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C H A P T E R 1

Geometry and the
Axiomatic Method

The development of the axiomatic method of reasoning was one of the
most profound events in the history of mathematics. In this chapter
we explore axiomatic systems and their properties.

One strand running through the chapter is the search for the
“ideal.” The golden ratio is the ideal in concrete form, realized through
natural and man-made constructions. Deductive reasoning from a base
set of axioms is the ideal in abstract form, realized in the crafting of
clear, concise, and functional definitions, and in the reasoning employed
in well-constructed proofs.

Another strand in the chapter, and which runs through the entire
text, is that of the interplay between the concrete and the abstract. As
you work through this text, you are encouraged to play with concrete
ideas, such as how the Golden Ratio appears in nature, but you are also
encouraged to play (experiment) when doing proofs and more abstract
thinking. The experimentation in the latter is of the mind, but it can
utilize many of the same principles of exploration as you would use in a
computer lab. When trying to come up with a proof you should consider
lots of examples and ask “What if ...?” questions. Most importantly,
you should interact with the ideas, just as you interact with the software
environment.

Interaction with ideas and discovery of concepts is a primary orga-
nizing principle for the text. Interaction is encouraged in three ways.
First, topics are introduced and developed in the text. Next, lab
projects reinforce concepts, or introduce related ideas. Lastly, project
results are discussed, and conclusions drawn, in written lab reports.
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You will first read about concepts and hear them discussed in class.
Then, you will conduct experiments to make the ideas concrete. Finally,
you will conceptualize ideas by re-telling them in project reports.

The work you do in the lab and in group projects is a critical
component of the course. The projects that are designed to be done in
groups have an additional pedagogical advantage. You will find that by
speaking with other students, using mathematical terms and concepts,
you will better internalize such concepts and make them less abstract.

NOTES ON LAB PROJECTS

Project explorations are designed to be general in scope. They can
be carried out using a variety of geometry software packages such as
Geometry Explorer, GeoGebra, Geometer’s Sketchpad, etc.

Specific instructions for carrying out each project in the text can
be found at the author’s website http://www.gac.edu/~hvidsten/geom-
text.

In order to help with the formatting of lab reports there is sample
lab report for a “fake” lab on the Pythagorean Theorem in appendix
A of this guide.

SOLUTIONS TO EXERCISES IN CHAPTER 1

1.3 Project 1 - The Ratio Made of Gold

The main difficulty you will face with the first lab project will be
in learning the functionality of the dynamic geometry program that
your class is using. One major point to watch out for is the notion of
“attaching” objects together when doing a construction. For example,
when you create a point on top of a line, the point becomes attached
to the line. That is, when the point is moved it is constrained to follow
the line.

1.4 The Rise of the Axiomatic Method

In this section we focus on reasoning in mathematics. The problems in
this section may seem quite distant from the geometry you learned in
high school, but the goal is to practice reasoning from the definitions
and properties that an axiomatic system posits and then create proofs
and explanations using just those basic ideas and relationships. This is
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good mental training. It is all too easy to argue from diagrams when
trying to justify geometric statements.

1.4.1 If dictionaries were not circular, there would need to be an
infinite number of different words in the dictionary.

1.4.3 Let a set of two different flavors be called a pairing. Suppose
there were m children and n > m pairings. By Axiom 2 every pairing is
associated to a unique child. Thus, for some two pairings, P1,P2 there
is a child C associated to both. But this contradicts Axiom 3. Likewise,
if m > n, then by Axiom 3 some two children would have the same
pairing. This contradicts Axiom 2. So, m = n and, since the number
of pairings is 4 + 3 + 2 + 1 = 10, there are 10 children.

1.4.5 There are exactly four pairings possible of a given flavor with
the others. By Axiom 2, there is exactly one child associated to each
of these four pairings.

1.4.7 If xyz = e, then by Axiom 4, x−1xyz = x−1 . By Axiom 4
and Axiom 3, x−1xyz = eyz = yz and thus yz = x−1. Then, yzx =
x−1x = e

1.4.9 First we show that 1 ∈M . By Axiom 4 we know 1 is not the
successor of any natural number. In particular, it cannot be a successor
of itself. Thus, 1′ 6= 1 and 1 ∈M . Now, suppose x ∈M . That is, x′ 6= x.
By Axiom 3 we have that (x′)′ 6= x′, and so x′ ∈ M . Both conditions
of Axiom 6 are satisfied and thus M = N .

