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Preface to the
English Edition

The German original was intended for courses on differential geome-

try for students in the middle of their academic education, that is, in

the second or third year. In the Anglo-American system of university

education, the contents of this textbook corresponds to an under-

graduate course in elementary differential geometry (Chapters 1 – 4),

followed by a beginning course in Riemannian geometry (Chapters

5 – 8). This led to the idea of having a translation of the German

original into English.

I am very glad that the American Mathematical Society supported

this project and published the present English version. I thank the

translator, Bruce Hunt, for the hard work he had spent on the trans-

lation. From the beginning he was surprised by the quantity of text,

compared to the quantity of formulas. In addition he had to struggle

with complicated and long paragraphs in German. One of the major

problems was to adapt the terminology of special notions in the the-

ory of curves and surfaces to the English language. Another problem

was to replace almost all references to German texts by references to

English texts, in particular, all references to elementary textbooks on

calculus, linear algebra, geometry, and topology. Ultimately all these

problems could be solved, at least to a certain approximation. The

ix



x Preface to the English Edition

bibliography contains only books in English, with just three excep-

tions. Therefore, the English version can be used as a textbook for

third-year undergraduates and beginning graduate students.

Furthermore, I am grateful to Edward Dunne from the AMS who was

extremely helpful at all stages of the project, not only for editorial and

technical matters, but also for questions concerning the terminology

and the tradition of notations. He pointed out that the ordinary

spherical coordinates on the sphere, denoted by ϕ, ϑ in this book,

are denoted ϑ, ϕ (that is, the other way around) in many English

textbooks on calculus. We hope that this does not lead to major

confusions.

In the second English edition a number of errors were corrected and a

number of additional figures were added, following the second German

edition. Most of the additional figures were provided by Gabriele

Preissler and Michael Steller. The illustrations play an important

rôle in this book. Hopefully they make the book more readable. The

concept of having boxes around important statements was kept from

the German original, even though now we have a few very large boxes

covering major parts of certain pages.

Stuttgart, June 2005 W. Kühnel

The present third edition is a corrected and updated version that in-

corporates the development of altogether six editions in German, the

last one from 2013. Each of these German editions was corrected, ex-

tended and improved in several directions. As an example, a number

of proofs were made more precise if they turned out to be too short

in the first edition. In comparison to the second English edition,

the third edition includes many improvements, there are more figures

and more exercises, and - as a new feature - at the end a number of

solutions to selected exercises are given.

Stuttgart, July 2014 W. Kühnel



Preface to the
German Edition

This book arose from courses given on the topic of “Differential ge-

ometry”, which the author has given several times in different places.

The amount of material corresponds roughly to a course in classi-

cal differential geometry of one semester length (Chapters 1-4 of the

book), followed by a second one-semester course on Riemannian ge-

ometry (Chapters 5-8). The prerequisites are the standard courses

in calculus (including several variables) and linear algebra. Only in

section 3D (on minimal surfaces) do we assume some familiarity with

complex function theory. For this reason the book is appropriate

for a course in the latter part of the undergraduate curriculum, not

only for students majoring in mathematics, but also those major-

ing in physics and other natural sciences. Accordingly, we do not

present any material which could in any way be considered original.

Instead, our intent is to present the basic notions and results which

will enable the interested student to go on and study the masters.

Especially in the introductory chapters we will take particular care

in presenting the material with emphasis on the geometric intuition

which is so characteristic of the topic of differential geometry; this is

supported by a large number of figures in this part of the book. The

results which the author considers particularly important are placed

xi



xii Preface to the German Edition

in boxes to emphasize them. These results can be thought of as a

kind of skeleton of the theory.

This book wouldn’t have been possible without the generous help of

my students and colleagues, who found numerous mistakes in the dis-

tributed notes of the first version of this book. In particular I would

like to mention Gunnar Ketelhut, Eric Sparla, Michael Steller and

Gabriele Preissler, who spent considerable time and effort in reading

the original notes. G. Ketelhut also supplied numerous suggestions

for improvements in the text, as well as writing Section 8F himself.

