PEARSON EDEXCEL INTERNATIONAL A LEVEL PURE MATHEMAIKSS 4 Student Book

Series Editors: Joe Skrakowski and Harry Smith Authors: Greg Attwood, Jack Barraclough, Ian Bettison, Lee Cope, Charles Garnet Cox, Keith Gallick, Daniel Goldberg, Alistair Macpherson, Anne McAteer, Lee McKelvey, Bronwen Moran, Su Nicholson, Diane Oliver, Laurence Pateman, Joe Petran, Keith Pledger, Cong San, Joe Skrakowski, Harry Smith, Geoff Staley, Robert Ward-Penny, Dave Wilkins

Published by Pearson Education Limited, 80 Strand, London, WC2R 0RL.
www.pearsonglobalschools.com
Copies of official specifications for all Pearson qualifications may be found on the website: https://qualifications.pearson.com

Text © Pearson Education Limited 2019
Edited by Linnet Bruce
Typeset by Tech-Set Ltd, Gateshead, UK
Original illustrations © Pearson Education Limited 2019
Illustrated by © Tech-Set Ltd, Gateshead, UK
Cover design by © Pearson Education Limited 2019
The rights of Greg Attwood, Jack Barraclough, Ian Bettison, Lee Cope, Charles Garnet Cox, Keith Gallick, Daniel Goldberg, Alistair Macpherson, Anne McAteer, Lee McKelvey, Bronwen Moran, Su Nicholson, Diane Oliver, Laurence Pateman, Joe Petran, Keith Pledger, Cong San, Joe Skrakowski, Harry Smith, Geoff Staley, Robert Ward-Penny and Dave Wilkins to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

First published 2019
22212019
10987654321
British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

ISBN 9781292245126

Copyright notice

All rights reserved. No part of this may be reproduced in any form or by any means (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner, except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, Barnard's Inn, 86 Fetter Lane, London, EC4A 1EN (www.cla.co.uk). Applications for the copyright owner's written permission should be addressed to the publisher.

Printed by Neografia in Slovakia

Picture Credits

The authors and publisher would like to thank the following individuals and organisations for permission to reproduce photographs:

Alamy Stock Photo: Terry Oakley 16; Getty Images: mikedabell 50, Westend61 97; Science Photo Library: Millard H. Sharp 66; Shutterstock.com: Karynav 6, LDprod 1, OliverSved 30
Cover images: Front: Getty Images: Werner Van Steen
Inside front cover: Shutterstock.com: Dmitry Lobanov
All other images © Pearson Education Limited 2019
All artwork © Pearson Education Limited 2019

Endorsement Statement

In order to ensure that this resource offers high-quality support for the associated Pearson qualification, it has been through a review process by the awarding body. This process confirms that this resource fully covers the teaching and learning content of the specification or part of a specification at which it is aimed. It also confirms that it demonstrates an appropriate balance between the development of subject skills, knowledge and understanding, in addition to preparation for assessment.

Endorsement does not cover any guidance on assessment activities or processes (e.g. practice questions or advice on how to answer assessment questions) included in the resource, nor does it prescribe any particular approach to the teaching or delivery of a related course.
While the publishers have made every attempt to ensure that advice on the qualification and its assessment is accurate, the official specification and associated assessment guidance materials are the only authoritative source of information and should always be referred to for definitive guidance.
Pearson examiners have not contributed to any sections in this resource relevant to examination papers for which they have responsibility

Examiners will not use endorsed resources as a source of material for any assessment set by Pearson. Endorsement of a resource does not mean that the resource is required to achieve this Pearson qualification, nor does it mean that it is the only suitable material available to support the qualification, and any resource lists produced by the awarding body shall include this and other appropriate resources
\qquad

[^0]都

COURSE STRUCTURE iv
ABOUT THIS BOOK vi
QUALIFICATION AND ASSESSMENT OVERVIEW viii
EXTRA ONLINE CONTENT
1 PROOF 1
2 PARTIAL FRACTIONS 6
3 COORDINATE GEOMETRY IN THE (x, x) PLANE 16
4 BINOMIAL EXPANSION 30
REVIEW EXERCISE 1 46
5 DIFFERENTIATION 50
6 INTEGRATION 66
7 VECTORS 97
REVIEW EXERGISE 2 148
EXAM PRAETICE 153
GLOSSARY 155
ANSWERS 159
INDEX 179

