbf{w}|\mathbf{O}) = \frac{1}{Z} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}, \mathbf{w})\right)$$

- Simple model, but lack of structure causes problems
 - extracted feature-space becomes vast (number of possible sentences)
 - associated parameter vector is vast
 - large number of unseen examples

Structured Discriminative Models



- Introduce structure into observation sequence segmentation a
 - comprises: segmentation identity a^i , set of observations $O_{\{a\}}$

$$P(\mathbf{w}|\mathbf{O}) = \frac{1}{Z} \sum_{\boldsymbol{a}} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}}\left[\sum_{\tau=1}^{|\boldsymbol{a}|} \boldsymbol{\phi}(\mathbf{O}_{\{a_{\tau}\}}, a_{\tau}^{\mathtt{i}})\right]\right)$$

- segmentation may be at word, (context-dependent) phone, etc etc

- What form should $\phi(\mathbf{O}_{\{a_{\tau}\}},a^{\mathtt{i}}_{\tau})$ have?
 - must be able to handle variable length $O_{\{a_{\tau}\}}$

Sequence Kernels

Sequence Kernel

- Sequence kernels are a class of kernel that handles sequence data
 - also applied in a range of biological applications, text processing, speech
 - in this talk these kernels will be partitioned into three classes
- Discrete-observation kernels
 - appropriate for text data
 - string kernels simplest form
- Distributional kernels
 - distances between distributions trained on sequences
- Generative kernels:
 - parametric form: use the parameters of the generative model
 - derivative form: use the derivatives with respect to the model parameters

String Kernel

- For speech and text processing input space has variable dimension:
 - use a kernel to map from variable to a fixed length;
 - string kernels are an example for text [5].
- Consider the words cat, cart, bar and a character string kernel

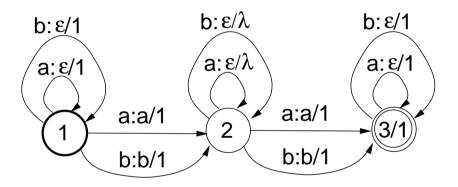
	c-a	c-t	c-r	a-r	r-t	b-a	b-r
$oldsymbol{\phi}(extsf{cat})$	1	λ	0	0	0	0	0
$oldsymbol{\phi}(extsf{cart})$	1	λ^2	λ	1	1	0	0
$oldsymbol{\phi}(extbf{bar})$	0	0	0	1	0	1	λ

 $K(\texttt{cat},\texttt{cart}) = 1 + \lambda^3, \quad K(\texttt{cat},\texttt{bar}) = 0, \quad K(\texttt{cart},\texttt{bar}) = 1$

- Successfully applied to various text classification tasks:
 - how to make process efficient (and more general)?

Rational Kernels

- Rational kernels [6] encompass various standard feature-spaces and kernels:
 - bag-of-words and N-gram counts, gappy N-grams (string Kernel),
- A transducer, T, for the string kernel (gappy bigram) (vocab {a,b})



The kernel is: $K(O_i, O_j) = w \left[O_i \circ (T \circ T^{-1}) \circ O_j \right]$

- This form can also handle uncertainty in decoding:
 - lattices can be used rather than the 1-best output (O_i) .
- Can also be applied for continuous data kernels [7].

Generative Score-Spaces

• Generative kernels use scores of the following form [8]

 $\boldsymbol{\phi}(\mathbf{O};\boldsymbol{\lambda}) = [\log(p(\mathbf{O};\boldsymbol{\lambda}))]$

- simplest form maps sequence to 1-dimensional score-space
- Parametric score-space increase the score-space size

$$oldsymbol{\phi}(\mathbf{O};oldsymbol{\lambda}) = \left[egin{array}{c} \hat{oldsymbol{\lambda}}^{(1)} \ dots \ \hat{oldsymbol{\lambda}}^{(K)} \end{array}
ight]$$

- parameters estimated on ${\bf O}$: related to the mean-supervector kernel
- Derivative score-space take the following form

$$\boldsymbol{\phi}\left(\mathbf{O};\boldsymbol{\lambda}\right) = \left[\boldsymbol{\nabla}_{\boldsymbol{\lambda}}\log\left(p(\mathbf{O};\boldsymbol{\lambda})\right)\right]$$

- using the appropriate metric this is the Fisher kernel [9]

Generative Kernels

• Associated kernel for generative score-spaces is:

$$K(\mathbf{O}_i, \mathbf{O}_j; \boldsymbol{\lambda}) = \boldsymbol{\phi}(\mathbf{O}_i; \boldsymbol{\lambda})^{\mathsf{T}} \mathbf{G}^{-1} \boldsymbol{\phi}(\mathbf{O}_j; \boldsymbol{\lambda})$$