1.4.11 Given x, let M = {y|x+ y is defined}. Then, by definition
1 ∈M . Suppose y ∈M . Then, x+ y′ = (x+ y)′ is defined and y′ ∈M .
So, M = N by Axiom 6. Now, since x was chosen arbitrarily, addition
is defined for all x and y.

1.4.13 This is a good discussion question. Think about the role
of abstraction versus application in mathematics. Think about how
abstraction and application cross-fertilize one another.

1.5 Properties of Axiomatic Systems

This is a “meta” section. By this is meant that we are studying prop-
erties of axiomatic systems themselves, considering such systems as
mathematical objects in comparison to other systems. This may seem
quite foreign territory to you, but have an open mind and think about
how one really knows that mathematics is true or logically consistent.
We often think of mathematics as an ancient subject, but in this section
we bring in the amazing results of the twentieth century mathematician
Kurt Godel.
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If this topic interests you, you may want to further research the area
of information theory and computability in computer science. A good
reference here is Gregory Chaitin’s book The Limits of Mathematics
(Springer, 1998.) Additionally, much more could be investigated as
to the various philosophies of mathematics, in particular the debates
between platonists and constructionists, or between intuitionists and
formalists. A good reference here is Edna E. Kramer’s The Nature
and Growth of Modern Mathematics (Princeton, 1981), in particular
Chapter 29 on Logic and Foundations.

1.5.1 Let S be the set of all sets which are not elements of them-
selves. Let P be the proposition that “S is an element of itself”. And
consider the two propositions P and the negation of P , which we de-
note as ¬P . Assume P is true. Then, S is an element of itself. So, S
is a set which by definition is not an element of itself. So, ¬P is true.
Likewise, if ¬P is true then P is true. In any event we get P and ¬P
both true, and the system cannot be consistent.

1.5.3 Good research books for this question are books on the his-
tory of mathematics. This could be a good final project idea.

1.5.5 Let P be a point. Each pairing of a point with P is associated
to a unique line. There are exactly three such pairings.

1.5.7 Yes. The lines and points satisfy all of the axioms.
1.5.9 If (x, y) is in P , then x < y. Clearly, y < x is impossible and

the first axiom is satisfied. Also, inequality is transitive on numbers so
the second axiom holds and this is a model.

1.5.11 A quick listing of all points and lines and incidence relations
shows that Axioms 1 and 2 are satisfied. For Axiom 3, points A, B,
C, and D have the property that no subset of three of the points are

collinear. For Axiom 4, line
←→
AB suffices.

1.5.13 The dual to Axiom 1 is “Given two distinct lines, there
is exactly one point incident with them both.” Proof: Suppose there
were two points A and B incident on both lines. This would contradict
Axiom A1.

1.5.15 By Axiom 4 there is a line l with n+ 1 points, say P1, . . . ,
Pn+1. By Axiom 3, there must be a point Q that is not on l. Let l1 be
the line incident on P1 and Q, l2 be the line incident on P2 and Q, etc.
The n + 1 lines l1, . . . , ln+1 through Q satisfy the dual statement of
Axiom 4.



Axiomatic Method � 5

1.6 Euclid’s Axiomatic Geometry

In this section we take a careful look at Euclid’s original axiomatic
system. We observe some of its inadequacies in light of our modern
“meta” understanding of such systems, and discuss the one axiom that
has been the creative source of much of modern geometry – the Parallel
Postulate.

1.6.1 Good research books for this question are books on the his-
tory of mathematics.

1.6.3 An explanation should be given along with a figure like the
following:

a

a

b

b

FIGURE 1.1:

1.6.5

123 = 3 · 36 + 15

36 = 2 · 15 + 6

15 = 2 · 6 + 3

6 = 2 · 3 + 0

Thus, gcd(123, 36) = 3.
1.6.7 This exercise is a good starting off point for discussing the

importance of definitions in mathematics. One possible definition for a
circle is:

Definition 1.1. A circle with center O and radius length r is the set
of points P on the sphere such that the distance along the great circle
from O to P is r.
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Note that this definition is itself not entirely well-defined, as we
have not specified what we mean by distance. One workable definition
is for distance to be net cumulative arc length along a great circle as
we move from a point O to a point P .