CHAPTER 1 PROOF

1.1 PROOF BY CONTRADICTION CHAPTER REVIEW 1

CHAPTER 2 PARTIAL

 FRACTIONS2.1 PARTIAL FRACTIONS
2.2 REPEATED FACTORS
2.3 IMPROPER FRACTIONS

CHAPTER REVIEW 2

CHAPTER 3 COORDINATE GEOMETRY IN THE (x, y) PLANE
3.1 PARAMETRIC EQUATIONS
3.2 USING TRIGONOMETRIC IDENTITIES
3.3 CURVE SKETCHING CHAPTER REVIEW 3
1 CHAPTER 4 BINOMIAL
2 EXPANSION 30
4.1 EXPANDING $(1+x)^{n}$ 31
4.2 EXPANDING $(a+b x)^{n}$ 36
4.3 USING PARTIAL FRACTIONSCHAPTER REVIEW 4
REVIEW EXERCISE 14610121467
CHAPTER 5 DIFFERENTIATION 50
5.1 PARAMETRIC DIFFERENTIATION 51
5.2 IMPLICIT DIFFERENTIATION 54
5.3 RATES OF CHANGE 57
16 611721
25
CHAPTER 6 INTEGRATION 66
6.1 FINDING THE AREA UNDER A CURVE DEFINED PARAMETRICALLY 67
6.2 VOLUMES OF REVOLUTION AROUND THE \boldsymbol{x}-AXIS 68
6.3 INTEGRATION BY SUBSTITUTION 74
6.4 INTEGRATION BY PARTS 78
6.5 PARTIAL FRACTIONS 81
6.6 SOLVING DIFFERENTIAL EQUATIONS 84
6.7 MODELLING WITH DIFFERENTIAL EQUATIONS 88
CHAPTER REVIEW 6 92
CHAPTER 7 VECTORS 97
7.1 VECTORS
7.1 VECTORS 98 98
7.2 REPRESENTING VECTORS 102
7.3 MAGNITUDE AND DIRECTION 106
7.4 VECTORS IN 3D 109
7.5 SOLVING GEOMETRIC PROBLEMS IN TWO DIMENSIONS 114
7.6 SOLVING GEOMETRIC PROBLEMS
IN THREE DIMENSIONS 117
7.7 POSITION VECTORS 121
7.8 3D COORDINATES 123
7.9 EQUATION OF A LINE IN THREE DIMENSIONS 125
7.10 POINTS OF INTERSECTION 131
7.11 SCALAR PRODUCT 183
CHAPTER REVIEW 7 140
REVIEW EXERCISE 2 148
EXAM PRACTICE 153
GLOSSARY 155
ANSWERS159
INDEX179

ABOUT THIS BOOK

The following three themes have been fully integrated throughout the Pearson Edexcel International Advanced Level in Mathematics series, so they can be applied alongside your learning.

1. Mathematical argument, language and proof

- Rigorous and consistent approach throughout
- Notation boxes explain key mathematical language and symbols

2. Mathematical problem-solving

- Hundreds of problem-solving questions, fully integrated into the main exercises
- Problem-solving boxes provide tips and strategies
- Challenge questions provide extra stretch

3. Transferable skills

The Mathematical Problem-Solving Cycle

- Transferable skills are embedded throughout this book, in the exercises and in some examples
- These skills are signposted to show students which skills they are using and developing

Finding your way around the book

Glossary terms will be identified by bold blue text on their first appearance

QUALIFICATION AND ASSESSMENT OVERVIEW

Qualification and content overview

Pure Mathematics 4 (P4) is a compulsory unit in the following qualifications:
International Advanced Level in Mathematics
International Advanced Level in Pure Mathematics

Assessment overview

The following table gives an overview of the assessment for this unit.
We recommend that you study this information closely to help ensure that you are fully prepared for this course and know exactly what to expect in the assessment.

Unit	Percentage	Mark	Time	Availability
P4: Pure Mathematics 4 Paper code WMA14/01	$16 \frac{2}{3} \%$ of IAL	75	1 hour 30 mins	January, June and October

IAL: International Advanced A Level.

Assessment objectives and weightings

AO1	Recall, select and use their knowledge of mathematical facts, concepts and techniques in a variety of contexts.	IAS and IAL		
AO2	Construct rigorous mathematical arguments and proofs through use of precise statements, logical deduction and inference and by the manipulation of mathematical expressions, including the construction of extended arguments for handling substantial problems presented in unstructured form.	30%		
AO3	Recall, select and Use their knowledge of standard mathematical models to represent situations in the real world; recognise and understand given representations involving standard models; present and interpret results from such models in terms of the original situation, including discusssion of the assumptions made and refinement of such models.	10%		
AO4	Comprehend translations of common realistic contexts into mathematics; use the results of calculations to make predictions, or comment on the context; and, where appropriate, read	5%		
critically and comprehend longer mathematical arguments or examples of applications.			\quad	Use contemporary calculator technology and other permitted resources (such as formulae
:---				
booklets or statistical tables) accurately and efficiently; understand when not to use such				
technology, and its limitations. Give answers to appropriate accuracy.	$\quad 5 \%$			