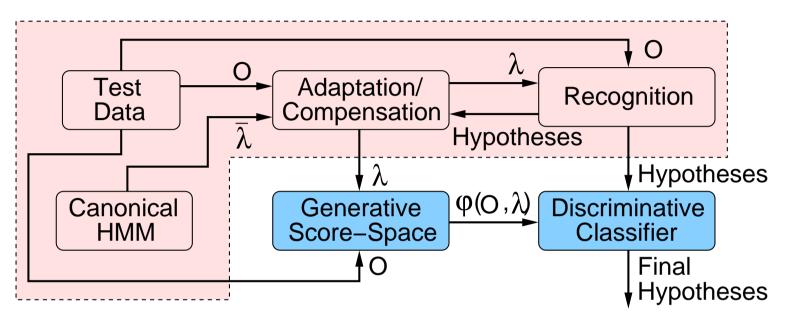
- $\phi(\mathbf{O};\boldsymbol{\lambda})$ is the score-space for \mathbf{O} using parameters $\boldsymbol{\lambda}$
- \mathbf{G} is the appropriate metric for the score-space
- The exact form of the metric is important
 - standard form is a maximally non-committal metric

$$\boldsymbol{\mu}_{g} = \mathcal{E}\left\{\phi(\mathbf{O}; \boldsymbol{\lambda})\right\}; \quad \mathbf{G} = \boldsymbol{\Sigma}_{g} = \mathcal{E}\left\{(\phi(\mathbf{O}; \boldsymbol{\lambda}) - \boldsymbol{\mu}_{g})(\phi(\mathbf{O}; \boldsymbol{\lambda}) - \boldsymbol{\mu}_{g})^{\mathsf{T}}\right\}$$

- empirical approximation based on training data is often used
- equal "weight" given to all dimensions
- Fisher kernel with ML-trained models ${\bf G}$ Fisher Information Matrix

Combining Generative & Discriminative Models

Combining Discriminative and Generative Models



- Use generative model to extract features [9, 8] (we do like HMMs!)
 - adapt generative model speaker/noise independent discriminative model
- Use favourite form of discriminative classifier for example
 - log-linear model/logistic regression
 - binary/multi-class support vector machines

Score-Space Sufficient Statistics

- Need a systematic approach to extracting sufficient statistics
 - what about using the sequence-kernel score-spaces?

$$\boldsymbol{\phi}(\mathbf{O}) = \boldsymbol{\phi}(\mathbf{O}; \boldsymbol{\lambda})$$

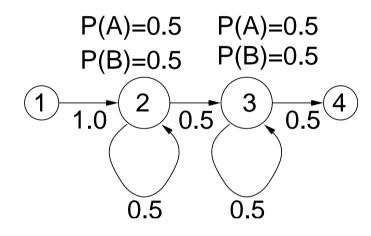
- does this help with the dependencies?
- For an HMM the mean derivative elements become

$$\nabla_{\boldsymbol{\mu}^{(jm)}} \log(p(\mathbf{O}; \boldsymbol{\lambda})) = \sum_{t=1}^{T} P(\mathbf{q}_t = \{\theta_j, m\} | \mathbf{O}; \boldsymbol{\lambda}) \Sigma^{(jm)-1}(\boldsymbol{o}_t - \boldsymbol{\mu}^{(jm)})$$

- state/component posterior a function of complete sequence O
- introduces longer term dependencies
- different conditional-independence assumptions than generative model

Score-Space Dependencies

- Consider a simple 2-class, 2-symbol $\{A,B\}$ problem:
 - Class ω_1 : AAAA, BBBB
 - Class ω_2 : AABB, BBAA



Feature	Clas	s ω_1	Class ω_2		
reature	AAAA	BBBB	AABB	BBAA	
Log-Lik	-1.11	-1.11	-1.11	-1.11	
$ abla_{2A}$	0.50	-0.50	0.33	-0.33	
$ abla_{2A} abla_{2A}^{T}$	-3.83	0.17	-3.28	-0.61	
$\nabla_{2A} \nabla_{3A}^{\overline{T}}$	-0.17	-0.17	-0.06	-0.06	

- ML-trained HMMs are the same for both classes
- First derivative classes separable, but not linearly separable
 - also true of second derivative within a state
- Second derivative across state linearly separable

Score-Spaces for ASR

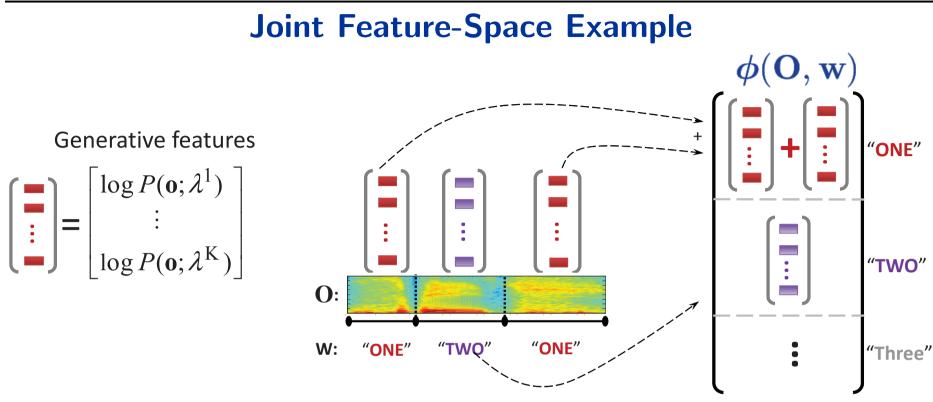
• Forms of score-space used in the experiments:

$$\phi_{0}^{\mathsf{a}}(\mathbf{O};\boldsymbol{\lambda}) = \begin{bmatrix} \log\left(p(\mathbf{O};\boldsymbol{\lambda}^{(1)})\right) \\ \vdots \\ \log\left(p(\mathbf{O};\boldsymbol{\lambda}^{(K)})\right) \end{bmatrix}; \quad \phi_{1\mu}^{\mathsf{b}}(\mathbf{O};\boldsymbol{\lambda}) = \begin{bmatrix} \log\left(p(\mathbf{O};\boldsymbol{\lambda}^{(i)})\right) \\ \nabla_{\boldsymbol{\mu}^{(i)}}\log\left(p(\mathbf{O};\boldsymbol{\lambda}^{(i)})\right) \end{bmatrix}$$

