Name: \qquad
Period: \qquad

STUDENT JOURNAL - Week 5 - Metric System Application

Overarching Goal for the Week:

- Become familiar with scientific instruments
- Apply knowledge of the metric system and instruments to practical situations

Learning Objectives:

- Distinguish between metric units and their appropriate use
- Read a triple beam balance accurately
- Read a graduated cylinder accurately
- Determine appropriate metric unit and instrument to be used given a situation

My Mad Minute Graph

Day \#5 Mad Minute:

Question \#1-Are you satisfied with your overall average for this week? Why or why not?

What's Your Average?

Day 1 \qquad
Day 2 \qquad
Day 3

+ Day 4
Total
/ 4
= \qquad
http://apwscience8.weebly.com

DAY I-Monday

Kickoff:

100		200		00						0																																																																									
$10 \quad 20$	30	40	5060		70	80		90		100																																																																									
\|																																																																																			
1	2	3	4		6			8			10																																																																								

What is the reading on this balance?
A. 285.2 g
B. 285 g
C. 28.82 g
D. 248 g

Mad Minute

$1 \mathrm{~L}=$ \qquad $m L$
$1.239 \mathrm{~km}=$ \qquad m
$78 \mathrm{~mm}=$ \qquad km
What is the base unit for measuring length?
Which prefix means $1 / 10^{\text {th }}$?
\qquad

Lesson 2: Mass

1. Which is larger? Circle your choice for each one.
1 Pound or 100 Grams
1 Kilogram or 1 Pound
1 Ounce or 1000 Milligrams
2. $1 \mathrm{lb}=$ \qquad g
$100 \mathrm{~kg}=$ \qquad lb
$1 \mathrm{oz}=$ \qquad mg
3. \qquad refers to the amount of matter in an object.
4. The base unit of mass in the metric system in the \qquad and is represented by \qquad .
5. A kilogram is equal to the mass of the \qquad - \qquad
(IPK), a platinum-iridium cylinder kept by the BIPM at Sèvres, France.
6. Complete each statement.

$$
1 \mathrm{~kg}=\ldots \mathrm{g} \quad 1 \mathrm{~g}=\ldots \mathrm{mg}
$$

7. Which is larger? Circle your choice for each one.
A. 1 kilogram or 1500 grams
B. 1200 milligrams or 1 gram
C. 12 milligrams or 12 kilograms
D. 4 kilograms or 4500 grams
8. What instrument will we use to find the mass of objects? \qquad
9. What would be the mass of the object measured in the picture?
\qquad $+$ \qquad $+$ \qquad $=$ \qquad g
10. How do you use a triple-beam balance? Fill in the blanks.

1st - Place the film canister on the \qquad .

2nd - Slide the large \qquad to the right until the arm
 drops below the line and then move it back one notch.

3rd - Repeat this process with the \qquad weight. When the arm moves below the line, back it up one groove.
4th - Slide the \qquad weight on the front beam until the \qquad match up.

5th - Add the amounts on each beam to find the total \qquad to the nearest tenth of a gram.

Triple Beam Balance Practice

Record the mass show on each balance. Remember to include both the value on the beams and the unit of measurement.

1. \qquad

2. \qquad

3. \qquad

4. \qquad

5. \qquad

6. \qquad
\qquad

Measuring Mass Practice

Read the following triple beam scales and determine the masses. Triple Beam Balances measure in grams.

1. \qquad g

	100	200		300	400	500		
10	20	30	40	50	60	70	80	90

2. \qquad

	100	200		300	400	500		
10	20	30	40	50	60	70	80	90

$||\mid$ $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
3. \qquad g

	100		200		300		400	500
10	20	30	40	50	60	70	80	90

$\|$
$\begin{array}{lllll}6 & 7 & 8 & 9 & 10\end{array}$
4. \qquad

6. \qquad
5. \qquad g

7. Read the triple beam balance below. What is the mass in grams? \qquad g
8. Read the triple beam balance below. What is the mass in mg? (THINK: how many mg in $1 g$?) \qquad mg

100	200		300		400		500																																																	
1020	30	40	50	60	70	80	90																																																	
$\\|$																																																								
1	2	3	4	5	Δ	7	8	9	10																																															

