Differential Geometry

 Curves - Surfaces ManifoldsThird Edition

Wolfgang Kühnel

American Mathematical Society

Differential Geometry

Curves-SurfacesManifolds

Differential Geometry

Curves-Surfaces-

 ManifoldsThird Edition

Wolfgang Kühnel

Translated by

Bruce Hunt

American Mathematical Society
Providence, Rhode Island

Editorial Board

Satyan L. Devadoss
Erica Flapan
John Stillwell (Chair)
Serge Tabachnikov

Translation from German language edition: Differentialgeometrie by Wolfgang Kühnel, © 2013 Springer Vieweg | Springer Fachmedien Wiesbaden GmbH JAHR (formerly Vieweg+Teubner). Springer Fachmedien is part of Springer Science+Business Media. All rights reserved.

Translated by Bruce Hunt, with corrections and additions by the author.

Front and back cover image by Mario B. Schulz.

2010 Mathematics Subject Classification. Primary 53-01.

For additional information and updates on this book, visit www.ams.org/bookpages/stml-77

Page 403 constitutes an extension of this copyright page.

Library of Congress Cataloging-in-Publication Data

Kühnel, Wolfgang, 1950-
[Differentialgeometrie. English]
Differential geometry : curves, surfaces, manifolds / Wolfgang Kühnel ; translated by Bruce Hunt.- Third edition.
pages cm. - (Student mathematical library ; volume 77)
Includes bibliographical references and index.
ISBN 978-1-4704-2320-9 (alk. paper)

1. Geometry, Differential. 2. Curves. 3. Surfaces. 4. Manifolds (Mathematics) I. Hunt, Bruce, 1958- II. Title.

QA641.K9613 2015
516.3'6-dc23
(c) 2015 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government. Printed in the United States of America.
© The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface to the English Edition ix
Preface to the German Edition xi
Chapter 1. Notations and Prerequisites from Analysis 1
Chapter 2. Curves in \mathbb{R}^{n} 7
2A Frenet curves in \mathbb{R}^{n} 7
2B Plane curves and space curves 14
2 C Relations between the curvature and the torsion 20
2D The Frenet equations and the fundamental theorem of the local theory of curves 27
2E Curves in Minkowski space \mathbb{R}_{1}^{3} 33
2 F The global theory of curves 37
Exercises 50
Chapter 3. The Local Theory of Surfaces 55
3A Surface elements and the first fundamental form 56
3B The Gauss map and the curvature of surfaces 66
3C Surfaces of rotation and ruled surfaces 77
3D Minimal surfaces 96
3E Surfaces in Minkowski space \mathbb{R}_{1}^{3} 113
3F Hypersurfaces in \mathbb{R}^{n+1} 122
Exercises 125
Chapter 4. The Intrinsic Geometry of Surfaces 133
4A The covariant derivative 134
4B Parallel displacement and geodesics 140
4C The Gauss equation and the Theorema Egregium 145
4D The fundamental theorem of the local theory of surfaces 152
4E The Gaussian curvature in special parameters 157
4F The Gauss-Bonnet Theorem 165
4G Selected topics in the global theory of surfaces 180
Exercises 192
Chapter 5. Riemannian Manifolds 197
5A The notion of a manifold 198
5B The tangent space 205
5C Riemannian metrics 212
5D The Riemannian connection 218
Chapter 6. The Curvature Tensor 233
6A Tensors 233
6B The sectional curvature 242
6C The Ricci tensor and the Einstein tensor 250
Chapter 7. Spaces of Constant Curvature 265
7A Hyperbolic space 266
7B Geodesics and Jacobi fields 276
7C The space form problem 291
7D Three-dimensional Euclidean and spherical space forms 296
Exercises 306
Chapter 8. Einstein Spaces 309
8A The variation of the Hilbert-Einstein functional 312
8B The Einstein field equations 321
8C Homogenous Einstein spaces 325
8D The decomposition of the curvature tensor 331
8E The Weyl tensor 341
8F Duality for four-manifolds and Petrov types 350
Exercises 358
Solutions to selected exercises 361
Bibliography 391
List of notation 395
Index 397

Preface to the English Edition

The German original was intended for courses on differential geometry for students in the middle of their academic education, that is, in the second or third year. In the Anglo-American system of university education, the contents of this textbook corresponds to an undergraduate course in elementary differential geometry (Chapters $1-4$), followed by a beginning course in Riemannian geometry (Chapters $5-8)$. This led to the idea of having a translation of the German original into English.