- appended log-likelihood: $\phi_0^{\mathtt{a}}(\mathbf{O}; \boldsymbol{\lambda})$
- derivative (means only for class ω_i): $\phi_{1\mu}^{\mathtt{b}}(\mathbf{O}; \boldsymbol{\lambda})$
- log-likelihood (for class ω_i): $\phi_0^{\mathsf{b}}(\mathbf{O}; \boldsymbol{\lambda}) = \left[\log\left(p(\mathbf{O}; \boldsymbol{\lambda}^{(i)})\right)\right]$
- In common with most discriminative models Joint Feature Spaces,

$$\boldsymbol{\phi}(\mathbf{O}, \boldsymbol{a}; \boldsymbol{\lambda}) = \begin{bmatrix} \sum_{\tau=1}^{|\boldsymbol{a}|} \delta(a_{\tau}^{i}, w^{(1)}) \boldsymbol{\phi}(\mathbf{O}_{\{a_{\tau}\}}; \boldsymbol{\lambda}) \\ \vdots \\ \sum_{\tau=1}^{|\boldsymbol{a}|} \delta(a_{\tau}^{i}, w^{(P)}) \boldsymbol{\phi}(\mathbf{O}_{\{a_{\tau}\}}; \boldsymbol{\lambda}) \end{bmatrix}$$

for α -tied yielding "units" $\{w^{(1)}, \ldots, w^{(P)}\}$, underlying score-space $\phi(\mathbf{O}; \boldsymbol{\lambda})$.



- Size of joint feature-space is the product of
 - 1. feature-space size (K)- determined by generative model
 - 2. number of α classes (P) determined by discriminative model
- Segmentation of the sentence will alter scores

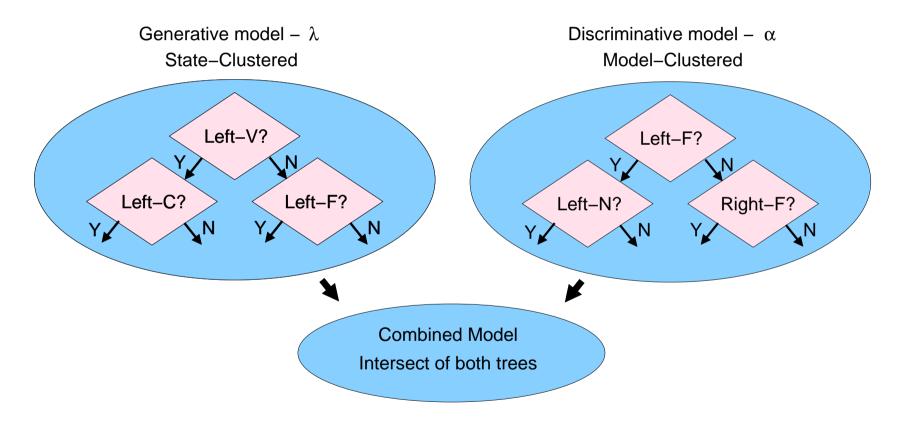
Segmentation

$$\cdots \qquad dog \qquad chased \cdots \\ \cdots \qquad /d/ \qquad /ao/ \qquad /g/ \qquad /ch/ \qquad \cdots \\ \cdots \qquad O_t \ \cdots \ O_i \qquad O_{i+1} \cdots \ O_j \qquad O_{j+1} \cdots \ O_{\tau} \qquad O_{\tau+1} \cdots \ O_k \qquad \cdots$$

- Segmentation can be viewed at multiple levels
 - sentence: yields flat direct model standard problems
 - word: easy implementation for small vocab, sparsity issues
 - phone: may be context-dependent
 - state: very flexible, but large number of segments
- Multiple levels of segmentation can be used/combined
 - multiple segmentations can be used to derive features
 - can use different segmentations for generative/discriminative models

Parameter Tying

- Parameter tying in combined classifier [10]
 - two sets of parameters discriminative lpha, generative λ



- tree-intersect can cause generalisation problems

Handling Latent Variables

- Two forms of model can be used:
 - 1. marginalise over all possible segmentations

$$P(\mathbf{w}|\mathbf{O}) = \frac{1}{Z} \sum_{\boldsymbol{a}} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}}\left[\sum_{\tau=1}^{|\boldsymbol{a}|} \boldsymbol{\phi}(\mathbf{O}_{\{a_{\tau}\}}, a_{\tau}^{\mathtt{i}})\right]\right)$$

2. use "best" segmentation

$$P(\mathbf{w}|\mathbf{O}, \hat{a}) = \frac{1}{Z} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \left[\sum_{\tau=1}^{|\hat{a}|} \phi(\mathbf{O}_{\{\hat{a}_i\}}, \hat{a}_{\tau}^{\mathsf{i}})\right]\right)$$
$$\hat{a} = \operatorname*{argmax}_{a} \left\{ \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \left[\sum_{\tau=1}^{|a|} \phi(\mathbf{O}_{\{a_{\tau}\}}, a_{\tau}^{\mathsf{i}})\right]\right)\right\}$$