\qquad
9. Looking at the triple beam balance:
a. What is the largest mass that can be weighed on the balance? g
b. What is the smallest mass that can be weighed on the balance? \qquad
10. If you had to explain the procedure on how to use a triple beam balance to a new student, what would the steps be? (start with calibrating and explain step by step. You may bullet or number the procedure).
11. Which is larger?
a. 178 g or 1 kg
b. 300 g or 3000 kg
c. 1200 mg or 1 kg
d. 70 mg or 7 g
e. 34 g or 3.4 kg
f. 12 g or 1.2 mg

Now you really have to take your time and be a thinker! Do not let all the words intimidate you. You have all the knowledge you need to answer these questions. Use you notes, worksheets and mostly your NOODLE!

Show your work!

12. There was a 1 m stick that has a mass of 5 grams. What would 2 m of the same stick's mass be? \qquad
13. My shoe has a mass of 1,200 grams. How many grams would 2 of my shoes be? \qquad g
a. How many mg would both shoes be? \qquad mg
14. My calculator has a mass of 200 grams. How many caculators would it take to make a mass of 1 kg ?
\qquad calculators
15. How much would I weigh in kg ? $2.2 \mathrm{lb}=1 \mathrm{~kg}$
my estimated weight \qquad lbs my calculated weight \qquad kg
16. Once you finished the worksheet show your teacher and you can weigh yourself on the scale to check your answers! Write down your answers from the scale. My measured weight was \qquad kg.

Questions/Examples/Workspace:

Guided Practice

- Triple beam Worksheet I

Independent Practice

Once you have finished your Guided Practice work, move on to the Independent Worksheet at the end of this packet.

- Triple beam Worksheet 2

Exit Ticket

Wait for answer choices to be posted

DAY 2 - Tuesday

Kickoff:

If you're going to take the mass of your pencil, what would be the most appropriate unit?
A. Liter
B. Gram
C. Kilogram
D. Meter

(170) Pencils down! Wait for Mad Minute

Mad Minute

What is the best metric unit to measure:

Length of a pencil? \qquad
Mass of a notebook? \qquad
Amount of water in a cup? \qquad
Mass of a car? \qquad
Volume of water in a swimming pool? \qquad

Exit Ticket

If you're going to take the mass of your DESK, what would be the most appropriate unit?

Wait for answer choices to be posted
\qquad

Choose items from the container on your table that will be closest to the targeted mass. You may use a single item or mix and match items to reach the targeted mass.

Have your teacher check your estimates before you find the actual mass!

Targeted Mass	Item(s)	Actual Mass
1 gram		
5 grams		
10 grams		
20 grams		
50 grams		
100 grams		
200 grams		
400 grams		

Circle the BEST metric unit for each.
(1) Your mass: $\quad \mathrm{mg} \quad \mathrm{g} \quad \mathrm{kg}$
(2) Amount of spices in a batch of cookies: $\mathrm{mg} \quad \mathrm{g} \quad \mathrm{kg}$
(3) Mass of 10 pennies: $\mathrm{mg} \quad \mathrm{g} \quad \mathrm{kg}$

Mass Challenge: Use the equipment provided and your knowledge of the metric system to answer the question. Be sure to explain your procedure - how you found your answer!

What is the mass of 100 milliliters of water? \qquad
Procedure:

Day 4 - Thursday

Kickoff:

What volume of liquid is shown?
A. 20 ml
B. 24 ml
C. 23 ml
D. 25 ml

(习0) Pencils down! Wait for Mad Minute

Mad Minute

What instrument is used to measure mass?

What instrument is used to measure volume?

What instrument is used to measure length?
How many milliliters are there in a liter?

What base unit is used to measure volume?