Relationship of assessment objectives to units

	Assessment objective				
P4	A01	A02	A03	A04	A05
Marks out of 75	25-30	25-30	5-10	5-10	5-10
\%	$33 \frac{1}{3}-40$	$33 \frac{1}{3}-40$	$6 \frac{2}{3}-13 \frac{1}{3}$	$6 \frac{2}{3}-13 \frac{1}{3}$	$6 \frac{2}{3}-13 \frac{1}{3}$

Calculators

Students may use a calculator in assessments for these qualifications. Centres are responsible for making sure that calculators used by their students meet the requirements given in the table below. Students are expected to have available a calculator with at least the following keys: $+,-, \times, \div, \pi, x^{2}$, $\sqrt{x}, \frac{1}{x^{\prime}}, x^{y}, \ln x, \mathrm{e}^{x}, x!$, sine, cosine and tangent and their inverses in degrees and decimals of a degree, and in radians; memory.

Prohibitions

Calculators with any of the following facilities are prohibited in all examinations:

- databanks
- retrieval of text or formulae
- built-in symbolic algebra manipulations
- symbolic differentiation and/or integration
- language translators
- communication with other machines or the internet

Extra online content

Whenever you see an Online box, it means that there is extra online content available to support you.

SolutionBank

SolutionBank provides worked solutions for questions in the book. Download the solutions as a PDF or quickly find the solution you need online.

Use of technology

Explore topics in more detail, visualise problems and consolidate your understanding. Use pre-made GeoGebra activities or Casio resources for a graphic calculator.

Calculator tutorials

Our helpful video tutoriats will guide you through how to use your calculator in the exams. They cover both Casio's scientific and colour graphic calculators.

Online Work out each coefficient quickly using the ${ }^{n} C_{r}$ and power functions on your calculator.

Step-by-step guide with audio instructions on exactly which buttons to press and what should appear on your calculator's screen

4.1 Expanding $(1+x)^{n}$

If n is a natural number you can find the binomial expansion for $(a+b x)^{n}$ using the formula:
$(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{r} a^{n-r} b^{r}+\ldots+b^{n}, \quad(n \in \mathbb{N})$
Hint Thereare $n+1$
terms, so this formula produces a finite
If n is a fraction or a negative number you need to use a different number of terms. version of the binomial expansion.

- This form of the binomial expansion can be applied to negative or fractional values of \boldsymbol{n} to obtain an infinite series.
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots+\left(\frac{n(n-1) \ldots(n-r+1)}{r!}\right) x^{r}+\ldots$
- The expansion is valid when $|x|<1, n \in \mathbb{R}$

When n is not a natural number, none of the factors in the expression $n(n-1) \ldots(n-r+1)$ are equal to zero. This means that this version

Watch out This expansion is valid for any real value of n, but is only valid for values of x that tisfy $|x|<1$, or in other words, when $-1<x<1$ of the binomial expansion produces an infinite number of terms.

Example 1 SKILLS PROBLEN-SoLIING

Find the first four terms in the binomial expansion of $\frac{1}{1+x}$

Write in index form.

Replace n by -1 in the expansion.

As n is not a positive integer, no coefficient will ever be equal to zero. Therefore, the expansion is infinite.

For the series to be convergent, $|x|<1$

- The expansion of $(1+\boldsymbol{b} \boldsymbol{x})^{n}$, where \boldsymbol{n} is negative or a fraction, is valid for $|\boldsymbol{b} \boldsymbol{x}|<1$, or $|\boldsymbol{x}|<\frac{1}{|\boldsymbol{b}|}$

Example 2 SKILLS PROBLEM-SOLVING

Find the binomial expansions of
a $(1-x)^{\frac{1}{3}}$
b $\frac{1}{(1+4 x)^{2}}$
up to and including the term in x^{3}. State the range of values of x for which each expansion is valid.

Example 3 SKILLS ANALYSIS

a Find the expansion of $\sqrt{1-2 x}$ up to and including the term in x^{3}.
b By substituting in $x=0.01$, find a decimal approximation to $\sqrt{2}$.

Example 4 SKILLS CRITICALTHINKING

$\mathrm{f}(x)=\frac{2+x}{\sqrt{1+5 x}}$
a Find the x^{2} term in the series expansion of $\mathrm{f}(x)$.
b State the range of values of x for which the expansion is valid.