Martin Renner provided almost all the figures, which were produced

with the computer algebra system MAPLE. Marc-Oliver Otto pro-

vided some figures for Chapter 7, and Ilva Maderer typed the original

version in LATEX. Finally, Michael Grüter accompanied the whole

production process with helpful suggestions, as well as giving me per-

sonal support in several ways. The work and insistence of Dr. Ulrike

Schmickler-Hirzebruch is responsible for the speed with which these

lectures were nonetheless accepted for the series “Vieweg-Studium

Aufbaukurs Mathematik” and then also appeared almost on time.

My thanks goes to all of them.

Stuttgart, June 1999 W. Kühnel
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List of notation

Z, IR integers, real numbers

IRn real vector space, also Euclidean space with fixed origin

En Euclidean space without fixed origin

Sn n-dimensional unit sphere in IRn+1

IRn
1 Minkowski space or Lorentzian space

Hn hyperbolic space

C, IH complex numbers, quaternions

〈 , 〉 Euclidean scalar product, in Chapters 5 to 8 also a Riemannian
metric

〈 , 〉1 Lorentzian metric in Minkowski space IR3
1

I, II, III first, second and third fundamental forms

gij , hij , eij first, second and third fundamental forms in local coordinates

gij inverse matrix to gij

hk
i =

∑
j hijg

jk Weingarten mapping in local coordinates

E,F,G Gaussian symbols for the first fundamental form E = g11, F =
g12, G = g22

g Riemannian metric

κ curvature of a plane or space curve

τ torsion of a space curve

e1, . . . , en Frenet n-frame of a Frenet curve

κ1, . . . , κn−1 Frenet curvatures of a Frenet curve in IRn (in Ch. 2)

395



396 List of notation

ċ = dc
dt

tangent vectors to a curve with parameter t

c′ = dc
ds

tangent vectors to a curve with arc length parameter s

Uc index of a closed plane curve c

κN normal curvature of a curve on a surface

κg geodesic curvature of a curve on a surface

ν Gaussian normal mapping, Gauss map

L Weingarten mapping

κ1, κ2 principal curvatures of a surface element in IR3

κ1, . . . , κn principal curvatures of a hypersurface in IRn+1 (in Ch. 3)

λ parameter of distribution of a ruled surface

dA area element of a two-dimensional surface element

dV volume element in higher dimensions

H mean curvature

K Gaussian curvature

Ki ith mean curvature (on hypersurface elements)

D directional derivative in IRn

∇ covariant derivative or Riemannian connection

[X,Y ] Lie bracket of two vector fields X,Y

Γk
ij ,Γij,m Christoffel symbols

R(X,Y )Z curvature tensor

Rs
ijk, Rijkl curvature tensor in local coordinates

Ric(X,Y ) Ricci tensor

ric(X) Ricci curvature in the direction X

Rij Ricci tensor in local coordinates

S scalar curvature

W,C Weyl and Schouten tensors

expp exponential mapping at a point p



Index

acceleration vector, 141

angle, 2

angle preserving, 99, 127

apex, 12

arc element, 60

arc length, 9

Archimedean spiral, 51

asymptotic curve, 83, 126

atlas, 200, 202

Banchoff, T., 185

Beltrami, E., 84, 93

Bertrand curve, 54

Bianchi identity, 243, 335

binary dihedral group, 303

binary icosahedral group, 303

binary octahedral group, 303

binary tetrahedral group, 303

binormal, 17

biquadratic form, 246

bivector, 332

Bonnet, O., 153

boost, 272

canal surface, 77

Cardan angles, 202

Cartan, É., 165

Catalan, E. C., 111, 128

catenary, 11, 109, 193

catenoid, 109, 128, 156, 193, 262

Cauchy-Riemann equations, 101

Cayley map, 201

Cayley plane, 330

Cayley ruled surface, 132

chain rule, 210

chart, 5, 198, 199, 202

Christoffel symbols, 139, 166, 223

circle, 9

Clifford torus, 32

Codazzi-Mainardi equation, 147,
154, 168, 196, 242

Cohn-Vossen, S., 188

complex manifold, 203

complex projective space, 329

complex structure, 204

cone, 88, 90, 92

conformal, 99, 103, 216, 274

conformal curvature, 341

conformally flat, 124, 346, 347

conic type, 81

conjugate point, 307

conjugate surface, 110

connection, 221

connection form, 166

constant curvature, 25, 36, 80, 161,
189, 249, 269, 289, 310

constant mean curvature, 191

contact of kth order, 12

contraction, 250

contravariant tensor, 236
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convergence, 204