Name \qquad

Lesson 3: Volume

1. Which is longer? Circle your choice for each one.
1 liter or 1 gallon
1 liter or 1 quart
1 milliliter or 1 fluid ounce
2. Complete each statement.
1 gallon = \qquad liters $1 \mathrm{fl} \mathrm{oz}=$ \qquad $\mathrm{ml} \quad 1$ quart $=$ \qquad liters
3. \qquad is the amount of space an object takes up.
4. The base unit of volume in the metric system in the \qquad and is represented by \qquad or \qquad .
5. 1 liter is equal to one cubic \qquad
6. Complete each statement.
$1 \mathrm{~L}=$ \qquad mL
$1 \mathrm{~mL}=$ \qquad $\mathrm{cm} 3($ or cc $)=$ \qquad gram*
7. Which is larger? Circle your choice for each one.
A. 1 liter or 1500 milliliters
B. 200 milliliters or 1.2 liters
C. $12 \mathrm{~cm}^{3}$ or 1.2 milliliters*
8. What instrument will we use to find liquid volume? \qquad
9. What is the name of the curve you see at the top of a liquid in a cylinder? \qquad
10. What is the volume of liquid in each cylinder?
A. \qquad B. \qquad C. \qquad
11. What formula do we use to find the volume of regular objects?

Volume $=$ \qquad X \qquad X \qquad
12. What is the volume of the cube? \qquad X \qquad X \qquad $=$ \qquad
13. How do we find the volume of an irregular object using a graduated cylinder? \qquad
14. What is the volume of the rock? \qquad - \qquad
\qquad

Volume Lab

Name \qquad

Part A: Count your drops!

Take a guess - How many drops of water will it take to equal 1 milliliter? \qquad drops

Follow the directions to find the number of drops in 1 milliliter of water, then answer the questions. You will need a small graduated cylinder (25 ml), a beaker of water, and an eyedropper for this section.
(1) Fill a small graduated cylinder with 10 ml of water.
(2) Count the number of drops it takes to raise the water to 11 ml . Record the number in the chart.
(3) Leave the water in the graduated cylinder and count the number of drops it takes to raise the water to 12
ml . Record the number in the chart.
(4) Leave the water in the graduated cylinder and count the number of drops it takes to raise the water to 13
ml . Record the number in the chart.
(5) Calculate your average and round to the nearest tenth.

\# of drops to 11 ml	\# of drops to $\mathbf{1 2 ~ m l}$	\# of drops to 13 ml	Average

Based on your average, how close were you to your guess? \qquad
Based on your average, how many drops would it take to make 1 liter? \qquad

Part B: Water Displacement

Follow the directions to find the volume of three marbles using water displacement.
(1) Add 20 ml of water to a 100 ml graduated cylinder. Record this amount in the chart.
(2) Add three marbles to the cylinder and measure the volume. Record this amount in the chart.
(3) Find the difference between the two measurements and record in the chart. The difference between the two measurements will be the volume of the three marbles.

Volume of water before adding marbles	Volume of water after adding marbles	Difference in volume	Volume of 3 marbles

Part C: Volume by Formula

Use the formula to find the volume of the box. Measure to the nearest centimeter (no decimals) before calculating your answer.

Volume $=$ length x width x height
\qquad =

Part D: Color Challenge

1. Obtain the following items from your teacher:

3 beakers with colored water- 25 ml of each color (red, blue, and yellow)
1 graduated cylinder ($25 \mathrm{ml}-50 \mathrm{ml}$)
1 eyedropper
6 test tubes labeled A, B, C, D, E, and F
2. Perform each step outlined below using accurate measurements.
(1) Measure 17 ml of RED water from the beaker and pour into test tube A.
(2) Measure 21 ml of YELLOW water from the beaker and pour into test tube C.
(3) Measure 22 ml of BLUE water from the beaker and pour into test tube E.
(4) Measure 5 ml of water from test tube A and pour it into test tube B.
(5) Measure 6 ml of water from test tube C and pour it into test tube D .
(6) Measure 8 ml of water from test tube E and pour it into test tube F .
(7) Measure 5 ml of water from test tube C and pour it into test tube B.
(8) Measure 2 ml of water from test tube A and pour it into test tube F .
(9) Measure 4 ml of water from test tube E and pour it into test tube D .
3. Complete the chart.

Test Tube	Color	Final Amount (ml)
A		
B		
C		
D		
E		
F		

Guided Practice

- Volume Lab: Part 1

Independent Practice

Once you have finished your Guided Practice work, move on to the Independent Worksheet at the end of this packet.

- Volume Lab: Part I

Exit Ticket

What volume of liquid is shown above?

DAY 5 - Friday

Kickoff:

Review Kickoffs from the Week and make sure they are correct.

(20) Pencils down! Wait for Mad Minute
 (170)

Mad Minute

Calculate your MM average for the week