$$
\begin{aligned}
& \text { a } f(x)=(2+x)(1+5 x)^{-\frac{1}{2}} \text { Write in index form. } \\
& (1+5 x)^{-\frac{1}{2}}=1+\left(-\frac{1}{2}\right)(5 x) \\
& +\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(5 x)^{2} \\
& +\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}(5 x)^{3}+\ldots \quad \text { Find the binomial expansion of }(1+5 x)^{-\frac{1}{2}} \\
& =1-\frac{5}{2} x+\frac{75}{8} x^{2}-\frac{625}{16} x^{3}+\ldots . \quad \text { Simplify coefficients. } \\
& f(x)=(2+x)\left(1-\frac{5}{2} x+\frac{75}{8} x^{2}-\frac{625}{16} x^{3}+\ldots\right) \quad \text { Online Use your calculator to calculate } \\
& 2 \times \frac{75}{8}+1 \times-\frac{5}{2}=\frac{65}{4} \\
& x^{2} \text { term is } \frac{65}{4} x^{2}
\end{aligned}
$$

b The expansion is valid if $|5 x|$

$$
\Rightarrow|x|
$$

Example 5

SKLLS PROBLEM-SOLVING
In the expansion of $(1+k x)^{-4}$ the coefficient of x is 20 .

a Find the value of k.

b Find the corresponding coefficient of the x^{2} term.
a $\quad(1+k x)^{-4}=1+(-4)(k x)+\frac{(-4)(-5)}{2!}(k x)^{2}+\ldots \quad$ Find the binomial expansion of $(1+k x)^{-4}$

$$
\left.\begin{array}{rl}
& =1-4 k x+10 k^{2} x^{2}+\ldots \\
-4 k & =20 \\
k & =-5
\end{array}\right] \quad \text { Solve to find } k .
$$

b Coefficient of $x^{2}=10 k^{2}=10(-5)^{2}=250$

Exercise 4A SKILLS PROBLEM-SOLVING

1 For each of the following:
i find the binomial expansion up to and including the x^{3} term
ii state the range of values of x for which the expansion is valid.
a $(1+x)^{-4}$
b $(1+x)^{-6}$
c $(1+x)^{\frac{1}{2}}$
d $(1+x)^{\frac{5}{3}}$
e $(1+x)^{-\frac{1}{4}}$
f $(1+x)^{-\frac{3}{2}}$

2 For each of the following:
i find the binomial expansion up to and including the x^{3} term
ii state the range of values of x for which the expansion is valid.
a $(1+3 x)^{-3}$
b $\left(1+\frac{1}{2} x\right)^{-5}$
d $(1-5 x)^{\frac{7}{3}}$
e $(1+6 x)^{-\frac{2}{3}}$

3 For each of the following:
i find the binomial expansion up to and including the x^{3} term
ii state the range of values of x for which the expansion is valid.
a $\frac{1}{(1+x)^{2}}$
b $\frac{1}{(1+3 x)^{4}}$
e $\sqrt{1-x}$
d $\sqrt[3]{1-3 x}$

f $\frac{\sqrt[3]{1-2 x}}{1-2 x}$

Hint In part \mathbf{f}, write

 the fraction as a single power of ($1-2 x$)(E/P) $4 \mathrm{f}(x)=\frac{1+x}{1-2 x}$
a Show that the series expansion of $\mathrm{f}(x)$ up to and including the x^{3} term is $1+3 x+6 x^{2}+12 x^{3}$
(4 marks)

> Hint First rewrite $\mathrm{f}(x)$
> as $(1+x)(1-2 x)^{-1}$
b State the range of values of x for which the expansion is valid.
(E) $5 \mathrm{f}(x)=\sqrt{1+3 x},-\frac{1}{3}<x<\frac{1}{3}$
a Find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the x^{3} term. Simplify each term.
b Show that, when $x=\frac{1}{100}$, the exact value of $\mathrm{f}(x)$ is $\frac{\sqrt{103}}{10}$
c Find the percentage error made in using the series expansion in part a to estimate the value of $f(0.01)$. Give your answer to 2 significant figures.
(P) 6 In the expansion of $(1+a x)^{-\frac{1}{2}}$ the coefficient of x^{2} is 24 .
a Find the possible values of a.
b Find the corresponding coefficient of the x^{3} term.
(P) 7 Show that if x is small, the expression $\sqrt{\frac{1+x}{1-x}}$ is approximated by $1+x+\frac{1}{2} x^{2}$

Notation ' x is small' means we can assume

the expansion is valid for the x values being considered because high powers become insignificant compared to the first few terms.
(E/P) $8 \mathrm{~h}(x)=\frac{6}{1+5 x}-\frac{4}{1-3 x}$
a Find the series expansion of $\mathrm{h}(x)$, in ascending powers of x, up to and including the x^{2} term. Simplify each term.
b Find the percentage error made in using the series expansion in part a to estimate the value of $\mathrm{h}(0.01)$. Give your answer to 2 significant figures.
(3 marks)
c Explain why it is not valid to use the expansion to find $\mathrm{h}(0.5)$.
(E/P) 9 a Find the binomial expansion of $(1-3 x)^{\frac{3}{2}}$ in ascending powers of x up to and including the x^{3} term, simplifying each term.
(4 marks)
b Show that, when $x=\frac{1}{100}$, the exact value of $(1-3 x)^{\frac{3}{2}}$ is $\frac{97 \sqrt{97}}{1000}$
(2 marks)
c Substitute $x=\frac{1}{100}$ into the binomial expansion inpart a and hence obtain an approximation to $\sqrt{97}$. Give your answer to 5 decimal places.

