

Name:	
	Derind:

8th GRADE PHYSICAL SCIENCE

STUDENT JOURNAL - Week 5 - Metric System Application

Overarching Goal for the Week:

- Become familiar with scientific instruments
- · Apply knowledge of the metric system and instruments to practical situations

Learning Objectives:

- Distinguish between metric units and their appropriate use
- Read a triple beam balance accurately
- Read a graduated cylinder accurately
- Determine appropriate metric unit and instrument to be used given a situation

My Mad Minute Graph

Day #5 Mad Minute:

Question #1 - Are you satisfied with your overall average for this week? Why or why not?

What's Your Average?	
Day 1 Day 2 Day 3 + Day 4 Total/ 4 =	

DAY 1 - Monday

Kickoff:

What is the reading on this balance?

A. 285.29

B. 285g

C. 28.82q

D. 248 g

Pencils down! Wait for Mad Minute

Mad Minute

1L = _____mL $1.239 \, \text{km} = \underline{\qquad} \, \text{m}$ 78mm = km

What is the base unit for measuring length?

Which prefix means 1/10th?

📻 Grade and graph your Mad Minute!!!

Metric Mania

Lesson 2: Mass

1.	Which	is	larger?	Circle	your	choice	for	each	one

1 Pound or 100 Grams

1 Kilogram or 1 Pound 1 Ounce or 1000 Milligrams

2. $1 \text{ lb} = \underline{} g$

$$100 \text{ kg} =$$
____ lb

$$100 \text{ kg} =$$
 lb $1 \text{ oz} =$ mg

3. _____ refers to the amount of matter in an object.

4. The base unit of mass in the metric system in the _____ and is represented by ____.

5. A kilogram is equal to the mass of the _____ (IPK), a platinum-iridium cylinder kept by the BIPM at Sèvres, France.

6. Complete each statement.

$$1 \text{ kg} = \underline{\hspace{1cm}} \text{g} \qquad 1 \text{ g} = \underline{\hspace{1cm}} \text{mg}$$

7. Which is larger? Circle your choice for each one.

A. 1 kilogram or 1500 grams

C. 12 milligrams or 12 kilograms

B. 1200 milligrams or 1 gram D. 4 kilograms or 4500 grams

8. What instrument will we use to find the mass of objects?

10. How do you use a triple-beam balance? Fill in the blanks.

1st – Place the film canister on the ______.

2nd – Slide the large ______ to the right until the arm drops below the line and then move it back one notch.

3rd – Repeat this process with the _____ weight. When the arm moves below the line, back it up one groove.

4th – Slide the _____ weight on the front beam until the ____ match up.

5th – Add the amounts on each beam to find the total ______ to the nearest tenth of a gram.

Triple Beam Balance Practice

Record the mass show on each balance. Remember to include both the value on the beams and the unit of measurement.

1. ______

2. _____

3. _____

4. _____

5.

6. _____

Measuring Mass Practice

Read the following triple beam scales and determine the masses. Triple Beam Balances measure in grams.

1. ____g

	100		200		300		400		500	
10	20	30	40	50	60	70	80	90	100	
1111111	ш	111111111	шшш	ш	111111111	пІннін	пІннин	ш	пІнши	ΙI
	1	2	3	4	5	6	7	8	9	10

2. _____

	100		200		300		400		500)
10	20	30	40	50	60	70	80	90	1	.00
ШШ	11 1 11111111	пІнни	111 1 1111111	111111111	111 1 111111	шІш	.	III I IIIIII	шІш	шш і
	1	2	3	4	5	6	7	8	9	10

3. ____g

	100		200		300		400		500)
10	20	30	40	50	60	70	80	90	1	.00
ШШ	111111111	пІпппп	11 1 11111111	ш		ш	пІпппп	11 1 1111111	ш	111111 1
	1	2	3	4	5	6	7	8	9	10

4. g

		100		200		300		400		500	
4	10	20	30	40	50	60	70	80	90	100	
	ШШ		ш	11 1 1111111	ш	шІшш	пІнни	пІпппп	II I IIIIIII	шинн	П
		1	2	3	4	5	6	7	8	9	10

5. g

6. g

4	\	100		200		300		400		500)
4	10	20	30	40	50	60	70	08 0	90	1	100
	ШШ	III I IIIII	IIII I IIIII	1111 1 111111	шш	IIII I IIIII	1111111111	шшшш	!		111111 1
		1	2	3	4	5	6	7	8	9	10