Approximate Training/Inference Schemes

- If HMMs are being used anyway use for segmentation $\mathcal{O}(T)$
 - simplest approach use Viterbi (1-best) segmentation from HMM, $\hat{a}_{ t hmm}$
 - use fixed segmentation in training and test highly efficient

$$P(\mathbf{w}|\mathbf{O}) \approx \frac{1}{Z} \prod_{\tau=1}^{|\hat{a}_{\text{hmm}}|} \exp\left(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}_{\{\hat{a}_{\text{hmm}}\tau\}}, \hat{a}_{\text{hmm}\tau}^{\mathsf{i}})\right)$$
$$\hat{a}_{\text{hmm}} = \operatorname*{argmax}_{\boldsymbol{a}} \left\{ p(\mathbf{O}|\boldsymbol{a}, \boldsymbol{\lambda}) P(\boldsymbol{a}) \right\}$$

- Assumption: segmentation not dependent on discriminative model parameters
 - unclear how accurate appropriate this is!
- Schemes for efficient inference feature extraction possible [11]

Handling Speaker/Noise Differences

- A standard problem with kernel-based approaches is adaptation/robustness
 - not a problem with generative kernels
 - adapt generative models using model-based adaptation
- Standard approaches for speaker/environment adaptation
 - (Constrained) Maximum Likelihood Linear Regression [12]

$$\boldsymbol{x}_t = \mathbf{A} \boldsymbol{o}_t + \mathbf{b}; \quad \boldsymbol{\mu}^{(m)} = \mathbf{A} \boldsymbol{\mu}_{\mathrm{x}}^{(m)} + \mathbf{b}$$

- Vector Taylor Series Compensation [13] (used in this work)

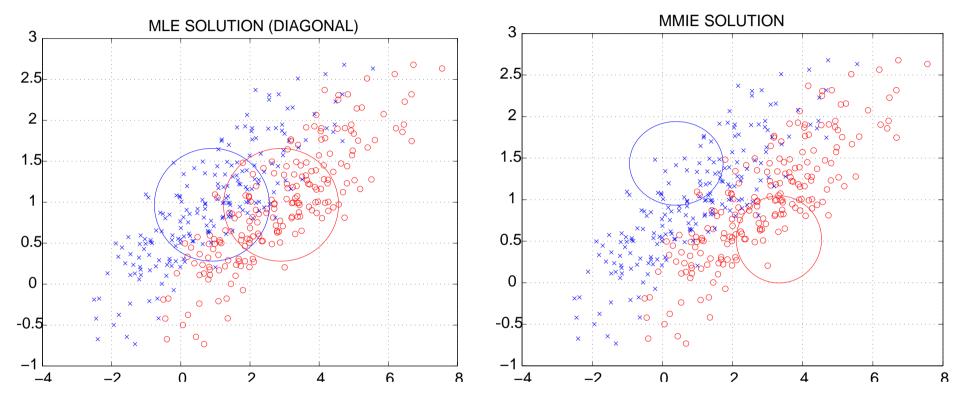
$$\boldsymbol{\mu}^{(m)} = \mathbf{C} \log \left(\exp(\mathbf{C}^{-1}(\boldsymbol{\mu}_{\mathtt{x}}^{(m)} + \boldsymbol{\mu}_{\mathtt{h}}^{(m)})) + \exp(\mathbf{C}^{-1}\boldsymbol{\mu}_{\mathtt{n}}^{(m)}) \right)$$

• Adapting the generative model will alter score-space

Training Criteria

Simple MMIE Example

• HMMs are not the correct model - discriminative criteria a possibility



- Discriminative criteria a function of posteriors $P(\mathbf{w}|\mathbf{O}; \boldsymbol{\lambda})$
 - use to train the discriminative model parameters α

Discriminative Training Criteria

- Apply discriminative criteria to train discriminative model parameters $\!\alpha$
 - Conditional Maximum Likelihood (CML) [14, 15]: maximise

$$\mathcal{F}_{\texttt{cml}}(\boldsymbol{\alpha}) = \frac{1}{R} \sum_{r=1}^{R} \log(P(\mathbf{w}_{\texttt{ref}}^{(r)} | \mathbf{O}^{(r)}; \boldsymbol{\alpha}))$$

- Minimum Classification Error (MCE) [16]: minimise

$$\mathcal{F}_{\text{mce}}(\boldsymbol{\alpha}) = \frac{1}{R} \sum_{r=1}^{R} \left(1 + \left[\frac{P(\mathbf{w}_{\text{ref}}^{(r)} | \mathbf{O}^{(r)}; \boldsymbol{\alpha})}{\sum_{\mathbf{w} \neq \mathbf{w}_{\text{ref}}^{(r)}} P(\mathbf{w} | \mathbf{O}^{(r)}; \boldsymbol{\alpha})} \right]^{\varrho} \right)^{-1}$$

- Minimum Bayes' Risk (MBR) [17, 18]: minimise

$$\mathcal{F}_{\mathtt{mbr}}(\boldsymbol{\alpha}) = \frac{1}{R} \sum_{r=1}^{R} \sum_{\mathbf{w}} P(\mathbf{w} | \mathbf{O}^{(r)}; \boldsymbol{\alpha}) \mathcal{L}(\mathbf{w}, \mathbf{w}_{\mathtt{ref}}^{(r)})$$