Challenge

$h(x)=\left(1+\frac{1}{x}\right)^{-\frac{1}{2}},|x|>1$
a Find the binomial expansion of $h(x)$ in ascending powers of x up to and including the x^{2} term, simplifying each term.

Replace x with $\frac{1}{x}$
b Show that, when $x=9$, the exact value of $h(x)$ is $\frac{3 \sqrt{10}}{10}$
c Use the expansion in part a to find an approximate value of $\sqrt{10}$. Write your answer to 2 decimal places.

4.2 Expanding $(a+b x)^{n}$

The binomial expansion of $(1+x)^{n}$ can be used to expand $(a+b x)^{n}$ for any constants a and b.
You need to take a factor of a^{n} out of the expression:

$$
(a+b x)^{n}=\left(a\left(1+\frac{b}{a} x\right)\right)^{n}=a^{n}\left(1+\frac{b}{a} x\right)^{n}
$$

Watch out Make sure you multiply a^{n} by every term in the expansion of $\left(1+\frac{b}{a} x\right)^{n}$

- The expansion of $(\boldsymbol{a}+\boldsymbol{b} \boldsymbol{x})^{n}$, where \boldsymbol{n} is negative or a fraction, is valid for $\left|\frac{\boldsymbol{b}}{\boldsymbol{a}} \boldsymbol{x}\right|<1$ or $|\boldsymbol{x}|<\left|\frac{\boldsymbol{a}}{\boldsymbol{b}}\right|$

Example 6 SKILLS adaptive learning

Find the first four terms in the binomial expansion of

$$
\mathbf{a} \sqrt{4+x} \quad \mathbf{b} \frac{1}{(2+3 x)^{2}}
$$

State the range of values of x for which each of these expansions is valid.

$$
\begin{array}{rlrl}
\text { a } \begin{aligned}
\sqrt{4+x} & =(4+x)^{\frac{1}{2}} & & \text { Write in index form. } \\
& =\left(4\left(1+\frac{x}{4}\right)\right)^{\frac{1}{2}} & &
\end{aligned} \\
& =4^{\frac{1}{2}}\left(1+\frac{x}{4}\right)^{\frac{1}{2}} & & \text { Take out a factor of 42 } \\
& =2\left(1+\frac{x}{4}\right)^{\frac{1}{2}} & & \text { Write } 4^{\frac{1}{2}} \text { as 2. } \\
& =2\left(1+\left(\frac{1}{2}\right)\left(\frac{x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{x}{4}\right)^{2}}{2!}\right. & & \text { Expand }\left(1+\frac{x}{4}\right)^{\frac{1}{2}} \text { using }
\end{array}
$$

$$
+\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)\left(\frac{x}{4}\right)^{3}}{3!}+\cdots
$$

$$
=2\left(1+\left(\frac{1}{2}\right)\left(\frac{x}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(\frac{x^{2}}{16}\right)}{2}\right)
$$

$$
\begin{aligned}
& \left.+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{x^{3}}{64}\right)}{6}+\ldots\right) \\
= & 2\left(1+\frac{x}{8}-\frac{x^{2}}{128}+\frac{x^{3}}{1024}+\ldots\right)
\end{aligned}
$$

Simplify coefficients.
$\left.=2\left(1+\frac{x}{8}-\frac{x^{2}}{128}+\frac{x^{3}}{1024}+\ldots\right)\right] \quad$ M
Multiply every term in the expansion by 2.

The expansion is infinite, and converges when $\left|\frac{x}{4}\right|<1$, or $|x|<4$

(P) 1 For each of the following:
i find the binomial expansion up to and including the x^{3} term
ii state the range of values of x for which the expansion is valid.
a $\sqrt{4+2 x}$
b $\frac{1}{2+x}$
c $\frac{1}{(4-x)^{2}}$
e $\frac{1}{\sqrt{2+x}}$
f $\frac{5}{3+2 x}$
g $\frac{1+x}{2+x}$
Hint Write part \mathbf{g}
d $\sqrt{9+x}$
as $1-\frac{1}{x+2}$
h $\sqrt{\frac{2+x}{1-x}}$
(E) $2 \mathrm{f}(x)=(5+4 x)^{-2},|x|<\frac{5}{4}$