An angle ABC can be most easily defined as the Euclidean angle

made by the tangent lines at B to the circles defining
←→
AB and

←→
CB.

Then, Postulate 1 is satisfied most of the time, as we can construct
a unique great circle passing through two points on the sphere, if the
points are not antipodal. We simply intersect the sphere with the plane
through the two points and the center of the sphere.

Postulate 2 is satisfied as we can always extend an arc of a great
circle, although we may retrace the existing arc.

Postulate 3 is satisfied if we use the cumulative distance definition
as discussed above.

Postulate 4 is automatically satisfied as angles are Euclidean angles.
Postulate 5 is not satisfied, as every pair of lines intersects. An easy

proof of this is to observe that every line is uniquely defined by a plane
through the origin. Two different planes will intersect in a line, and
this line must intersect the sphere at two points.

1.6.9 This is true. Given a plane through the origin, we can always
find an orthogonal plane. The angle these planes make will equal the
angle of the curves they define on the sphere, as the spherical angles
are defined by tangent lines to the sphere, and thus lie in the planes.

1.6.11 This is true. An example is the triangle that is defined in
the first octant. It has three right angles.

1.7 Project 2 - A Concrete Axiomatic System

After the last few sections dealing with abstract axiomatic systems,
this lab is designed so that you can explore another geometric system
through concrete manipulation of the points, lines, etc of that system.
The idea here is to have you explore the environment first, then make
some conjectures about what is similar and what is different in this
system as compared to standard Euclidean geometry.
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Euclidean Geometry

In this chapter we start off with a very brief overview of basic properties
of angles, lines, and parallels. We review, in summary form, some of the
most important logical problems of classical Euclidean geometry that
axiom writers such as Hilbert attempted to fix, and then to move on to
more substantial results in plane geometry. As you work through this
material, you may feel unsure of what you can assume and not assume
when working on proofs. In each section of Chapter 2 the author tried
to carefully describe what results and assumptions were made in that
section. For example, in section 2.1, you are asked to use the notion of
betweenness in the way your tuition would dictate, while at the same
time pointing out that this is one of those geometric properties that
needs an axiomatic base.

If you desire a more rigorous approach to Euclidean Geometry, the
complete foundational development can be found in on-line chapters
at the author’s website: http://www.gac.edu/~hvidsten/geom-text.

If you want more guidance on the art of writing proofs, consult
Appendix A of the text.

SOLUTIONS TO EXERCISES IN CHAPTER 2

2.1 Angles, Lines, and Parallels

This section may be the least satisfying section in the chapter for
you, since many theorems are referenced without proof. These results
were (hopefully) covered in great detail in your high school geometry
course and we will only briefly review them. A full and consistent de-
velopment of the results in this section would entail a “filling in” of
many days foundational work based on Hilberts axioms. This founda-

7
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tional material can be found in on-line chapters at the author’s website:
http://www.gac.edu/~hvidsten/geom-text.

A significant number of the exercises deal with parallel lines. This
is for two reasons. First of all, historically there was a great effort to
prove Euclid’s fifth Postulate by converting it into a logically equivalent
statement that was hoped to be easier to prove. Thus, many of the
exercises nicely echo this history. Secondly, parallels and the parallel
postulate are at the heart of one of the greatest revolutions in math
—the discovery of non-Euclidean geometry. This section foreshadows
that development, which is covered in Chapters 7 and 8.

2.1.1 It has already been shown that ∠FBG ∼= ∠DAB. Also, by
the vertical angle theorem (Theorem 2.3) we have ∠FBG ∼= ∠EBA
and thus, ∠DAB ∼= ∠EBA.

Now, ∠DAB and ∠CAB are supplementary, thus add to two right
angles. Also, ∠CAB and ∠ABF are congruent by the first part of this
exercise, as these angles are alternate interior angles. Thus, ∠DAB and
∠ABF add to two right angles.

2.1.3 a. False, right angles are defined solely in terms of congruent
angles.

b. False, an angle is defined as just the two rays plus the vertex.
c. True. This is part of the definition.
d. False. The term “line” is undefined.
2.1.5 Proposition I-23 states that angles can be copied. Let A and

B be points on l and n respectively and let m be the line through A
and B. If t = m we are done. Otherwise, let D be a point on t that
is on the same side of n as l. (Assuming the standard properties of
betweenness) Then, ∠BAD is smaller than the angle at A formed by
m and n. By Theorem 2.9 we know that the interior angles at B and
A sum to two right angles, so ∠CBA and ∠BAD sum to less than two
right angles. By Euclid’s fifth postulate t and l must meet.

