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Preface

Krylov subspace methods have been applied successfully to solve various prob-
lems in Numerical Linear Algebra. The Netherlands have been a pioneer country
in the development of Krylov methods over the past years. Methods like the
Conjugate Gradient Squared (CGS), Bi-Conjugate Gradient Stabilized (BiCG-
STAB), Nested GMRES (GMRESR), and the Induced Dimension Reduction
method (IDR) are examples of Krylov methods developed at Dutch universi-
ties. In this context, we are organizing the Student Krylov Day 2015 at TU
Delft in the framework of the SIAM Student Chapter Delft. We are also proud
to welcome Peter Sonneveld as invited speaker to our workshop.
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Program

The Student Krylov Day takes place on February 2nd, 2015 at Technische Uni-
versiteit Delft, Faculteit Elektrotechniek, Wiskunde en Informatica. We meet
at Snijderszaal LB 01.010. Mekelweg 4, 2628 CD Delft, The Netherlands.

10:00 - 10:10 Welcoming

10:10 - 10:50 P. Sonneveld IDR-CGS-BiCGSTAB-IDR(s)
- a case of serendipity -

11:00 - 11:20 Manuel Krylov methods for shifted linear systems

11:20 - 11:40 Xian-Ming Recent progresses in Krylov subspace methods
for solving complex symmetric linear systems

11:40 - 12:00 Ian Krylov and Matrix Balancing for fast Field
of Value Type Inclusion Regions

Chairman: Reinaldo

12:00 - 13:30 Lunch at TU Delft Sports Center

13:30 - 13:50 Heiko Preconditioning of Large-Scale Saddle Point
Systems for Coupled Flow Problems

13:50 - 14:10 Jörn A Krylov Subspace Approach to Modeling of
Wave Propagation in Open Domains

14:10 - 14:30 Jing A conjugate gradient based method for
frictional contact problems

Chairman: Tomáš

15:00 - 15:20 Tomáš On the numerical behaviour of the CG method

15:20 - 15:40 Patrick Krylov subspace methods for matrix equations
which include matrix functions

15:40 - 16:00 Ana On Low-rank Updates of Matrix Functions

Chairman: Heiko

16:30 - 16:50 Reinaldo Induced Dimension Reduction method
to solve the Quadratic Eigenvalue Problem

16:50 - 17:10 Mario Rational Least Squares Fitting using Krylov Spaces

17:10 - 17:30 Sarah Probabilistic bounds for the matrix condition
number with extended Lanczos bidiagonalization

Chairman: Manuel

17:30 - 18:30 Snacks & drinks at TU Delft

In the evening we will go to San Marco (Brabantse Turfmarkt 23, 2611 CL
Delft). This is a nice restaurant close to the main train station. Everybody is
welcome to join!
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IDR-CGS-BiCGSTAB-IDR(s)

- a case of serendipity -

Peter Sonneveld 1

In about 1976, I was preparing a renovation of the elementary course on
numerical analysis in Delft University. In relation to the problem of solving a
single nonlinear equation iteratively, I wondered whether the so-called ‘secant
method’ could be generalized to systems of N nonlinear equations with N
unknowns.
Before starting to read everything on a subject, I always try to think about
it unbiased, and so I started with (probably) re-inventing the wheel. Had
I seen the book by Ortega and Rheinboldt at that time, CGS, BiCGSTAB
and IDR(s) probably wouldn’t exist today. After a week of rather primitive
numerical experiments, I decided that generalisations of the secant method to
N dimensions were far too complicated for an elementary course. However,
the experiments showed a surprising phenomenon, that appeared to be useful
in the machinery of solving large sparse nonsymmetric linear systems.
The first application of this ‘new wheel’ was called IDR (Induced Dimension
Reduction). Afterwards, CGS (Conjugate Gradients Squared) was developed
as an ‘improvement’ of IDR, and also for other reasons. From then, starting
with BiCGStab in cooperation with Henk van der Vorst, a lot of other meth-
ods of this kind were developed by many others. This went on until about
10 years ago.
In this short presentation I’ll give a reconstruction of the strange history of
these so-called ‘Lanczos-type product methods’. It will be explained why
this ‘sleeping theory’ woke up just after my retirement in 2006, resulting in
a brand new family of methods: IDR(s). Since history is a continuing story,
also some recently discovered interesting features of the IDR(s) methods are
already part of it. Some will be mentioned in the lecture.

1Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4,
2628 CD, The Netherlands. E-mail: P. Sonneveld, p.sonneveld@tudelft.nl
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Krylov methods for shifted linear systems

Manuel Baumann

PhD student at TU Delft

In my research, we focus on Krylov methods for so-called shifted linear sys-
tems of the form

(A− ωkI)xk = b, (1)

where {ωk}Kk=1 ∈ C is a sequence of distinct shifts. During the last 20 years,
almost every Krylov method has been adapted to solve (1) efficiently for many
shifts. In my presentation, I will show you how multi-shift Krylov methods work
and, afterwards, point to some more recent research questions like:

• Can we allow multiple right-hand sides?

• Which preconditioners preserve the shifted structure?

• Can we apply restarting and nested algorithms?

• Can we benefit from deflation?

• Where do shifted systems arise in practice?

One of the above questions has been answered in [1].

References

[1] M. Baumann and M.B. van Gijzen, Nested Krylov methods for
shifted linear systems, Technical Report 14-01, Delft University of
Technology, The Netherlands, 2014. Available for download at
http://manuelbaumann.de/phd.html.
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Recent progresses in Krylov subspace methods for

solving complex symmetric linear systems

Xian-Ming Gu

PhD student at Rijksuniversiteit Groningen and University of
Electronic Science and Technology of China

Complex symmetric linear systems (CSLSs) with the following form

Ax = b, A 6= AH , but A = AT ∈ Cn×n, b ∈ Cn

arise in many important applications such as numerical computations in quan-
tum chemistry, eddy current problems, modeling the waveguide discontinuities
and electromagnetic simulations. Hence, there is a strong need for the fast
solutions of complex symmetric linear systems. During the past few years, a va-
riety of specified Krylov subspace methods (KSMs) for solving such systems are
proposed and used, such as COCG, COCR, QMR-SYM and BiCGCR methods.

In this talk, I will mainly revisit and focus on SCBiCG, which is also known
as one of methods for solving such linear system. SCBiCG can be derived by
substituting a matrix polynomial, which is expressed by the complex conjugate
coefficient matrix and initial residual vector, to the initial shadow residual of
the BiCG algorithm. Moreover, we clarify that SCBiCG can be transformed
to some methods which have been previously proposed. Besides, in our talk
we will prove that the preconditioned BiCGCR is mathematically equivalent to
preconditioned COCR in detail, and then give an overview of the recent progress
in other KSMs with suitable preconditioning techniques for solving CSLSs. Fi-
nally, numerical experiments involving many electromagnetic model problems
are employed to investigate the convergence behaviors of these solvers, and then
some remarks on future research of this topic will be also summarized.

This is joint work with Ting-Zhu Huang, Liang Li, Tomohiro Sogabe, Markus
Clemens, Bruno Carpentieri, Hou-Biao Li.
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Krylov and Matrix Balancing for fast Field of

Value Type Inclusion Regions

Ian Zwaan∗

PhD student at TU/e

The field of values may be an excellent tool for generating a spectral inclusion
region: it is easy to approximate numerically, and for many matrices this region
fits relatively tightly around the eigenvalues. However, for some matrices the
field of values may be a poor eigenvalue inclusion region: the numerical radius
may be much larger than the spectral radius. We show that balancing the
matrix may be helpful for generating a quality inclusion region based on the
field of values. and introduce a new Krylov based balancing method. We believe
that both the (sparse) balancing and the new “Krylov and balance” technique,
combined with a projected field of values, render spectral inclusion regions that
may be hard to beat in both quality and efficiency.

1. T. Betcke, Optimal scaling of generalized and polynomial eigenvalue problems, SIAM,
J. Matrix Anal. Appl., 30 (2008), pp. 1320–1338.

2. T.-Y. Chen and J. W. Demmel, Balancing sparse matrices for computing eigenvalues,
Linear Algebra and Its Applications, 309 (2000), pp. 261–287.