Find the binomial expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{3}. Give each coefficient as a simplified fraction.
(5 marks)
(E) $3 \mathrm{~m}(x)=\sqrt{4-x},|x|<4$
a Find the series expansion of $\mathrm{m}(x)$, in ascending powers of x, up to and including the x^{2} term. Simplify each term.
b Show that, when $x=\frac{1}{9}$, the exact value of $\mathrm{m}(x)$ is $\frac{\sqrt{35}}{3}$
c Use your answer to part a to find an approximate value for $\sqrt{35}$, and calculate the percentage error in your approximation.
(P) 4 The first three terms in the binomial expansion of
a Find the values of the constants a and b.
b Find the coefficient of the x^{3} term in the expansion
(P) $5 \mathrm{f}(x)=\frac{3+2 x-x^{2}}{4-x}$

Prove that if x is sufficiently small, $\mathrm{f}(x)$ may be approximated by $\frac{3}{4}+\frac{11}{16} x-\frac{5}{64} x^{2}$
(E/P) 6 a Expand $\frac{1}{\sqrt{5+2 x}}$, where $|x|<\frac{5}{2}$, in ascending powers of x up to and including the term in x^{2}, giving each coefficient in simplified surd form.
(5 marks)
b Hence or otherwise, find the first 3 terms in the expansion of $\frac{2 x-1}{\sqrt{5+2 x}}$ as a series in ascending powers of x.
(4 marks
(E/P) 7 a Use the binomial theorem to expand $(16-3 x)^{\frac{1}{4}},|x|<\frac{16}{3}$ in ascending powers of x, up to and including the term in x^{2}, giving each term as a simplified fraction.
b Use your expansion, with a suitable value of x, to obtain an approximation to $\sqrt[4]{15.7}$ Give your answer to 3 decimal places.
$8 \mathrm{~g}(x)=\frac{3}{4-2 x}-\frac{2}{3+5 x},|x|<\frac{1}{2}$
a Show that the first three terms in the series expansion of $\mathrm{g}(x)$ can be written as $\frac{1}{12}+\frac{107}{72} x-\frac{719}{432} x^{2}$
b Find the exact value of $g(0.01)$. Round your answer to 7 decimal places.
c Find the percentage error made in using the series expansion in part a to estimate the value of $\mathrm{g}(0.01)$. Give your answer to 2 significant figures.

4.3 Using partial fractions

Partial fractions can be used to simplify the expansions of more difficult expressions.

Links You need to be confident expressing algebraic fractions as sums of partial fractions.

Example 7 SKILLS InNovation

a Express $\frac{4-5 x}{(1+x)(2-x)}$ as partial fractions.
b Hence show that the cubic approximation of $\frac{4-5 x}{(1+x)(2-x)}$ is $2-\frac{7 x}{2}+\frac{11}{4} x^{2}-\frac{25}{8} x^{3}$
c State the range of values of x for which the expansion is valid.

The expansion of $2(2-x)^{-1}$

$$
\begin{array}{l|l}
=2\left(2\left(1-\frac{x}{2}\right)\right)^{-1} & \\
=2 \times 2^{-1}\left(1-\frac{x}{2}\right)^{-1} & \text { Take out a factor of } 2^{-1}
\end{array}
$$

$$
=1 \times\left(1+(-1)\left(-\frac{x}{2}\right)+\frac{(-1)(-2)\left(-\frac{x}{2}\right)^{2}}{\quad \text { Expand }\left(1-\frac{x}{2}\right)^{-1} \text { using the binomial expan }}\right.
$$

$$
=1 \times\left(1+(-1)\left(-\frac{x}{2}\right)+\frac{(-1)(-2)\left(-\frac{x}{2}\right)}{2!}\right)
$$

$$
\text { Expand }\left(1-\frac{x}{2}\right)^{-1} \text { using the binomial expansion }
$$

$$
\left.+\frac{(-1)(-2)(-3)\left(-\frac{x}{2}\right)^{3}}{3!}+\ldots\right)
$$

$$
=1 \times\left(1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}+\ldots\right)
$$

$$
=1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}
$$

$$
\begin{equation*}
\text { Hence } \frac{4-5 x}{(1+x)(2-x)} \tag{}
\end{equation*}
$$

$$
=3(1+x)^{-1}-2(2-x)^{-1}
$$

$$
=\left(3-3 x+3 x^{2}-3 x^{3}\right)
$$

$$
-\left(1+\frac{x}{2}+\frac{x^{2}}{4}+\frac{x^{3}}{8}\right)
$$

$$
=2-\frac{7}{2} x+\frac{11}{4} x^{2}-\frac{25}{8} x
$$

c $\frac{3}{1+x}$ is valid if $|x|<$

The expansion is infinite, and converges when $\left|\frac{x}{2}\right|<1$ or $|x|<2$

The expansion is infinite, and converges when $|x|<1$
 with $n=-1$ and $x=\frac{x}{2}$