2.1.7 First, assume Playfair’s Postulate, and let lines l and m be
parallel, with line t perpendicular to l at point A. If t does not intersect
m then, t and l are both parallel to m, which contradicts Playfair.
Thus, t intersects m and by Theorem 2.9 t is perpendicular at this
intersection.

Now, assume that whenever a line is perpendicular to one of two
parallel lines, it must be perpendicular to the other. Let l be a line and
P a point not on l. Suppose that m and n are both parallel to l at P .
Let t be a perpendicular from P to l. Then, t is perpendicular to m
and n at P . By Theorem 2.4 it must be that m and n are coincident.



Euclidean Geometry � 9

2.1.9 Assume Playfair and let lines m and n be parallel to line l. If
m 6= n and m and n intersect at P , then we would have two different
lines parallel to l through P , contradicting Playfair. Thus, either m
and n are parallel, or are the same line.

Conversely, assume that two lines parallel to the same line are equal
or themselves parallel. Let l be a line and suppose m and n are parallel
to l at a point P not on l. Then, n and m must be equal, as they
intersect at P .

2.2 Congruent Triangles and Pasch’s Axiom

This section introduces many results concerning triangles and also dis-
cusses several axiomatic issues that arose from Euclid’s treatment of
triangles.

2.2.1 Yes, it could pass through points A and B of ∆ABC. It does
not contradict Pasch’s axiom, as the axiom stipulates that the line
cannot pass through A, B, or C.

2.2.3 No. Here is a counter-example.

A B

D C

l

FIGURE 2.1:

2.2.5 If A = C we are done. If A, B, and C are collinear, then
B cannot be between A and C, for then we would have two points
of intersection for two lines. If A is between B and C, then l cannot
intersect AC. Likewise, C cannot be between A and B.

If the points are not collinear, suppose A and C are on opposite
sides. Then l would intersect all three sides of ∆ABC, contradicting
Pasch’s axiom.

2.2.7 Let ∠ABC ∼= ∠ACB in ∆ABC. Let
−−→
AD be the angle bisector
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of ∠BAC meeting side BC at D. Then, by AAS, ∆DBA and ∆DCA
are congruent and AB ∼= AC.

2.2.9 Suppose that two sides of a triangle are not congruent. Then,
the angles opposite those sides cannot be congruent, as if they were,
then by the previous exercise, the triangle would be isosceles.

Suppose in ∆ABC that AC is greater than AB. On AC we can
find a point D between A and C such that AD ∼= AB. Then, ∠ADB
is an exterior angle to ∆BDC and is thus greater than ∠DCB. But,
∆ABD is isosceles and so ∠ADB ∼= ∠ABD, and ∠ABD is greater
than ∠DCB = ∠ACB.

2.2.11 Let ∆ABC and ∆XY Z be two right triangles with right
angles at A and X, and suppose BC ∼= Y Z and AC ∼= XZ. Suppose
AB is greater than XY . Then, we can find a point D between A and
B such that AD ∼= XY . By SAS ∆ADC ∼= ∆XY Z. Now, ∠BDC
is exterior to ∆ADC and thus must be greater than 90 degrees. But,
∆CDB is isosceles, and thus ∠DBC must also be greater than 90
degrees. This is impossible, as then ∆CDB would have angle sum
greater than 180 degrees.

A C

B

X Z

Y

D

FIGURE 2.2:

2.2.13 We use AAS to show that ∆BFH ∼= ∆AFG and ∆CEI ∼=
∆AEG. Thus BH ∼= AG ∼= CI and BHIC is Saccheri. Also, by adding
congruent angles in the left case we get that the sum of the angles in
the triangle is the same as the sum of the summit angles. In the right
case, we need to re-arrange congruent angles.

2.2.15 Given quadrilaterals ABCD and WXY Z we say the two
quadrilaterals are congruent if there is some way to match vertices so
that corresponding sides are congruent and corresponding angles are
congruent.