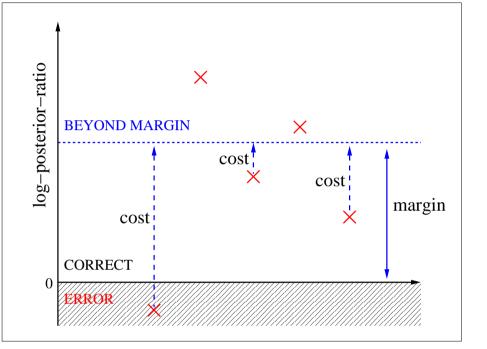
MBR Loss Functions for ASR

• Sentence (1/0 loss):

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_{\texttt{ref}}^{(r)}) = \begin{cases} 1; & \mathbf{w} \neq \mathbf{w}_{\texttt{ref}}^{(r)} \\ 0; & \mathbf{w} = \mathbf{w}_{\texttt{ref}}^{(r)} \end{cases}$$

When arrho=1, $\mathcal{F}_{ t mce}(oldsymbollpha)=\mathcal{F}_{ t mbr}(oldsymbollpha)$

- Word: directly related to minimising the expected Word Error Rate (WER)
 - normally computed by minimising the Levenshtein edit distance.
- Phone: consider phone rather word loss
 - improved generalisation as more "error's" observed
 - this is known as Minimum Phone Error (MPE) training [19, 20].
- Hamming (MPFE): number of erroneous frames measured at the phone level



- Standard criterion for SVMs
 - improves generalisation
- Require log-posterior-ratio

$$\min_{\mathbf{w}\neq\mathbf{w}_{ref}} \left\{ \log \left(\frac{P(\mathbf{w}_{ref} | \mathbf{O}; \boldsymbol{\alpha})}{P(\mathbf{w} | \mathbf{O}; \boldsymbol{\alpha})} \right) \right\}$$

to be beyond margin

• As sequences being used can make margin function of the "loss" - minimise

$$\mathcal{F}_{lm}(\boldsymbol{\alpha}) = \frac{1}{R} \sum_{r=1}^{R} \left[\max_{\mathbf{w} \neq \mathbf{w}_{ref}^{(r)}} \left\{ \mathcal{L}(\mathbf{w}, \mathbf{w}_{ref}^{(r)}) - \log \left(\frac{P(\mathbf{w}_{ref}^{(r)} | \mathbf{O}^{(r)}; \boldsymbol{\alpha})}{P(\mathbf{w} | \mathbf{O}^{(r)}; \boldsymbol{\alpha})} \right) \right\} \right]_{+}$$

use hinge-loss $[f(x)]_+$. Many variants possible [21, 22, 23, 24]

Relationship to (Structured) SVM

• Commonly add a Gaussian prior for regularisation

$$\mathcal{F}(\boldsymbol{\alpha}) = \log\left(\mathcal{N}(\boldsymbol{\alpha};\boldsymbol{\mu}_{\alpha};\boldsymbol{\Sigma}_{\alpha})\right) + \mathcal{F}_{\texttt{lm}}(\boldsymbol{\alpha})$$

- Make the posteriors a log-linear model (lpha) with generative score-space $(m\lambda)$ [25]
 - restrict parameters of the prior: $\mathcal{N}(\alpha; \mu_{\alpha}; \Sigma_{\alpha}) = \mathcal{N}(\alpha; \mathbf{0}, C\mathbf{I})$

$$\mathcal{F}(\boldsymbol{\alpha}) = \frac{1}{2} ||\boldsymbol{\alpha}||^2 + \frac{C}{R} \sum_{r=1}^{R} \left[\max_{\mathbf{w} \neq \mathbf{w}_{ref}^{(r)}} \left\{ \mathcal{L}(\mathbf{w}, \mathbf{w}_{ref}^{(r)}) - \log \left(\frac{\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(r)}, \mathbf{w}_{ref}^{(r)}; \boldsymbol{\lambda})}{\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(r)}, \mathbf{w}; \boldsymbol{\lambda})} \right) \right\} \right]_{+}$$

• Standard result - it's a structured SVM [26, 25]

Structured SVM Training

• Training α , so that $\alpha^{\mathsf{T}}\phi(\mathbf{O}, \mathbf{w})$ is max for correct reference $\mathbf{w}_{\mathsf{ref}}$:

$$\begin{array}{c} \min_{\boldsymbol{\alpha}} \quad \frac{1}{2} ||\boldsymbol{\alpha}||^{2} \\ \text{s.t.} \quad \boldsymbol{\alpha}^{\mathsf{T}} \phi(- \phi, \mathbf{u}, \mathbf$$

• General unconstrained form: use cutting plane algorithm to solve [27, 28]

$$\frac{1}{2}||\boldsymbol{\alpha}||^{2} + \frac{C}{R}\sum_{r=1}^{n} \left[-\overbrace{\boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{O}^{(r)},\mathbf{w}_{\mathsf{ref}}^{(r)})}^{\text{linear}} + \overbrace{\max_{\mathbf{w}\neq\mathbf{w}_{\mathsf{ref}}^{(r)}}}^{\text{convex}} \left\{\mathcal{L}(\mathbf{w},\mathbf{w}_{\mathsf{ref}}^{(r)}) + \boldsymbol{\alpha}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{O}^{(r)},\mathbf{w})\right\}\right]_{+}$$

Handling Latent Variables

- Ignored the issue of alignment so far
 - for SSVM necessary to use the "best" segmentation
- Simplest solution is to use the single segmentation from the original HMM

$$\hat{a}_{\texttt{hmm}} = \operatorname*{argmax}_{a} \left\{ \log \left(P(\boldsymbol{a} | \mathbf{O}, \mathbf{w}; \boldsymbol{\lambda}) \right) \right\} = \operatorname*{argmax}_{a} \left\{ \log \left(P(\mathbf{O} | \boldsymbol{a}, \mathbf{w}; \boldsymbol{\lambda}) P(\boldsymbol{a} | \mathbf{w}; \boldsymbol{\lambda}) \right) \right\}$$