I am very glad that the American Mathematical Society supported this project and published the present English version. I thank the translator, Bruce Hunt, for the hard work he had spent on the translation. From the beginning he was surprised by the quantity of text, compared to the quantity of formulas. In addition he had to struggle with complicated and long paragraphs in German. One of the major problems was to adapt the terminology of special notions in the theory of curves and surfaces to the English language. Another problem was to replace almost all references to German texts by references to English texts, in particular, all references to elementary textbooks on calculus, linear algebra, geometry, and topology. Ultimately all these problems could be solved, at least to a certain approximation. The
bibliography contains only books in English, with just three exceptions. Therefore, the English version can be used as a textbook for third-year undergraduates and beginning graduate students.

Furthermore, I am grateful to Edward Dunne from the AMS who was extremely helpful at all stages of the project, not only for editorial and technical matters, but also for questions concerning the terminology and the tradition of notations. He pointed out that the ordinary spherical coordinates on the sphere, denoted by φ, ϑ in this book, are denoted ϑ, φ (that is, the other way around) in many English textbooks on calculus. We hope that this does not lead to major confusions.

In the second English edition a number of errors were corrected and a number of additional figures were added, following the second German edition. Most of the additional figures were provided by Gabriele Preissler and Michael Steller. The illustrations play an important rôle in this book. Hopefully they make the book more readable. The concept of having boxes around important statements was kept from the German original, even though now we have a few very large boxes covering major parts of certain pages.

Stuttgart, June 2005
W. Kühnel

The present third edition is a corrected and updated version that incorporates the development of altogether six editions in German, the last one from 2013. Each of these German editions was corrected, extended and improved in several directions. As an example, a number of proofs were made more precise if they turned out to be too short in the first edition. In comparison to the second English edition, the third edition includes many improvements, there are more figures and more exercises, and - as a new feature - at the end a number of solutions to selected exercises are given.

Preface to the German Edition

This book arose from courses given on the topic of "Differential geometry", which the author has given several times in different places. The amount of material corresponds roughly to a course in classical differential geometry of one semester length (Chapters 1-4 of the book), followed by a second one-semester course on Riemannian geometry (Chapters 5-8). The prerequisites are the standard courses in calculus (including several variables) and linear algebra. Only in section 3D (on minimal surfaces) do we assume some familiarity with complex function theory. For this reason the book is appropriate for a course in the latter part of the undergraduate curriculum, not only for students majoring in mathematics, but also those majoring in physics and other natural sciences. Accordingly, we do not present any material which could in any way be considered original. Instead, our intent is to present the basic notions and results which will enable the interested student to go on and study the masters. Especially in the introductory chapters we will take particular care in presenting the material with emphasis on the geometric intuition which is so characteristic of the topic of differential geometry; this is supported by a large number of figures in this part of the book. The results which the author considers particularly important are placed
in boxes to emphasize them. These results can be thought of as a kind of skeleton of the theory.

This book wouldn't have been possible without the generous help of my students and colleagues, who found numerous mistakes in the distributed notes of the first version of this book. In particular I would like to mention Gunnar Ketelhut, Eric Sparla, Michael Steller and Gabriele Preissler, who spent considerable time and effort in reading the original notes. G. Ketelhut also supplied numerous suggestions for improvements in the text, as well as writing Section 8 F himself. Martin Renner provided almost all the figures, which were produced with the computer algebra system MAPLE. Marc-Oliver Otto provided some figures for Chapter 7, and Ilva Maderer typed the original version in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$. Finally, Michael Grüter accompanied the whole production process with helpful suggestions, as well as giving me personal support in several ways. The work and insistence of Dr. Ulrike Schmickler-Hirzebruch is responsible for the speed with which these lectures were nonetheless accepted for the series "Vieweg-Studium Aufbaukurs Mathematik" and then also appeared almost on time. My thanks goes to all of them.