SASAS Theorem: If AB ∼= WX, ∠ABC ∼= ∠WXY , BC ∼= XY ,
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∠BCD ∼= ∠XY Z, and CD ∼= Y Z, then quadrilateral ABCD is con-
gruent to quadrilateral WXY Z.

A

B

D

C

W

X

Z

Y

FIGURE 2.3:

Proof: ∆ABC and ∆WXY are congruent by SAS. This im-
plies that ∆ACD and ∆WY Z are congruent. This shows that sides
are correspondingly congruent, and two sets of angles are congruent
(∠ABC ∼= ∠WXY and ∠CDA ∼= ∠Y ZW ). Since ∠BAC ∼= ∠XWY
and ∠CAD ∼= ∠YWZ, then by angle addition ∠BAD ∼= ∠XWZ.
Similarly, ∠BCD ∼= ∠XY Z. 2

2.3 Project 3 - Special Points of a Triangle

You are encouraged to explore and experiment in this lab project.
Are there any other sets of intersecting lines that one could construct
for a given triangle? Are there interesting properties of constructed
intersecting lines in other polygons?

You may be taking this class to become a secondary math teacher.
This project is one that could be easily transferred to the high school
setting.

2.4.1 Mini-Project:Area in Euclidean Geometry

This section includes the first “mini-project” for the course. These
projects are designed to be done in the classroom, in groups of three
or four students. Each group should elect a Recorder. The Recorder’s
sole job is to outline the group’s solutions to exercises. The summary
should not be a formal write-up of the project, but should give enough
a brief synopsis of the group’s reasoning process.

The main goal for the mini-projects is to have a discussion of geo-
metric ideas. Through the group process, you can clarify your under-
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standing of concepts, and help others better grasp abstract ways of
thinking. There is no better way to conceptualize an idea than to have
to explain it to another person.

In this mini-project, you are asked to grapple with the notion of
“area”. The notion of area is not that simple or obvious. For example,
what does it mean for two figures to have the same area?

2.4.1 Construct a diagonal and use the fact that alternate interior
angles of a line falling on parallel lines are congruent to generate an
ASA congruence for the two sub-triangles created in the parallelogram.

2.4.3 We have that AE ∼= DF . Theorem 2.9 says that ∠AEB ∼=
∠DFC. So, by SAS ∆AEB ∼= ∆DFC. Let G be the point where
CD intersects BE. (Such a point exists by Pasch’s axiom applied to
∆AEB) Now, parallelogram ABCD can be split into ∆AEB plus
∆BGC minus ∆DGE. Also, parallelogram EBCF can be split into
∆DFC plus ∆BGC minus ∆DGE.

2.4.5 By Theorem 2.9 we know that ∠BAE and ∠FBA are right
angles, and thus ABFE is a rectangle. By Theorem 2.9 we have

that ∠DAB ∼= ∠CBG, where G is a point on
−−→
AB to the right of

B. Subtracting the right angles, we get ∠DAE ∼= ∠CBF . By SAS,
∆DAE ∼= ∆CBF . Then rectangle AEFB can be split into AECB
and ∆CBF and parallelogram DABC can be split into AECB and
∆DAE and the figures are equivalent.

Hidden Assumptions? One hidden assumption is the notion that
areas are additive. That is, if we have two figures that are not overlap-
ping, then the area of the union is the sum of the separate areas.

2.4.2 Cevians and Area

2.4.7 Let the triangle and medians be labeled as in Theorem 2.24.
The area of ∆AY B will be equal to AY h, where h is the length of

a perpendicular dropped from B to
←→
AC. The area of ∆CY B will be

equal to CY h, Since AY ∼= CY , these areas will be the same and

∆ABC will balance along
←→
BY . A similar argument shows that ∆ABC

balances along each median, and thus the centroid is a balance point
for the triangle.

2.4.9 Consider median BD in ∆ABC, with E the centroid. Let
a = BE and b = DE. Then, the area of ∆DBC is (a+b)h

2 where h is
the height of the triangle. This is 3 times the area of ∆DEC by the
previous exercise. Thus, (a+b)h2 = 3 bh2 , or a = 2b.
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A

B C

D

Ea

b

FIGURE 2.4:

2.5 Similar Triangles

As stated in the text, similarity is one of the most useful tools in the
geometer’s toolkit. It can be used in the definition of the trigonometric
functions and in proofs of theorems like the Pythagorean Theorem.