convex, 43, 182

convex hull, 45, 182, 304

coordinate transformation, 200

Cornu spiral, 16

cosmological constant, 325

countability axiom, 218

covariant derivative, 136, 138, 166,

221, 239, 268

covariant tensor, 236

covector field, 237

covering, 293, 302, 310

Coxeter, H.S.M., 303

CR equations, 101

critical point, 187

cubical parabola, 20

curvature, 14, 17, 20, 36, 70

curvature tensor, 150, 169, 243,
247, 315

curve, 7, 8

curve, closed, 37

curve, length of, 8

curve, simply closed, 37, 46

cyclic group, 302, 303

cycloid, 50

cylinder, 88, 90

Darboux equations, 26, 53

Darboux vector, 26, 53

derivative, 3, 6, 210

developable surface, 88, 119

dicyclic group, 303

diffeomorphic, 204

differentiable, 3

differentiable manifold, 199

differentiable structure, 200

differential, 6, 210, 240

differential form, 166

dihedral group, 302

Dini, U., 93

directional derivative, 98, 135, 206,
207, 221

directional vector, 62

directrix, 84

distance, 2

divergence, 251, 257, 319, 320

double point, 37, 49

double tangent, 49

dual basis, 212
duality, 350
Dupin indicatrix, 75

eigenvalue, 71
eigenvector, 71
Einstein field equations, 324

Einstein space, 254, 263, 328, 351
Einstein tensor, 257, 324
Einstein, A., 312, 317, 351
ellipse, 75

ellipsoid, 130
elliptic point, 72, 193
elongated sphere, 81
energy functional, 280

Enneper, A., 84, 111
equations of Gauss and

Weingarten, 140, 146
Euclidean motion, 269

Euler angles, 202
Euler characteristic, 177, 179, 180,

188, 218
evolute, 15
exponential mapping, 226, 280

exterior derivative, 167

Fabricius-Bjerre, Fr., 49

Fenchel, W., 47
Fermi coordinates, 160
first fundamental form, 59
Flamm’s paraboloid, 95

flow, 230
focal curve, 15
four vertex theorem, 46
free motion, 270

Frenet curvature, 27
Frenet curve, 13
Frenet equations, 14, 17, 27, 36

Frenet matrix, 25, 27, 37
Frenet n-frame, 13
Frobenius, G., 155

Gauss equation, 147, 150, 154, 168,
196, 261, 268, 359

Gauss formula, 140
Gauss lemma, 283

Gauss map, 63, 66, 100, 116, 122
Gauss, C. F., 148, 320
Gauss-Bonnet formula, 172, 321
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Gauss-Kronecker curvature, 123