Stuttgart, June 1999
W. Kühnel

Bibliography

Textbooks on Differential Geometry

[1] M. do Carmo, "Differential Geometry of Curves and Surfaces", Prentice Hall, Englewood Cliffs, NJ, 1976.
[2] W. Klingenberg, "A Course in Differential Geometry", Springer, New York, 1978.
[3] D. Laugwitz, "Differential and Riemannian Geometry", Academic Press, New York, 1965.
[4] D. J. Struik, "Lectures on Classical Differential Geometry", AddisonWesley 1950/1961, reprinted by Dover, New York, 1988.
[5] E. Kreyszig, "Differential Geometry", Dover, New York, 1991.
[6] J. J. Stoker, "Differential Geometry", Wiley-Interscience, New York, 1969, reprint 1989.
[7] M. Spivak, "A Comprehensive Introduction to Differential Geometry", Volumes I - V, Publish or Perish, Wilmington, Del., 1979.
[8] T.G.Feeman, Portraits of the Earth: A Mathematician Looks at Maps American Mathematical Society, 2002. Paperback, 123 pages Mathematical World, vol 18 MAWRLD/18
With special emphasis on computer graphics:
[9] A. Gray, "Modern Differential Geometry of Curves and Surfaces", 2nd edition, CRC Press, Boca Raton, 1998.
[10] J. Oprea, "The Mathematics of Soap Films: Explorations with Maple", Student Math. Library Vol. 10, AMS, Providence, 2000.

On minimal surfaces:

[11] U. Dierkes, S. Hildebrandt, A. Küster, O. Wohlrab, "Minimal Surfaces I", Springer, 1992.
[12] D. Hoffmann \& H. Karcher, Complete embedded minimal surfaces of finite total curvature, Geometry V (R. Osserman, ed.), Encycl. Math. Sci. 90, 5-93, Springer 1997.

Textbooks on Riemannian Geometry

[13] P. Petersen, "Riemannian Geometry", 2nd edition, Springer, New York, 2006.
[14] M. do Carmo, "Riemannian Geometry", Birkhäuser, Boston-BaselBerlin, 1992.
[15] J. A. Schouten, "Der Ricci-Kalkül", Springer, Heidelberg, 1924, reprint Springer, Berlin-New York, 1978.
[16] J. A. Schouten, "Ricci-calculus", Springer, Heidelberg, 1954.
[17] T. J. Willmore, "Total Curvature in Riemannian Geometry", Ellis Horwood, 1982.
[18] J. Cheeger, D. G. Ebin, "Comparison Theorems in Riemannian Geometry", North Holland, 1975.
[19] S. Kobayashi, K. Nomizu, "Foundations of Differential Geometry" I, Wiley-Interscience, 1963.
[20] J. Wolf, "Spaces of Constant Curvature", Publish or Perish, Boston, 1974.

Including the general theory of relativity:
[21] T. Levi-Civita, "The Absolute Differential Calculus (Calculus of Tensors)", Dover, New York, 1977.
[22] B. O'Neill, "Semi-Riemannian Geometry", Academic Press, San Diego, 1983.
[23] A. Petrov, "Einstein Spaces", Pergamon Press, Oxford, 1969.
[24] A. Besse, "Einstein Manifolds", Springer, Heidelberg-New York, 1987.
[25] F. de Felice \& C. J. S. Clarke, "Relativity on Curved Manifolds", Cambridge University Press, 1990.
[26] R. K. Sachs \& H. Wu, "General Relativity for Mathematicians", Springer, New York, 1977.

Other textbooks

On analysis:
[27] S. Lang, "Undergraduate Analysis", 2nd ed., Springer, New York, 1997.
[28] S. Lang, "Calculus of Several Variables", Addison-Wesley, 1973.
[29] M. Spivak, "Calculus on Manifolds", Benjamin, New York, 1965.
[30] L. C. Evans, "Partial Differential Equations", Graduate Studies in Math. 19, AMS, Providence, 1998.

On algebra:

[31] S. Lang, "Linear Algebra", 3rd ed., Springer, New York, 1987.
[32] W. Greub, "Linear Algebra", 3rd ed., Springer, Heidelberg, 1967.
[33] W. Greub, "Multilinear Algebra", Springer, Heidelberg, 1967.
[34] H. S. M. Coxeter \& W. O. J. Moser, "Generators and Relations for Discrete Groups", $4^{\text {th }}$ ed., Springer, Heidelberg, 1980.
On the theory of functions of a complex variable:
[35] J. Bak \& D. J. Newman, "Complex Analysis", Springer, New York, 1982.
[36] R. V. Churchill, J. W. Brown, R. F. Verhey, "Complex Variables and Applications", McGraw-Hill, New York 1974.
On topology:
[37] R. E. Schwartz, "Mostly Surfaces", Student Math. Library Vol. 60, AMS, Providence, 2011.
[38] M. A. Armstrong, "Basic Topology", Springer, 1983.
[39] T. Bröcker \& K. Jänich, "Introduction to Differential Topology", Cambridge University Press, 1982.
[40] H. Schubert, "Topology", MacDonald Technical and Scientific, 1968.
[41] H. Seifert \& W. Threlfall, "Lehrbuch der Topologie", Teubner 1934 (reprint Chelsea 1980); Engl. transl.: "Seifert and Threlfall: A Textbook of Topology". Academic Press, New York, 1980.