3. M. E. Hochstenbach, D. A. Singer, and P. F. Zachlin, Numerical approximation
of the field of values of the inverse of a large matrix, Textos de Mathematica, 44,
pp. 59–71.

4. , Eigenvalue inclusion regions from inverses of shifted matrices, Linear Algebra
Appl., 429 (2008), pp. 2481–2496.

5. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cam-
bridge, Uk, 1985.

6. C. R. Johnson, Numerical determination of the field of values of a general complex
matrix, SIAM J. Numer. Anal., 15 (1978), pp. 595–602.

7. T. A. Manteuffel and G. Starke, On hubyrid iterative methods for nonsymmetric
systems of linear equations, Numer. Math., 73 (1996), pp. 489–506.

8. The Matrix Market, http://math.nist.gov/MatrixMarket/, a repository for test ma-
trices.

9. G. W. Stewart, A Krylov-Schur algorithm for large eigenproblems, SIAM J. Matrix
Anal. Appl., 23 (2001/02), pp. 601–614.

10. H. A. van der Vorst, Iterative Krylov methods for Large Linear Systems, vol. 13
of Cambridge Monographs on Applied and Computational Mathematics, Cambridge
University Press, Cambridge, UK, 2003.

11. D. S. Watkins, A case where balancing is harmful, Electron. Trans. Numer. Anal.,
23 (2006), pp. 1–4.

∗Joint work with Michiel E. Hochstenbach
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Preconditioning of Large-Scale Saddle Point

Systems for Coupled Flow Problems

Heiko Weichelt

PhD student at Max Planck Institute for Dynamics of Complex
Technical Systems Magdeburg, Germany

In order to explore boundary feedback stabilization of coupled flow problems,
we consider the Navier-Stokes equations that describe instationary, incompress-
ible flows coupled with a diffusion convection equation. Using a standard finite
element discretization, we get a differential-algebraic system of differential in-
dex two. We show how to reduce this index with a projection method to get a
generalized state space system, where a linear quadratic control approach can
be applied.

This leads to large-scale saddle point systems which have to be solved in a
threefold nested iteration. For obtaining a fast iterative solution of those non-
symmetric systems, we derive efficient preconditioners based on the approaches
due to Wathen et al. [Elman/Silvester/Wathen 2005, Stoll/Wathen
2011]. Finally, we show recent numerical results regarding the arising nested
iteration.
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A Krylov Subspace Approach to Modeling of

Wave Propagation in Open Domains

Jörn Zimmerling

PhD student at TU Delft

Simulating electromagnetic or acoustic wave propagation in complex open
structures is extremely important in many areas of science and engineering. In
a wide range of applications, ranging from photonics and plasmonics to seis-
mic exploration, efficient wave field solvers are required in various design and
optimization frameworks.

In this talk, a Krylov subspace projection methodology is presented to ef-
ficiently solve wave propagation problems on unbounded domains. To model
the extension of the computational domain to infinity, an optimal, frequency
independent complex scaling method is introduced, that allows us to simulate
wave propagation on unbounded domains provided we compute the propagating
waves via a stability-corrected wave function.

In our Krylov subspace framework, this wave function is approximated by
polynomial or rational functions, which are obtained via Krylov subspace pro-
jection on Polynomial, Extended and Rational Krylov subspaces. In this talk we
compare the convergence within these three Krylov subspaces. Further we show
how symmetry relations in the finite difference approximation of wave equations
can be used to efficiently construct Polynomial and Extended Krylov subspaces.

Numerical examples illustrate the performance of the method and show that
our Krylov resonance expansions significantly outperform conventional solution
methods.
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A conjugate gradient based method for frictional

contact problems

J. Zhao, E.A.H. Vollebregt and C.W. Oosterlee

Delft Universiry of Technology

In the simulation of railway vehicles dynamics, the interaction between vehi-
cles’ wheels and rails attracts a lot of interest, involving the solution of frictional
contact problems. Frictional stress arises between two contacting bodies when
they are brought into relative motion. The question is to find out which parts of
the surfaces are sticking together versus where local relative sliding occurs, and
further to find the distribution of frictional stress. Fast solvers are demanded
for such problems.