Gaussian curvature, 72, 117, 148,
193, 242

geodesic, 71, 121, 141, 216, 225,
280, 307

geodesic curvature, 23, 71, 125, 171

geodesic parallel coordinates, 160

geodesic polar coordinates, 272,
283, 290

geodesic torsion, 125

geodesic triangle, 176, 230

geometric linearization, 8, 55

golden ratio, 303

gradient, 4, 98, 240, 313

Gram determinant, 181

Gram-Schmidt orthogonalization,
13

graph, 58, 73

harmonic function, 100

Hausdorff separation axiom, 203

helicoid, 86, 109, 132, 156

helicoidal motion, 10, 131

helicoidal ruled surface, 86, 93

helix, 10, 20

Henneberg, L., 111

Hesse tensor, 240

Hessian, 73, 240, 264, 345

Hessian matrix, 73

hexagonal torus, 294

Hilbert, D., 162, 190, 312, 317

Hilbert-Einstein functional, 312

Hodge operator, 350, 353

holomorphic, 101, 105

holonomy group, 228

homogenous space, 326

Hopf, H., 41, 180

Hurwitz quaternions, 304

hyperbola, 35, 75

hyperbolic plane, 119, 130, 196

hyperbolic point, 72

hyperbolic space, 267, 269, 292

hyperboloid, 73, 83, 85, 113, 127,
267

hyperboloid type, 81

hyperplane, 124

hypersphere, 124

hypersurface element, 122

icosahedral group, 302

icosahedron, 303

immersion, 3, 5, 8, 55

implicit function, 3

index, 124

index form, 277

inflection point, 14, 49

inner product, 2, 98, 214

integrability conditions, 146, 147,
149, 155, 168, 264, 348

inverse mapping, 4

irreducible, 327

isometric, 59, 110, 161, 216

isometry, 216

isometry group, 326

isothermal, 99

isotropic, 34, 35, 114, 131

isotropy group, 326

Jacobi determinant, 64

Jacobi equation, 284

Jacobi field, 284, 286, 307

Jacobi identity, 220, 243

Jacobian, 3

Killing field, 219

Klein bottle, 201, 218

Koszul formula, 343

Kuiper, N. H., 185

Lagrange multiplier, 72

Laplace-Beltrami operator, 252

Laplacian, 252, 360

length preserving, 161

lens space, 304, 308

level point, 72, 104, 105

Levi-Civita connection, 221

Lie algebra, 227

Lie bracket, 137, 219, 231

Lie derivative, 219

Lie group, 227

Lie, S., 219

Liebmann, H., 47, 189, 191

light-cone, 34, 113

light-like, 34

light-like line, 35

line, 9, 84, 121

line of curvature, 76
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lines of curvature parameters, 76,
103

locally compact, 204
locally isometric, 249
logarithmic spiral, 51

Lorentz group, 270
Lorentz rotation, 117
Lorentz space, 33, 270
Lorentz transformation, 271

Lorentzian metric, 214, 218

manifold, 199

Maurer-Cartan equations, 168
mean curvature, 72, 98, 123, 129
mean curvature vector, 100
measure tensor, 234

Mercator projection, 127
meridian curve, 77
meromorphic, 105, 204
metric tensor, 234

Meusnier, M., 71
minimal surface, 98, 131
Minkowski space, 33, 113, 214, 270
Möbius strip, 65

Möbius, A., 65
Monge coordinates, 73, 75, 124
Monge surface, 132
monkey saddle, 73

multilinear, 236
multiplicity, 307
mylar balloon, 95

Neil parabola, 19
non-Euclidean geometry, 120
norm, 2

normal coordinates, 281
normal curvature, 71, 171
normal plane, 19
normal section, 71

normal space, 6, 56
normal variation, 96
normal vector, 14, 57, 66, 115, 122
null cubic, 371

null vector, 34, 113, 214, 266
null-cone, 113

oblate sphere, 81
octahedral group, 302
octahedral space, 304

octahedron, 303

orientability, 63

orthogonal group, 201, 270

osculating plane, 19, 71

osculating sphere, 20

ovaloid, 182

parabola, 19

parabola of contact, 50

parabolic point, 72

paraboloid, 73, 127

parallel, 141, 225, 263

parallel displacement, 142, 225

parallel surface, 65, 129

parameter, 56

parameter of distribution, 86

parameter transformation, 64

parametrization, 5, 56, 198

parametrized curve, 8

partition of unity, 217

Petrov type, 358

Pfaffian form, 166

Poincaré upper half-plane, 194,

216, 267, 306

polar angle function, 39, 42

polar coordinates, 38, 272, 273

polarization, 246

position vector, 62

potential equation, 346

primitive, 103

principal curvature, 71, 123, 253,
258

principal normal, 17, 193

prism space, 304

product rule, 137, 206, 221, 239

profile curve, 77

projective plane, 201, 216

pseudo-Euclidean space, 37, 266

pseudo-hyperbolic space, 269

pseudo-Riemannian metric, 214

pseudo-sphere, 82, 269

quadratic integral, 60

quaternion algebra, 300

quaternion group, 305

quaternion space, 304, 305

quaternionic projective space, 330

quaternions, 300
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rank, 3

rank theorem, 4

rectifying developable, 128

rectifying plane, 20

relativity theory, 214

relativity, special, 33

Ricci calculus, 207

Ricci curvature, 255, 260, 286

Ricci flow, 253

Ricci tensor, 252, 331

Ricci, G., 207, 241

Riemann sphere, 204

Riemann, B., 197, 263

Riemannian connection, 221

Riemannian manifold, 213

Riemannian metric, 213
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time-like, 34, 114, 266
topological manifold, 203
topology, 2, 203
torse, 88
torsion, 17, 20, 27, 36
torsion tensor, 221
torus, 58, 129, 201, 215, 218
torus knot, 32
torus of revolution, 58, 129
total absolute curvature, 43, 45, 47,

182
total curvature, 38, 40, 185, 321
total mean curvature, 129
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