On Lie groups:

[42] S. Arvanitoyeorgos, "An Introduction to Lie Groups and the Geometry of Homogeneous Spaces", Student Math. Library Vol. 22, AMS, Providence, 2003.
[43] H. Pollatsek, "Lie Groups: A problem-oriented introduction via matrix groups", Math. Association of America, 2009
[44] F. W. Warner, "Foundations of Differentiable Manifolds and Lie Groups", Springer, Heidelberg-New York, 1983.
[45] J. J. Duistermaat \& J. A. C. Kolk, "Lie Groups", Springer, Heidelberg, 2000.
[46] S. Kobayashi, "Transformation Groups in Differential Geometry", Springer, Heidelberg, 1972.

On geometry:

[47] J. Stillwell, "Geometry of Surfaces", Springer, New York, 1992.
[48] H. S. M. Coxeter, "Regular Polytopes", Dover, New York, 1948.
[49] F. Klein, "Vorlesungen über Nicht-Euklidische Geometrie", Springer 1928 (reprint 1968).
[50] J. M. Montesinos, "Classical Tessellations and Three-manifolds", Springer, Heidelberg-New York, 1987.
[51] P. J. Ryan, "Euclidean and Non-Euclidean Geometry", Cambridge Univ. Press, 1986.
[52] M. A. Armstrong, "Groups and Symmetry", Springer, New York, 1988. On the history of mathematics:
[53] F. Klein, "Development of Mathematics in the 19th Century", Lie groups: History, Frontiers and Appl. IX, Math. Sci. Press, Brookline MA, 1979.
[54] P. Dombrowski, "150 years after Gauss' Disquisitiones generales circa superficies curvas", With the original text of Gauss. Astérisque, 62, Société Mathématique de France, Paris, 1979.

List of notation

\mathbb{Z}, \mathbb{R} integers, real numbers
\mathbb{R}^{n} real vector space, also Euclidean space with fixed origin
$E^{n} \quad$ Euclidean space without fixed origin
$S^{n} \quad n$-dimensional unit sphere in \mathbb{R}^{n+1}
$\mathbb{R}_{1}^{n} \quad$ Minkowski space or Lorentzian space
H^{n} hyperbolic space
$\mathbb{C}, \mathbb{I H}$ complex numbers, quaternions
\langle,$\rangle Euclidean scalar product, in Chapters 5$ to 8 also a Riemannian metric
\langle,\rangle_{1} Lorentzian metric in Minkowski space \mathbb{R}_{1}^{3}
$I, I I, I I I$ first, second and third fundamental forms
$g_{i j}, h_{i j}, e_{i j}$ first, second and third fundamental forms in local coordinates
$g^{i j} \quad$ inverse matrix to $g_{i j}$
$h_{i}^{k}=\sum_{j} h_{i j} g^{j k} \quad$ Weingarten mapping in local coordinates
E, F, G Gaussian symbols for the first fundamental form $E=g_{11}, F=$ $g_{12}, G=g_{22}$
g Riemannian metric
$\kappa \quad$ curvature of a plane or space curve
τ torsion of a space curve
e_{1}, \ldots, e_{n} Frenet n-frame of a Frenet curve
$\kappa_{1}, \ldots, \kappa_{n-1}$ Frenet curvatures of a Frenet curve in \mathbb{R}^{n} (in Ch. 2)
$\dot{c}=\frac{d c}{d t}$ tangent vectors to a curve with parameter t
$c^{\prime}=\frac{d c}{d s}$ tangent vectors to a curve with arc length parameter s
U_{c} index of a closed plane curve c
κ_{N} normal curvature of a curve on a surface
κ_{g} geodesic curvature of a curve on a surface
ν Gaussian normal mapping, Gauss map
L Weingarten mapping
κ_{1}, κ_{2} principal curvatures of a surface element in \mathbb{R}^{3}
$\kappa_{1}, \ldots, \kappa_{n}$ principal curvatures of a hypersurface in \mathbb{R}^{n+1} (in Ch. 3)
λ parameter of distribution of a ruled surface
$d A$ area element of a two-dimensional surface element
$d V$ volume element in higher dimensions
H mean curvature
K Gaussian curvature
$K_{i} \quad i$ th mean curvature (on hypersurface elements)
D directional derivative in \mathbb{R}^{n}
∇ covariant derivative or Riemannian connection
[X, Y] Lie bracket of two vector fields X, Y
$\Gamma_{i j}^{k}, \Gamma_{i j, m}$ Christoffel symbols
$R(X, Y) Z \quad$ curvature tensor
$R_{i j k}^{s}, R_{i j k l}$ curvature tensor in local coordinates
$\operatorname{Ric}(X, Y)$ Ricci tensor
$\operatorname{ric}(X)$ Ricci curvature in the direction X
$R_{i j}$ Ricci tensor in local coordinates
S scalar curvature
W, C Weyl and Schouten tensors
$\exp _{p}$ exponential mapping at a point p