SKILLS InNOVATION
(P) 1 Express $\frac{8 x+4}{(1-x)(2+x)}$ as partial fractions.
b Hence or otherwise expand $\frac{8 x+4}{(1-x)(2+x)}$ in ascending powers of x as far as the term in x^{2}.
c State the set of values of x for which the expansion is valid.
(P) 2 a Express $-\frac{2 x}{(2+x)^{2}}$ as partial fractions.
b Hence prove that $-\frac{2 x}{(2+x)^{2}}$ can be expressed in the form $-\frac{1}{2} x+B x^{2}+C x^{3}$ where constants B and C are to be determined.
c State the set of values of x for which the expansion is valid.
(P) 3 a Express $\frac{6+7 x+5 x^{2}}{(1+x)(1-x)(2+x)}$ as partial fractions.
b Hence or otherwise expand $\frac{6+7 x+5 x^{2}}{(1+x)(1-x)(2+x)}$ in ascending powers of x as far as the term in x^{3}.
c State the set of values of x for which the expansion is valid.
(E/P) $4 \mathrm{~g}(x)=\frac{12 x-1}{(1+2 x)(1-3 x)},|x|<\frac{1}{3}$
Given that $\mathrm{g}(x)$ can be expressed in the form $\mathrm{g}(x)=\frac{A}{1+2 x}+\frac{B}{1-3 x}$
a Find the values of A and B.
(3 marks)
b Hence, or otherwise, find the series expansion of $\mathrm{g}(x)$, in ascending powers of x, up to and including the x^{2} term. Simplify each term.
(6 marks)
(P) 5 a Express $\frac{2 x^{2}+7 x-6}{(x+5)(x-4)}$ in partial fractions.

Hint First divide the numerator by the denominator.
b Hence, or otherwise, expand $\frac{2 x^{2}+7 x-6}{(x+5)(x-4)}$ in ascending
powers of x as far as the term in x^{2}.
c State the set of values of x for which the expansion is valid.
(E/P) $6 \frac{3 x^{2}+4 x-5}{(x+3)(x-2)}=A+\frac{B}{x+3}+\frac{C}{x-2}$
a Find the values of the constants A, B and C.
b Hence, or otherwise, expand $\frac{3 x^{2}+4 x-5}{(x+3)(x-2)}$ in ascending powers of x, as far as the term in x^{2}. Give each coefficient as a simplified fraction.
(E/P $7 \mathrm{f}(x)=\frac{2 x^{2}+5 x+11}{(2 x-1)^{2}(x+1)},|x|<\frac{1}{2}$
$\mathrm{f}(x)$ can be expressed in the form $\mathrm{f}(x)=\frac{A}{2 x-1}+\frac{B}{(2 x-1)^{2}}+\frac{C}{x+1}$
a Find the values of A, B and C.
b Hence or otherwise, find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the term in x^{2}. Simplify each term.
c Find the percentage error made in using the series expansion in part b to estimate the value of $f(0.05)$. Give your answer to 2 significant figures.

Chapter review 4 SKILLS

(P) 1 For each of the following
i find the binomial expansion up to and including the x^{3} term
ii state the range of values of x for which the expansion is valid.
a $(1-4 x)^{3}$
b $\sqrt{16+x}$
c $\frac{1}{1-2 x}$
d $\frac{4}{2+3 x}$
e $\frac{4}{\sqrt{4-x}}$
f $\frac{1+x}{1+3 x}$
g $\left(\frac{1+x}{1-x}\right)^{2}$

(E) 2 Use the binomial expansion to expand $\left(1-\frac{1}{2} x\right)^{\frac{1}{2}},|x|<2$ in ascending powers of x, up to and including the term in x^{3}, simplifying each term.
(5 marks)
3 a Give the binomial expansion of $(1+x)^{\frac{1}{2}}$ up to and including the term in x^{3}.
b By substituting $x=\frac{1}{4}$, find an approximation to $\sqrt{5}$ as a fraction.
(E/P) 4 The binomial expansion of $(1+9 x)^{\frac{2}{3}}$ in ascending powers of x up to and including the term in x^{3} is $1+6 x+c x^{2}+d x^{3},|x|<\frac{1}{9}$
a Find the value of c and the value of d.
b Use this expansion with your values of c and d together with an appropriate value of x to obtain an estimate of $(1.45)^{\frac{2}{3}}$
c Obtain $(1.45)^{\frac{2}{3}}$ from your calculator and hence make a comment on the accuracy of the estimate you obtained in part b.
(P) 5 In the expansion of $(1+a x)^{\frac{1}{2}}$ the coefficient of x^{2} is -2 .
a Find the possible values of a.
b Find the corresponding coefficients of the x^{3} term.
(E) $6 \mathrm{f}(x)=(1+3 x)^{-1},|x| \leq \frac{1}{3}$
a Expand $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}.
b Hence show that, for small x :

$$
\begin{equation*}
\frac{1+x}{1+3 x} \approx 1-2 x+6 x^{2}-18 x^{3} \tag{4marks}
\end{equation*}
$$

C Taking a suitable value for x, which should be stated, use the series expansion in part b to find an approximate value for $\frac{101}{103}$, giving your answer to 5 decimal places. ($\mathbf{3}$ marks)
(E/P) 7 When $(1+a x)^{n}$ is expanded as a series in ascending powers of x, the coefficients of x and x^{2} are -6 and 27 respectively.
a Find the values of a and n.
b Find the coefficient of x^{3}.
c State the values of x for which the expansion is valid.