- equivalent of phone/word-marking lattices
- BUT underlying model changes: would like

$$\hat{\boldsymbol{a}} = \operatorname*{argmax}_{\boldsymbol{a}} \left\{ \log \left(P(\boldsymbol{O} | \boldsymbol{a}, \boldsymbol{w}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) \right) + \log \left(P(\boldsymbol{a} | \boldsymbol{w}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) \right) \right\}$$

Maps into a Concave-Convex Procedure (CCCP) [29]

$$\left[\overbrace{-\max_{\boldsymbol{a}} \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(i)}, \mathbf{w}_{\mathsf{ref}}^{(i)}, \boldsymbol{a})}^{\text{convex}} + \overbrace{\max_{\mathbf{w} \neq \mathbf{w}_{\mathsf{ref}}, \boldsymbol{a}}^{\text{convex}} \left\{ \mathcal{L}(\mathbf{w}, \mathbf{w}_{\mathsf{ref}}^{(i)}) + \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(i)}, \mathbf{w}, \boldsymbol{a}) \right\}}\right]_{+}$$

Joint Training of Parameters and Segmentation

Input: $\{\mathbf{O}^{(1)}, \mathbf{w}_{ref}^{(1)}\}, \dots, \{\mathbf{O}^{(R)}, \mathbf{w}_{ref}^{(R)}\}, C, \epsilon$ **Output**: $\{\alpha, \xi\}$ initialise: constraints $\mathcal{W}_i \leftarrow 0$; slack variables $\pmb{\xi} \leftarrow \pmb{0}$; segmentation $\pmb{a} \leftarrow \pmb{a}_{\texttt{hmm}}$; repeat foreach observation i do optimise reference segmentation given α : $a_{\texttt{ref}}^{(i)} \leftarrow \operatorname{argmax}_a \left\{ \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(i)}, \mathbf{w}_{\texttt{ref}}^{(i)}, \boldsymbol{a}; \boldsymbol{\lambda})
ight\};$ end optimise parameters: $\boldsymbol{\alpha} \leftarrow \operatorname{argmin}_{\boldsymbol{\alpha}} \left\{ \mathcal{F}_{\mathtt{ssvm}}(\boldsymbol{\alpha} | \boldsymbol{a}_{\mathtt{ref}}^{(1)}, \dots, \boldsymbol{a}_{\mathtt{ref}}^{(R)}) \right\}$ until all $a_{ref}^{(i)}$ unchanged; $\mathcal{F}_{\mathtt{ssym}}(\boldsymbol{lpha}|\boldsymbol{a}_{\mathtt{ref}}^{(1)},\ldots,\boldsymbol{a}_{\mathtt{ref}}^{(R)}) = ||\boldsymbol{lpha}||^2/2 +$ $\frac{C}{R} \sum_{i=1}^{R} \left| \max_{\mathbf{w} \neq \mathbf{w}^{(r)}} \left\{ \mathcal{L}(\mathbf{w}, \mathbf{w}^{(r)}_{ref}) - \min_{\mathbf{a}} \left\{ \log \left(\frac{\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(r)}, \mathbf{w}^{(r)}_{ref}, \boldsymbol{a}^{(i)}_{ref}; \boldsymbol{\lambda})}{\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{O}^{(r)}, \mathbf{w}, \boldsymbol{a}; \boldsymbol{\lambda})} \right) \right\} \right\} \right|$

Evaluation Tasks

Preliminary Evaluation Tasks

- AURORA-2 small vocabulary digit string recognition task
 - whole-word models, 16 emitting-states with 3 components per state
 - clean training data for HMM training HTK parametrisation SNR
 - Set B and Set C unseen noise conditions even for multi-style data
 - Noise estimated in a ML-fashion for each utterance
- AURORA-4 medium vocabulary speech recognition
 - training data from WSJ0 SI84 to train clean acoustic models
 - state-clustered states, cross-word triphones (\approx 3K states \approx 50k components)
 - 5-15dB SNR range of noises added
 - Noise estimated in a ML-fashion for each utterance
- WARNING: optimisation techniques improved over time
 - don't compare results cross-tables!

AURORA-2 - Training Criterion

Model	Criterion	٦	Test set			
Model		А	В	C	Avg	
HMM		9.8	9.1	9.5	9.5	
	CML	8.1	7.7	8.3	8.1	
(ϕ_0^a)	MWE	7.9	7.4	8.2	7.9	
$(\boldsymbol{\varphi}_0)$	LM	7.8	7.3	8.0	7.6	

- All approaches yield gains over the baseline VTS system
 - very few additional parameters added $(12 \times 12 = 144)$ for log-linear models (though these parameters are discriminatively trained
- Large-margin log-linear model will be referred to as Structured SVM

AURORA-2 - Support Vector Machines

Model	Features	eatures Test set			
moder		A	В	C	Avg
HMM		9.8	9.1	9.5	9.5
SVM		9.1	8.7	9.2	9.0
MSVM	$\phi^{ t a}_0$	8.3	8.1	8.6	8.3
SSVM		7.8	7.3	8.0	7.6