Index

acceleration vector, 141
angle, 2
angle preserving, 99, 127
apex, 12
arc element, 60
arc length, 9
Archimedean spiral, 51
asymptotic curve, 83,126
atlas, 200, 202

Banchoff, T., 185
Beltrami, E., 84, 93
Bertrand curve, 54
Bianchi identity, 243, 335
binary dihedral group, 303
binary icosahedral group, 303
binary octahedral group, 303
binary tetrahedral group, 303
binormal, 17
biquadratic form, 246
bivector, 332
Bonnet, O., 153
boost, 272
canal surface, 77
Cardan angles, 202
Cartan, É., 165
Catalan, E. C., 111, 128
catenary, 11, 109, 193
catenoid, 109, 128, 156, 193, 262

Cauchy-Riemann equations, 101
Cayley map, 201
Cayley plane, 330
Cayley ruled surface, 132
chain rule, 210
chart, 5, 198, 199, 202
Christoffel symbols, $139,166,223$
circle, 9
Clifford torus, 32
Codazzi-Mainardi equation, 147, 154, 168, 196, 242
Cohn-Vossen, S., 188
complex manifold, 203
complex projective space, 329
complex structure, 204
cone, $88,90,92$
conformal, 99, 103, 216, 274
conformal curvature, 341
conformally flat, $124,346,347$
conic type, 81
conjugate point, 307
conjugate surface, 110
connection, 221
connection form, 166
constant curvature, $25,36,80,161$, 189, 249, 269, 289, 310
constant mean curvature, 191
contact of k th order, 12
contraction, 250
contravariant tensor, 236
convergence, 204
convex, 43, 182
convex hull, 45, 182, 304
coordinate transformation, 200
Cornu spiral, 16
cosmological constant, 325
countability axiom, 218
covariant derivative, 136, 138, 166, 221, 239, 268
covariant tensor, 236
covector field, 237
covering, 293, 302, 310
Coxeter, H.S.M., 303
CR equations, 101
critical point, 187
cubical parabola, 20
curvature, 14, 17, 20, 36, 70
curvature tensor, 150, 169, 243, 247, 315
curve, 7,8
curve, closed, 37
curve, length of, 8
curve, simply closed, 37,46
cyclic group, 302, 303
cycloid, 50
cylinder, 88,90
Darboux equations, 26, 53
Darboux vector, 26,53
derivative, 3, 6, 210
developable surface, 88, 119
dicyclic group, 303
diffeomorphic, 204
differentiable, 3
differentiable manifold, 199
differentiable structure, 200
differential, 6, 210, 240
differential form, 166
dihedral group, 302
Dini, U., 93
directional derivative, 98, 135, 206, 207, 221
directional vector, 62
directrix, 84
distance, 2
divergence, 251, 257, 319, 320
double point, 37, 49
double tangent, 49
dual basis, 212
duality, 350
Dupin indicatrix, 75
eigenvalue, 71
eigenvector, 71
Einstein field equations, 324
Einstein space, 254, 263, 328, 351
Einstein tensor, 257, 324
Einstein, A., 312, 317, 351
ellipse, 75
ellipsoid, 130
elliptic point, 72, 193
elongated sphere, 81
energy functional, 280
Enneper, A., 84, 111
equations of Gauss and Weingarten, 140, 146
Euclidean motion, 269
Euler angles, 202
Euler characteristic, 177, 179, 180, 188, 218
evolute, 15
exponential mapping, 226, 280
exterior derivative, 167
Fabricius-Bjerre, Fr., 49
Fenchel, W., 47
Fermi coordinates, 160
first fundamental form, 59
Flamm's paraboloid, 95
flow, 230
focal curve, 15
four vertex theorem, 46
free motion, 270
Frenet curvature, 27
Frenet curve, 13
Frenet equations, 14, 17, 27, 36
Frenet matrix, 25, 27, 37
Frenet n-frame, 13
Frobenius, G., 155
Gauss equation, 147, 150, 154, 168, 196, 261, 268, 359
Gauss formula, 140
Gauss lemma, 283
Gauss map, 63, 66, 100, 116, 122
Gauss, C. F., 148, 320
Gauss-Bonnet formula, 172, 321