In this talk, I would like to present a conjugate gradient based method,
called TangCG, which is incorporated in an active set strategy. One significant
difference with the conventional solvers lies in the change of unknowns in the
slip area, where the magnitude of tractions reaches the traction bound. Instead
of using tractions there, we solve for angles, since they uniquely determine the
tractions. This yields a transformation of the governing equations. A lineariza-
tion technique is employed for some necessary approximation. Moreover, the
fast Fourier transform (FFT) is adopted to accelerate the matrix-vector prod-
ucts encountered in the algorithm. Numerical tests confirm the efficiency and
robustness of our method.
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On the numerical behaviour of the CG method

Tomáš Gergelits

PhD student at Faculty of Mathematics and Physics, Charles
University in Prague

The method of conjugate gradients (CG) is computationally based on short
recurrences. Assuming exact arithmetic, they ensure global orthogonality of the
residual vectors which span the associated Krylov subspace. Due to rounding er-
rors in practical computations, however, the use of short recurrences leads to the
loss of the global orthogonality and even linear independence of the computed
residual vectors. Consequently, the computed Krylov subspaces are typically
not of full dimensionality which causes a significant delay of convergence in
finite precision CG computations.

As a result, the practical CG behaviour significantly differs, in general, from
the behaviour of CG in exact arithmetic. Through the example of composite
polynomial convergence bounds based on Chebyshev polynomials we show that
any consideration concerning the CG rate of convergence relevant to practical
computations may not assume exact arithmetic and must include the analysis
of effects of rounding errors.

Furthermore, we address the question of the difference between Krylov sub-
spaces generated by the CG method in finite precision arithmetic and their ex-
act arithmetic counterparts. Apart from the loss of dimensionality, we observe
that the computed Krylov subspaces remain very close to their exact arithmetic
counterparts. This sort of inertia of finite precision CG computations represents
a remarkable phenomenon which deserves further investigation.
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Krylov subspace methods for matrix equations

which include matrix functions

Patrick Kürschner

PhD student Max Planck Institute for Dynamics of Complex
Technical Systems, Germany

We consider the numerical solution of large-scale Lyapunov equations of the
form

AX +XAT + f(A)BBT +BBT f(A) = 0, A ∈ Rn×n, B ∈ Rn×m,

where f is an analytic function of A. Such matrix equations arise in certain
model order reduction methods. Our focus are projection type approaches which
employ rational or extended Krylov subspaces. For dealing with the above prob-
lem we propose efficient methods that deal with both the Lyapunov equation
and the matrix function f(A) at the same time.
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On Low-rank Updates of Matrix Functions

Ana Šušnjara

PhD student at EPF Lausanne

The efficient and reliable update computation of large-scale matrix functions
subject to low-rank perturbations is of interest in several applications, such as
the analysis of networks. For addressing this problem, Beckermann and Kress-
ner have proposed the use of tensor polynomial and rational Krylov subspace
methods. Starting from the exactness property of (rational) Krylov subspaces,
convergence bounds for the tensor Krylov subspace method have been derived.
In this talk, we discuss how these bounds provide important insight into the
choice of poles for setting up the rational Krlyov subspaces. In particular, we
discuss exp(A) and sign(A). The matrix sign function immediately yields the
corresponding spectral projector and we discuss how tensorized Krylov subspace
methods can be used in the solution of eigenvalue problems. For the case of the
matrix exponential, the error expansion in terms of ϕ− functions as well as the
resulting corrected scheme proposed by Saad are extended to the tensor Krylov
subspace method. While the corrected scheme itself may not offer advantages,
it has been observed useful in deriving stopping criteria.
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Induced Dimension Reduction method to solve

the Quadratic Eigenvalue Problem

Reinaldo Astudillo∗

PhD student at TU Delft, The Netherlands

The Induced Dimension Reduction method (IDR(s)) was originally proposed
for solving systems of linear equations, and recently adapted to solve the stan-
dard eigenvalue problem. In this talk, I am going to present an extension of
IDR(s) to solve the Quadratic Eigenvalue Problem (QEP)

(λ2M + λD +K)x = 0,

where M, D, and K are given matrices of order n. Using the short-recurrences
formulas of IDR, we obtain a Hessenberg decomposition to approximate eigen-
values and eigenvectors of the linearized QEP. Also, exploiting the structure of
the Krylov subspace vectors, we reduced the memory consumption of the pro-
posed algorithm in almost a half. Numerical results generated by IDR for QEP
are competitive with respect to another specialized algorithm like Second Order
Arnoldi.