- Possible to compare SSVM with more standard SVMs
 - segmentation for SVMs and multi-class SVMs (MSVMs) obtained from HMM
 - majority voting (HMM decision for ties on standard SVM)
- The difference between the MSVM and SSVM is the fixed HMM segmentation
 - does have an important on the performance

AURORA-2 - **Optimising Segmentation**

Model	Training	Segmentation	٦	Avg		
		$\{\texttt{trn},\texttt{tst}\}$	A	В	С	/\vg
HMM			9.8	9.1	9.5	9.5
SSVM	/M <i>n</i> -slack	$\{\hat{m{a}}_{ t hmm}, \hat{m{a}}_{ t hmm}\}$	7.8	7.3	8.0	7.6
55 V IVI		$\{\hat{m{a}}_{\texttt{hmm}}, \hat{m{a}}\}$	7.6	7.2	8.0	7.5
	n-slack	$\{\hat{m{a}}_{ t hmm}, \hat{m{a}}_{ t hmm}\}$	7.9	7.4	8.2	7.8
SSVM	batch	$\{\hat{oldsymbol{a}}_{ t hmm}, \hat{oldsymbol{a}}\}$	7.8	7.2	8.0	7.6
	Datchi	$\{\hat{m{a}},\hat{m{a}}\}$	7.6	7.1	7.8	7.4
SSVM	1-slack	$\{\hat{m{a}}_{\texttt{hmm}}, \hat{m{a}}\}$	7.6	7.3	7.9	7.5

- Just using the HMM segmentation is suboptimal in terms of WER
 - n-slack batch and 1-slack schemes similar to full approach

НММ	SDM	$\hat{oldsymbol{a}}$	Γ	est se	et	Avg
		u	A	В	С	Λvg
	_	—	9.8	9.1	9.5	9.5
VTS	Ър	$\hat{oldsymbol{a}}_{ t hmm}$	7.0	6.6	7.6	7.0
	$\phi^{ t b}_{1\mu}$	$\hat{oldsymbol{a}}$	6.8	6.4	7.3	6.7
	_	—	8.9	8.3	8.8	8.6
VAT	фb	$\hat{oldsymbol{a}}_{ t hmm}$	6.6	6.5	7.0	6.6
	$oldsymbol{\phi}_{1\mu}^{ t b}$	$\hat{oldsymbol{a}}$	6.2	6.1	6.8	6.3
	—	—	6.7	6.6	7.0	6.7
DVAT	Ър	$\hat{oldsymbol{a}}_{ t hmm}$	6.1	6.2	6.7	6.3
	$oldsymbol{\phi}_{1\mu}^{ t b}$	$\hat{oldsymbol{a}}$	6.1	6.1	6.6	6.2

AURORA-2 - Derivative Score-Spaces

- Derivative score-spaces $(\phi_{1\mu}^{\mathtt{b}})$ consistent gains over all baseline HMM systems
 - derivative score-space larger (1873 dimensions for each base score-space)
 - adds approximately 50% more parameters to the system

AURORA-4 - Structured SVM Results

- SSVM training configuration:
 - 1-slack variable training
 - prior distribution matched to score-space $\phi^{\rm a}_0$, mean set to $1/{
 m LM}-{
 m scale}$
 - α tied at the monophone-level (47-classes)

Model	Segmentation		Test set			
model	$\{\texttt{trn},\texttt{tst}\}$	A	В	C	D	Avg
HMM		7.1	15.3	12.1	23.1	17.9
SSVM	$\{\hat{m{a}}_{ t hmm}, \hat{m{a}}_{ t hmm}\}$	7.5	14.3	11.4	21.9	16.9
55 1 101	$\{\hat{m{a}}_{\texttt{hmm}}, \hat{m{a}}\}$	7.4	14.2	11.3	21.9	16.8

- SSVM gains over baseline HMM-VTS system
 - disappointing gain from segmentation though only in test at the moment
 - working on optimal training segmentation as well

AURORA-4 - Derivative Score-Space

Classes	System	Comp					
	Jystem	tied $lpha$	Α	В	C	D	Avg
	VTS		7.1	15.3	12.1	23.1	17.9
47 41	Чр	yes	7.5	14.1	11.3	21.6	16.6
47	$\phi^{ t b}_{1\mu}$	no	7.4	14.3	11.7	21.9	16.9
4020	Чр	yes	6.8	13.7	10.6	21.3	16.2
4020	$\phi^{ t b}_{1\mu}$	no	6.7	13.5	10.2	21.1	16.0

- MPE training for the log-linear model parameters
 - derivative score-spaces give large gains over (ML VTS) baseline
- Component tying important for heavily tied lpha (47 monophone classes)

AURORA-4 - Derivative Score-Space

System		Avg			
System	A	В	C	D	Avg
VTS	7.1	15.3	12.1	23.1	17.9
VAT	8.6	13.8	12.0	20.1	16.0
DVAT	7.2	12.8	11.5	19.7	15.3
VAT $+\phi_0^{b}$	7.7	13.1	11.0	19.5	15.3
$VAT+\phi_{1\mu}^{b}$	7.4	12.6	10.7	19.0	14.8

- Contrast of DVAT system with log-linear system (4020 classes)
 - single dimension space ($\phi_0^{\rm b}$) with VAT system yields DVAT performance
- Gains from derivative score-space disappointing (limited training data)
 - need to look at DVAT+ $\phi_{1\mu}^{b}$ (need to try on more data)