Gauss-Kronecker curvature, 123
Gaussian curvature, 72, 117, 148, 193, 242
geodesic, 71, 121, 141, 216, 225, 280, 307
geodesic curvature, 23, 71, 125, 171
geodesic parallel coordinates, 160
geodesic polar coordinates, 272 , 283, 290
geodesic torsion, 125
geodesic triangle, 176, 230
geometric linearization, 8,55
golden ratio, 303
gradient, 4, 98, 240, 313
Gram determinant, 181
Gram-Schmidt orthogonalization, 13
graph, 58, 73
harmonic function, 100
Hausdorff separation axiom, 203
helicoid, 86, 109, 132, 156
helicoidal motion, 10, 131
helicoidal ruled surface, 86, 93
helix, 10, 20
Henneberg, L., 111
Hesse tensor, 240
Hessian, 73, 240, 264, 345
Hessian matrix, 73
hexagonal torus, 294
Hilbert, D., 162, 190, 312, 317
Hilbert-Einstein functional, 312
Hodge operator, 350, 353
holomorphic, 101, 105
holonomy group, 228
homogenous space, 326
Hopf, H., 41, 180
Hurwitz quaternions, 304
hyperbola, 35, 75
hyperbolic plane, 119, 130, 196
hyperbolic point, 72
hyperbolic space, 267, 269, 292
hyperboloid, 73, 83, 85, 113, 127, 267
hyperboloid type, 81
hyperplane, 124
hypersphere, 124
hypersurface element, 122
icosahedral group, 302
icosahedron, 303
immersion, $3,5,8,55$
implicit function, 3
index, 124
index form, 277
inflection point, 14, 49
inner product, 2, 98, 214
integrability conditions, 146, 147, 149, 155, 168, 264, 348
inverse mapping, 4
irreducible, 327
isometric, 59, 110, 161, 216
isometry, 216
isometry group, 326
isothermal, 99
isotropic, 34, 35, 114, 131
isotropy group, 326
Jacobi determinant, 64
Jacobi equation, 284
Jacobi field, 284, 286, 307
Jacobi identity, 220, 243
Jacobian, 3
Killing field, 219
Klein bottle, 201, 218
Koszul formula, 343
Kuiper, N. H., 185
Lagrange multiplier, 72
Laplace-Beltrami operator, 252
Laplacian, 252, 360
length preserving, 161
lens space, 304, 308
level point, 72, 104, 105
Levi-Civita connection, 221
Lie algebra, 227
Lie bracket, 137, 219, 231
Lie derivative, 219
Lie group, 227
Lie, S., 219
Liebmann, H., 47, 189, 191
light-cone, 34, 113
light-like, 34
light-like line, 35
line, $9,84,121$
line of curvature, 76
lines of curvature parameters, 76 , 103
locally compact, 204
locally isometric, 249
logarithmic spiral, 51
Lorentz group, 270
Lorentz rotation, 117
Lorentz space, 33, 270
Lorentz transformation, 271
Lorentzian metric, 214, 218
manifold, 199
Maurer-Cartan equations, 168
mean curvature, $72,98,123,129$
mean curvature vector, 100
measure tensor, 234
Mercator projection, 127
meridian curve, 77
meromorphic, 105, 204
metric tensor, 234
Meusnier, M., 71
minimal surface, 98,131
Minkowski space, 33, 113, 214, 270
Möbius strip, 65
Möbius, A., 65
Monge coordinates, 73, 75, 124
Monge surface, 132
monkey saddle, 73
multilinear, 236
multiplicity, 307
mylar balloon, 95
Neil parabola, 19
non-Euclidean geometry, 120
norm, 2
normal coordinates, 281
normal curvature, 71,171
normal plane, 19
normal section, 71
normal space, 6,56
normal variation, 96
normal vector, $14,57,66,115,122$
null cubic, 371
null vector, $34,113,214,266$
null-cone, 113
oblate sphere, 81
octahedral group, 302
octahedral space, 304
octahedron, 303
orientability, 63
orthogonal group, 201, 270
osculating plane, 19, 71
osculating sphere, 20
ovaloid, 182
parabola, 19
parabola of contact, 50
parabolic point, 72
paraboloid, 73, 127
parallel, 141, 225, 263
parallel displacement, 142, 225
parallel surface, 65, 129
parameter, 56
parameter of distribution, 86
parameter transformation, 64
parametrization, 5, 56, 198
parametrized curve, 8
partition of unity, 217
Petrov type, 358
Pfaffian form, 166
Poincaré upper half-plane, 194, 216, 267, 306