∗Joint work with M. B. van Gijzen
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Rational Least Squares Fitting

using Krylov Spaces

Mario Berljafa∗ Stefan Güttel∗

For given matrices {A,F} ⊂ CN×N and a vector v ∈ CN , we consider the
problem of finding a rational function Rmin

m of type (m,m) such that

‖Fv −Rm(A)v‖22 → min,

and propose an iterative algorithm [1, 2] for its solution. At each iteration the
algorithm constructs a rational Krylov space Qm+1(A,v) and manipulates an
associated Arnoldi decomposition to find better approximations to the poles of
Rmin

m . In the special case when A = diag(λj) and F = diag(ψj) are diagonal

we have a weighted rational least squares fitting problem
∑N

j=1 |vj |2 · |ψj −
Rm(λj)|2 → min, and compare our method to the popular vector fitting [3].

References

[1] M. Berljafa and S. Güttel, A Rational Krylov Toolbox for MAT-
LAB, MIMS EPrint 2014.56, Manchester Institute for Mathematical Sci-
ences, The University of Manchester, UK, 2014. Available for download at
http://guettel.com/rktoolbox/.

[2] M. Berljafa and S. Güttel, Generalized rational Krylov decomposi-
tions with an application to rational approximation, MIMS EPrint 2014.59,
Manchester Institute for Mathematical Sciences, The University of Manch-
ester, UK, 2014.

[3] B. Gustavsen and A. Semlyen, Rational approximation of frequency
domain responses by vector fitting, IEEE Trans. Power Del., 14 (1999),
pp. 1052–1061.

∗School of Mathematics, The University of Manchester, Alan Turing Building, Ox-
ford Road, M13 9PL Manchester, United Kingdom, mario.berljafa@manchester.ac.uk,
stefan.guettel@manchester.ac.uk
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Probabilistic bounds for the matrix condition

number with extended Lanczos bidiagonalization

Sarah W. Gaaf∗

PhD student at Eindhoven University of Technology

Reliable estimates for the condition number of a large (sparse) matrix A
are important in many applications. To get an approximation for the condi-
tion number κ(A), an approximation for the smallest singular value is needed.
Krylov subspaces are usually unsuitable for finding a good approximation to the
smallest singular value. Therefore, we study extended Krylov subspaces which
turn out to be ideal for the simultaneous approximation of both the smallest and
largest singular value of a matrix. First, we develop a new extended Lanczos
bidiagonalization method. With this method we obtain a lower bound for the
condition number. Moreover, the method also yields probabilistic upper bounds
for κ(A). The user can select the probability with which the upper bound holds,
as well as the ratio of the probabilistic upper bound and the lower bound.

∗Joint work with Michiel E. Hochstenbach
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Email Directory

Name University Email address
Reinaldo Astudillo TU Delft R.A.Astudillo@tudelft.nl
Manuel Baumann TU Delft M.M.Baumann@tudelft.nl
Mario Berljafa University of Manchester mario.berljafa@manchester.ac.uk
Sarah Gaaf TU Eindhoven s.w.gaaf@tue.nl
Tomáš Gergelits Charles University, Prague gergelits@karlin.mff.cuni.cz
Xian-Ming Gu Rijksuniversiteit Groningen x.m.gu@rug.nl

and UESTC, China
Patrick Kürschner MPI Magdeburg kuerschner@mpi-magdeburg.mpg.de
Peter Sonneveld TU Delft P.Sonneveld@tudelft.nl

Ana Šušnjara EPFL, Lausanne ana.susnjara@epfl.ch
Heiko Weichelt MPI Magdeburg weichelt@mpi-magdeburg.mpg.de
Jing Zhao TU Delft J.Zhao-1@tudelft.nl
Jörn Zimmerling TU Delft jtzimmerling@gmail.com
Ian Zwaan TU Eindhoven i.n.zwaan@tue.nl

We will tweet about the workshop using the account @SSC Delft

and hashtag #KD15.

http://sscdelft.github.io/
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