- 7. Read the triple beam balance below . What is the mass in grams? ______
- 8. Read the triple beam balance below. What is the mass in mg? (THINK: how many mg in 1g?) ______m

	100		200		300	4	400		500	
10	20	30	40	50	60	70	80	90	100	
ШШ	.	шини	шинн	ш	.	шшш	1111111111	Шини	шинни	
	1	2	3	4	5	6	7	8	9 10	

NAME:			HR:
9.	Looking at the triple beam balance:		
	a. What is the largest mass that can be weigh	hed on the balance?	g
	b. What is the smallest mass that can be wei	ghed on the balance?	g
10.	If you had to explain the procedure on how to use steps be? (start with calibrating and explain step be	•	
11.	Which is larger?		
	a. 178 g or 1kg	d. 70 mg or 7 g	
	b. 300g or 3000kg	e. 34 g or 3.4kg	
	c. 1200mg or 1 kg	f. 12 g or 1.2mg	
-	ally have to take your time and be a thinker! Do you need to answer these questions. Use you not work!	•	
12.	There was a 1m stick that has a mass of 5 grams.	What would 2m of the same stick's mas	is be?
13.	My shoe has a mass of 1,200 grams. How many gr	rams would 2 of my shoes be?	g
	a. How many mg would both shoes be?	mg	
14.	My calculator has a mass of 200 grams. How man calculators	y caculators would it take to make a ma	nss of 1kg?
15.	How much would I weigh in kg? 2.2lb = 1kg		
	my estimated weightlbs	my calculated weight	tkg
16.	Once you finished the worksheet show your teach answers! Write down your answers from the scale		•

Questions /Examples/ Workspace:

Guided Practice

Triple beam Worksheet 1

Independent Practice

Once you have finished your Guided Practice work, move on to the Independent Worksheet at the end of this packet.

• Triple beam Worksheet 2

Exit Ticket

Wait for answer choices to be posted

DAY 2 - Tuesday

Kickoff:

If you're going to take the mass of your pencil, what would be the most appropriate unit?

- A. Liter
- B. Gram
- C. Kilogram
- D. Meter

Pencils down! Wait for Mad Minute

Mad Minute

What is	the	best	metric	unit	to	measure:	

Length of a pencil?
Mass of a notebook?
Amount of water in a cup?
Mass of a car?
Volume of water in a swimming pool?

Exit Ticket

If you're going to take the mass of your DESK, what would be the most appropriate unit?

Wait for answer choices to be posted

Mix	&	M	at	ch	\mathbf{N}	[ass
IVIIV	α	TAT	aı		TA.	ıass

Name

Choose items from the container on your table that will be closest to the targeted mass. You may use a single item or mix and match items to reach the targeted mass.

Have your teacher check your estimates before you find the actual mass!

Targeted Mass	Item(s)	Actual Mass
1 gram		
5 grams		
10 grams		
20 grams		
50 grams		
100 grams		
200 grams		
400 grams		

	400 grams						
Ci	ircle the BEST metric uni	t for eac	ch.				
(1) Your mass: mg	g	kg				
(2) Amount of spices in a b	atch of	cookies:	mg	g	kg	
(3) Mass of 10 pennies:	mg	g	kg			
	answer the question. Be	sure to	explain y	our proced	ure - l	owledge of the metric system how you found your answer	
	What is the m	iass of	100 milli	iters of water	er?		
	Procedure:						

Day 4 - Thursday

Kickoff:

What volume of liquid is shown?

A. 20 ml

B.24 ml

 $C.23 \, ml$

D. 25 ml

Pencils down! Wait for Mad Minute

Mad Minute

What instrument is used to measure mass?

What instrument is used to measure volume?

What instrument is used to measure length?

How many milliliters are there in a liter?

What base unit is used to measure volume?

Grade and graph your Mad Minute!!!