polar angle function, 39, 42
polar coordinates, $38,272,273$
polarization, 246
position vector, 62
potential equation, 346
primitive, 103
principal curvature, $71,123,253$, 258
principal normal, 17, 193
prism space, 304
product rule, $137,206,221,239$
profile curve, 77
projective plane, 201, 216
pseudo-Euclidean space, 37, 266
pseudo-hyperbolic space, 269
pseudo-Riemannian metric, 214
pseudo-sphere, 82, 269
quadratic integral, 60
quaternion algebra, 300
quaternion group, 305
quaternion space, 304,305
quaternionic projective space, 330
quaternions, 300
rank, 3
rank theorem, 4
rectifying developable, 128
rectifying plane, 20
relativity theory, 214
relativity, special, 33
Ricci calculus, 207
Ricci curvature, 255, 260, 286
Ricci flow, 253
Ricci tensor, 252, 331
Ricci, G., 207, 241
Riemann sphere, 204
Riemann, B., 197, 263
Riemannian connection, 221
Riemannian manifold, 213
Riemannian metric, 213
Rodrigues, O., 72
rotation group, 301
rotation index, 39, 40
rotation matrix, 202
rotational torus, 58, 129
ruled surface, $77,84,92,119$
ruling, 84, 132, 259, 264, 368
saddle point, 75
scalar curvature, 152, 193, 252, 260, 317, 331
scaling, 249
Scherk, H. F., 111
Schmidt orthogonalization, 13
Schouten tensor, 347
Schouten, J. A., 347
Schur, F., 248
Schwarz, H. A., 112
Schwarzschild metric, 231, 359
screw-motion, 10, 87, 131, 372
scroll, 77
second fundamental form, 68,116 , 237, 261
sectional curvature, 151, 242, 245-247, 285, 351
self-adjoint, 67, 264, 333
semi-Riemannian metric, 214
shape operator, 67
shortest path, 144, 279
singularity, $56,80,82,90,95,102$
slope line, 23,52
space curve, 17
space form, 291
space-like, $34,114,266$
space-time, 309, 311, 324, 353
sphere, $57,66,73,75,80,81,95$, 123, 127, 195, 266
spherical coordinates, 60, 123
spherical curve, 20
spherical dodecahedral space, 304
spiral, 51
square torus, 294
standard parameters, 84
Stiefel manifold, 14
Stokes, G., 170, 320
striction line, 85, 86
structural equations, 168
structure, 202
submanifold, 5, 57
submersion, 3, 5
surface, 55, 58, 179, 180
surface area, 61, 98
surface classification, 179
surface element, 56
surface integral, 61
surface of revolution, 77
surface of rotation, 77,117
symmetries, 269
tangent, 8
tangent bundle, 5, 229, 308
tangent developable, 88
tangent hyperplane, 122
tangent plane, 56
tangent space, 5, 6, 57, 205
tangent surface, 90
tangent vector, $8,17,57,206$
Taylor expansion, 12, 18
Tchebychev grid, 126
tensor, 235, 236
tensor field, 235
tensor product, 236
tetrahedral group, 302
tetrahedron, 303
theorem on turning tangents, 41, 173
Theorema Egregium, 148, 151, 157, 233
Theorema Elegantissimum, 176, 378
theory of relativity, 317
third fundamental form, 68
tightness, 184, 186, 187
time-like, 34, 114, 266
topological manifold, 203
topology, 2, 203
torse, 88
torsion, 17, 20, 27, 36
torsion tensor, 221
torus, 58, 129, 201, 215, 218
torus knot, 32
torus of revolution, 58, 129
total absolute curvature, $43,45,47$, 182
total curvature, $38,40,185,321$
total mean curvature, 129
totally umbilical, 75,124
trace, 250
tractrix, 11, 82
transition function, 200
truncated cube space, 304
tubular surface, 132
umbilic, $72,75,124$
variation, 98
variation of a metric, 313
variation of arc length, 277
vector field, 62, 212, 237
vector space, 2
vertex, 46
warped product, 195, 230, 261
wedge product, 167
Weierstrass representation, 106
Weingarten equation, 140
Weingarten map, 67, 116, 122, 237, 242, 268
Weingarten surface, 93, 130, 132
Wente-torus, 191
Weyl tensor, 341, 342, 347
Weyl, H., 347
Willmore conjecture, 129
winding number, 39
Wolf, J., 328