8 Show that if x is sufficiently small then $\frac{3}{\sqrt{4+x}}$ can be approximated by $\frac{3}{2}-\frac{3}{16} x+\frac{9}{256} x^{2}$
(E) 9 a Expand $\frac{1}{\sqrt{4-x}}$, where $|x|<4$, in ascending powers of x up to and including the term in x^{2}. Simplify each term.
b Hence, or otherwise, find the first 3 terms in the expansion of $\frac{1+2 x}{\sqrt{4-x}}$ as a series in ascending powers of x.
(E) $\mathbf{1 0}$ a Find the first four terms of the expansion, in ascending powers of x, of $(2+3 x)^{-1},|x|<\frac{2}{3}$
b Hence or otherwise, find the first four non-zero terms of the expansion, in ascending powers of x, of:

$$
\frac{1+x}{2+3 x},|x|<\frac{2}{3}
$$

(E/P) 11 a Use the binomial theorem to expand $(4+x)^{-\frac{1}{2}},|x|<4$, in ascending powers of x, up to and including the x^{3} term, giving each answer as a simplified fraction.
b Use your expansion, together with a suitable value of x, to obtain an approximation to $\frac{\sqrt{2}}{2}$. Give your answer to 4 decimal places.
(E) $12 \mathrm{q}(x)=(3+4 x)^{-3},|x|<\frac{3}{4}$

Find the binomial expansion of $\mathrm{q}(x)$ in ascending powers of x, up to and including the term in the x^{2}. Give each coefficient as a simplified fraction.
(E/P) $13 \mathrm{~g}(x)=\frac{39 x+12}{(x+1)(x+4)(x-8)}|x|<1$
$\mathrm{g}(x)$ can be expressed in the form $\mathrm{g}(x)=\frac{A}{x+1}+\frac{B}{x+4}+\frac{C}{x-8}$
a Find the values of A, B and C.
b Hence, or otherwise, find the series expansion of $\mathrm{g}(x)$, in ascending powers of x, up to and including the x^{2} term. Simplify each term.
(E/P) $14 \mathrm{f}(x)=\frac{12 x+5}{(1+4 x)^{2}},|x|<\frac{1}{4}$
For $x \neq-\frac{1}{4}, \frac{12 x+5}{(1+4 x)^{2}}=\frac{A}{1+4 x}+\frac{B}{(1+4 x)^{2}}$, where A and B are constants.
a Find the values of A and B.
b Hence, or otherwise, find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the term x^{2}, simplifying each term.
(E/P) $15 \mathrm{q}(x)=\frac{9 x^{2}+26 x+20}{(1+x)(2+x)},|x|<1$
a Show that the expansion of $\mathrm{q}(x)$ in ascending powers of x can be approximated to $10-2 x+B x^{2}+C x^{3}$ where B and C are constants to be found.
b Find the percentage error made in using the series expansion in part a to estimate the value of $\mathrm{q}(0.1)$. Give your answer to 2 significant figures.

Challenge

Obtain the first four non-zero terms in the expansion, in ascending powers of x, of the function $\mathrm{f}(x)$ where $\mathrm{f}(x)=\frac{1}{\sqrt{1+3 x^{2}}}, 3 x^{2}<1$

Summary of key points

1 This form of the binomial expansion can be applied to negative or fractional values of n to obtain an infinite series:

$$
(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\frac{n(n-1)(n-2) x^{3}}{3!}+\ldots+\frac{n(n-1) \ldots(n-r+1) x^{r}}{r!}+\ldots
$$

The expansion is valid when $|x|<1, n \in \mathbb{R}$.
2 The expansion of $(1+b x)^{4}$, where n is negative or a fraction, is valid for $|b x|<1$, or $|x|<\frac{1}{|b|}$
3 The expansion of $(a+b x)^{n}$, wheren n is negative or a fraction, is valid for $\left|\frac{b}{a} x\right|<1$ or $|x|<\left|\frac{a}{b}\right|$
4 If an expression is of the form $\frac{f(x)}{g(x)}$ where $g(x)$ can be split into linear factors, then split $\frac{\mathrm{f}(x)}{\mathrm{g}(x)}$ intopartial fractions before expanding each part of the new expression.

[^0]: \qquad