Metric Mania

Lesson 3: Volume

1. Which is longer? Circle your ch	oice for each one.			
1 liter or 1 gallon	1 liter or 1 quart	1 mill	iliter or 1 fluid	lounce
2. Complete each statement.				
1 gallon = liter:	s 1 fl oz =	_ ml 1 qua	rt =	_ liters
3 is the am	ount of space an object	takes up.		
4. The base unit of volume in the r	netric system in the	and	is represented	by or
5. 1 liter is equal to one cubic				
6. Complete each statement.				
1 L = mI	1 mL =	cm3 (or cc)) = gra	m*
7. Which is larger? Circle your ch	oice for each one.			
A. 1 liter or 1500 milliliters	B. 200 milliliters	or 1.2 liters	C. 12 cm ³ or	1.2 milliliters*
8. What instrument will we use to	find liquid volume?			
9. What is the name of the curve y	ou see at the top of a lie	quid in a cylind	er?	
10. What is the volume of liquid in	n each cylinder?			
A	В	C		
11. What formula do we use to fin	d the volume of regular	objects?		
Volume =	X	X		-
12. What is the volume of the cube	e? X	_ X = _		
13. How do we find the volume of				
14. What is the volume of the rocl				

Volume Lab	Name

Part A: Count your drops!

Take a guess - How many drops of water will it take to equal 1 milliliter? _____ drops

Follow the directions to find the number of drops in 1 milliliter of water, then answer the questions. You will need a small graduated cylinder (25 ml), a beaker of water, and an eyedropper for this section.

- (1) Fill a small graduated cylinder with 10 ml of water.
- (2) Count the number of drops it takes to raise the water to 11 ml. Record the number in the chart.
- (3) Leave the water in the graduated cylinder and count the number of drops it takes to raise the water to 12 ml. Record the number in the chart.
- (4) Leave the water in the graduated cylinder and count the number of drops it takes to raise the water to 13 ml. Record the number in the chart.
- (5) Calculate your average and round to the nearest tenth.

# of drops to 11 ml	# of drops to 12 ml	# of drops to 13 ml	Average

Based on your <u>average</u> , how close were you to your guess?	Based on your average	e, how close we	re you to your	guess?	
--	-----------------------	-----------------	----------------	--------	--

Based on your <u>average</u>, how many drops would it take to make 1 liter?

Part B: Water Displacement

Follow the directions to find the volume of three marbles using water displacement.

- (1) Add 20 ml of water to a 100 ml graduated cylinder. Record this amount in the chart.
- (2) Add three marbles to the cylinder and measure the volume. Record this amount in the chart.
- (3) Find the difference between the two measurements and record in the chart. The difference between the two measurements will be the volume of the three marbles.

Volume of water before adding marbles	Volume of water after adding marbles	Volume of 3 marbles

Part C: Volume by Formula

Use the formula to find the volume of the box. Measure to the nearest centimeter (no decimals) before calculating your answer.

Part D: Color Challenge

- 1. Obtain the following items from your teacher:
 - 3 beakers with colored water- 25 ml of each color (red, blue, and yellow)
 - 1 graduated cylinder (25 ml 50 ml)
 - 1 eyedropper
 - 6 test tubes labeled A, B, C, D, E, and F
- 2. Perform each step outlined below using accurate measurements.
 - (1) Measure 17 ml of RED water from the beaker and pour into test tube A.
 - (2) Measure 21 ml of YELLOW water from the beaker and pour into test tube C.
 - (3) Measure 22 ml of BLUE water from the beaker and pour into test tube E.
 - (4) Measure 5 ml of water from test tube A and pour it into test tube B.
 - (5) Measure 6 ml of water from test tube C and pour it into test tube D.
 - (6) Measure 8 ml of water from test tube E and pour it into test tube F.
 - (7) Measure 5 ml of water from test tube C and pour it into test tube B.
 - (8) Measure 2 ml of water from test tube A and pour it into test tube F.
 - (9) Measure 4 ml of water from test tube E and pour it into test tube D.
- 3. Complete the chart.

Test Tube	Color	Final Amount (ml)
Α		
В		
С		
D		
E		
F		

Questions /Examples/ Workspace:

Guided Practice

· Volume Lab: Part 1

Independent Practice

Once you have finished your Guided Practice work, move on to the Independent Worksheet at the end of this packet.

· Volume Lab: Part 1

Exit Ticket

What volume of liquid is shown above?

DAY 5 - Friday

Kickoff:

Review Kickoffs from the Week and make sure they are correct.

Pencils down! Wait for Mad Minute

Mad Minute

Calculate your MM average for the week