Page iv constitutes the beginning of this copyright page.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center's RightsLink ${ }^{\circledR}$ service. For more information, please visit: http://www.ams.org/rightslink.

Send requests for translation rights and licensed reprints to reprint-permission @ams.org.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.

77 Wolfgang Kühnel, Differential Geometry: Curves - Surfaces Manifolds, Third Edition, 2015
76 John Roe, Winding Around, 2015
75 Ida Kantor, Jiří Matoušek, and Robert Sámal, Mathematics++, 2015
74 Mohamed Elhamdadi and Sam Nelson, Quandles, 2015
73 Bruce M. Landman and Aaron Robertson, Ramsey Theory on the Integers, Second Edition, 2014
72 Mark Kot, A First Course in the Calculus of Variations, 2014
71 Joel Spencer, Asymptopia, 2014
70 Lasse Rempe-Gillen and Rebecca Waldecker, Primality Testing for Beginners, 2014
69 Mark Levi, Classical Mechanics with Calculus of Variations and Optimal Control, 2014
68 Samuel S. Wagstaff, Jr., The Joy of Factoring, 2013
67 Emily H. Moore and Harriet S. Pollatsek, Difference Sets, 2013
66 Thomas Garrity, Richard Belshoff, Lynette Boos, Ryan Brown, Carl Lienert, David Murphy, Junalyn Navarra-Madsen, Pedro Poitevin, Shawn Robinson, Brian Snyder, and Caryn Werner, Algebraic Geometry, 2013
65 Victor H. Moll, Numbers and Functions, 2012
64 A. B. Sossinsky, Geometries, 2012
63 María Cristina Pereyra and Lesley A. Ward, Harmonic Analysis, 2012
62 Rebecca Weber, Computability Theory, 2012
61 Anthony Bonato and Richard J. Nowakowski, The Game of Cops and Robbers on Graphs, 2011
60 Richard Evan Schwartz, Mostly Surfaces, 2011
59 Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina, Introduction to Representation Theory, 2011
58 Álvaro Lozano-Robledo, Elliptic Curves, Modular Forms, and Their L-functions, 2011

57 Charles M. Grinstead, William P. Peterson, and J. Laurie Snell, Probability Tales, 2011
56 Julia Garibaldi, Alex Iosevich, and Steven Senger, The Erdős Distance Problem, 2011

This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of solutions to selected exercises.
"This new edition is an improved version of what was already an excellent and carefully written introduction to both differential geometry and Riemannian geometry. In addition to a variety of improvements, the author has included solutions to many of the problems, making the book even more appropriate for use in the classroom."

> - Colin Adams,Williams College
"This book on differential geometry by Kühnel is an excellent and useful introduction to the subject. ... There are many points of view in differential geometry and many paths to its concepts. This book provides a good, often exciting and beautiful basis from which to make explorations into this deep and fundamental mathematical subject."

- Louis Kauffman, University of Illinois at Chicago

For additional information and updates on this book, visit www.ams.org/bookpages/stml-77

AMS on the Web
wWw.ams.org