Conclusions

- Combination of generative and discriminative models
 - use generative models to derive features for discriminative model
 - robustness and adaptation achieved by adapting underlying acoustic model
- Derivative features of generative models
 - different conditional independence assumptions to underlying model
 - systematic way to incorporate different dependencies into model
- Large margin training criterion
 - yields structured SVM (use standard optimisation code)
 - still an issue scaling to large tasks/score-spaces

Interesting classifier options - without throwing away HMMs

Acknowledgements

- This work has been funded from the following sources:
 - Cambridge Research Lab, Toshiba Research Europe Ltd
 - EPSRC project Generative Kernels and Score-Spaces for Classification of Speech

References

- [1] J.A. Bilmes, "Graphical models and automatic speech recognition," in *Mathmatical Foundations of Speech and Language Processing*, 2003.
- [2] V. Venkataramani, S. Chakrabartty, and W. Byrne, "Support vector machines for segmental minimum Bayes risk decoding of continuous speech," in *ASRU 2003*, 2003.
- [3] H-K. Kuo and Y. Gao, "Maximum entropy direct models for speech recognition," *IEEE Transactions Audio Speech and Language Processing*, 2006.
- [4] A. Gunawardana, M. Mahajan, A. Acero, and J.C. Platt, "Hidden conditional random fields for phone classification," in *Interspeech*, 2005.
- [5] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, "Text classification using string kernels," *Journal of Machine Learning Research*, vol. 2, pp. 419–444, 2002.
- [6] C. Cortes, P. Haffner, and M. Mohri, "Weighted automata kernels general framework and algorithms," in Proc. Eurospeech, 2003.
- [7] Layton MI and MJF Gales, "Acoustic modelling using continuous rational kernels," *Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology*, August 2007.
- [8] N.D. Smith and M.J.F. Gales, "Speech recognition using SVMs," in Advances in Neural Information Processing Systems, 2001.
- [9] T. Jaakkola and D. Haussler, "Exploiting generative models in disciminative classifiers," in *Advances in Neural Information Processing Systems 11*, S.A. Solla and D.A. Cohn, Eds. 1999, pp. 487–493, MIT Press.
- [10] A. Ragni and M. J. F. Gales, "Structured discriminative models for noise robust continuous speech recognition," in ICASSP, 2011, pp. 4788–4791.
- [11] R. C. van Dalen, A. Ragni, and M. J. F. Gales, "Efficient decoding with continuous rational kernels using the expectation semiring," Tech. Rep. CUED/F-INFENG/TR.674, 2012.
- [12] M J F Gales, "Maximum likelihood linear transformations for HMM-based speech recognition," Computer Speech and Language, vol. 12, pp. 75–98, 1998.
- [13] A Acero, L Deng, T Kristjansson, and J Zhang, "HMM Adaptation using Vector Taylor Series for Noisy Speech Recognition," in Proc. ICSLP, Beijing, China, 2000.
- [14] P.S. Gopalakrishnan, D. Kanevsky, A. Nádas, and D. Nahamoo, "An inequality for rational functions with applications to some statistical estimation problems," *IEEE Trans. Information Theory*, 1991.

- [15] P. C. Woodland and D. Povey, "Large scale discriminative training of hidden Markov models for speech recognition," *Computer Speech & Language*, vol. 16, pp. 25–47, 2002.
- [16] B.-H. Juang and S. Katagiri, "Discriminative learning for minimum error classification," *IEEE Transactions on Signal Processing*, 1992.
- [17] J. Kaiser, B. Horvat, and Z. Kacic, "A novel loss function for the overall risk criterion based discriminative training of HMM models," in *Proc. ICSLP*, 2000.
- [18] W. Byrne, "Minimum Bayes risk estimation and decoding in large vocabulary continuous speech recognition," *IEICE Special Issue on Statistical Modelling for Speech Recognition*, 2006.
- [19] D. Povey and P. C. Woodland, "Minimum phone error and I-smoothing for improved discriminative training," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.*, Orlando, FL, May 2002.
- [20] D. Povey, Discriminative Training for Large Vocabulary Speech Recognition, Ph.D. thesis, Cambridge University, 2004.
- [21] F. Sha and L.K. Saul, "Large margin gaussian mixture modelling for phonetic classification and recognition," in ICASSP, 2007.
- [22] J. Li, M. Siniscalchi, and C-H. Lee, "Approximate test risk minimization theough soft margin training," in ICASSP, 2007.
- [23] G Heigold, T Deselaers, R Schluter, and H Ney, "Modified MMI/MPE: A direct evaluation of the margin in speech recognition," in *Proc. ICML*, 2008.
- [24] G Saon and D Povey, "Penalty function maximization for large margin HMM training," in Proc. Interspeech, 2008.
- [25] S.-X. Zhang, Anton Ragni, and M. J. F. Gales, "Structured log linear models for noise robust speech recognition," *Signal Processing Letters, IEEE*, vol. 17, pp. 945–948, 2010.
- [26] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun, "Large margin methods for structured and interdependent output variables," *J. Mach. Learn. Res.*, vol. 6, pp. 1453–1484, 2005.
- [27] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu, "Cutting-plane training of structural SVMs," *Mach. Learn.*, vol. 77, no. 1, pp. 27–59, 2009.
- [28] S.-X. Zhang and M. J. F. Gales, "Extending noise robust structured support vector machines to larger vocabulary tasks," in *Proc.* ASRU, 2011.
- [29] Chun-Nam Yu and Thorsten Joachims, "Learning structural SVMs with latent variables," in Proceedings of ICML, 2009.