2.5.1 Since
←→
DE cuts two sides of triangle at the midpoints, then

by Theorem 2.27, this line must be parallel to the third side BC. Thus
∠ADE ∼= ∠ABC and ∠AED ∼= ∠ACB. Since the angle at A is con-
gruent to itself, we have by AAA that ∆ABC and ∆ADE are similar,
with proportionality constant of 1

2 .

A

B C

D E

FIGURE 2.5:

2.5.3 Let ∆ABC and ∆DEF have the desired SSS similarity prop-
erty. That is sides AB and DE, sides AC and DF , and sides BC and
EF are proportional. We can assume that AB is at least as large as

DE. Let G be a point on AB such that AG ∼= DE. Let
←→
GH be the

parallel to
←→
BC through G. Then,

←→
GH must intersect

←→
AC, as other-

wise
←→
AC and

←→
BC would be parallel. By the properties of parallels,
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∠AGH ∼= ∠ABC and ∠AHG ∼= ∠ACB. Thus, ∆AGH and ∆ABC
are similar.

Therefore, AB
AG = AC

AH . Equivalently, AB
DE = AC

AH . We are given that
AB
DE = AC

DF . Thus, AH ∼= DF .
Also, ABAG = BC

GH and AB
AG = AB

DE = BC
EF . Thus, GH ∼= EF .

By SSS ∆AGH and ∆DEF are congruent, and thus ∆ABC and
∆DEF are similar.

A

B C

D

E F

G H

FIGURE 2.6:

2.5.5 Any right triangle constructed so that one angle is congruent
to ∠A must have congruent third angles, and thus the constructed
triangle must be similar to ∆ABC. Since sin and cos are defined in
terms of ratios of sides, then proportional sides will have the same ratio,
and thus it does not matter what triangle one uses for the definition.

2.5.7 If the parallel to
←→
AC does not intersect

←→
RP , then it would

be parallel to this line, and since it is already parallel to
←→
AC, then by

Exercise 2.1.9
←→
RP and

←→
AC would be parallel, which is impossible.

By the properties of parallels, ∠RAP ∼= ∠RBS and ∠RPA ∼=
∠RSB. Thus, by AAA ∆RBS and ∆RAP are similar. ∆PCQ and
∆SBQ are similar by AAA using an analogous argument for two of
the angles and the vertical angles at Q.

Thus, CP
BS = CQ

BQ = PQ
QS , and AP

BS = AR
BR = PR

SR . So, CP
AP

BQ
QC =

CP
AP

BS
CP = BS

AP And, CPAP
BQ
QC

AR
RB = BS

AP
AR
RB = BS

AP
AP
BS = 1.

2.5.1 Mini-Project: Finding Heights

This mini-project is a very practical application of the notion of sim-
ilarity. The mathematics in the first example for finding height is ex-
tremely easy, but the interesting part is the data collection. You will
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need to determine how to get the most accurate measurements using
the materials on hand.

The second method of finding height is a calculation using two simi-
lar triangles. The interesting part of this project is to see the connection
between the mirror reflection and the calculation you made in part I.

You should work in small groups with a Recorder, but make sure
the Recorder position gets shifted around from project to project.

2.6 Circle Geometry

This section is an introduction to the basic geometry of the circle. The
properties of inscribed angles and tangents are the most important
properties to focus on in this section.

2.6.1 Case 2: A is on the diameter through OP . Let α = m∠PBO
and β = m∠POB. Then, β = 180−2α. Also, m∠AOB = 180−β = 2α.

Case 3: A and B are on the same side of
←→
PO. We can assume that

m∠OPB > m∠OPA. Let m∠OPB = α and m∠OPA = β. Then, we
can argue in a similar fashion to the proof of the Theorem using α− β
instead of α+ β.

2.6.3 Consider ∠AQP . This must be a right angle by Corol-
lary 2.33. Similarly, ∠BQP must be a right angle. Thus, A, Q, and
B are collinear.

2.6.5 Let AB be the chord, O the center, and M the midpoint of
AB. Then ∆AOM ∼= ∆BOM by SSS and the result follows.

2.6.7 Consider a triangle on the diagonal of the rectangle. This has
a right angle, and thus we can construct the circle on this angle. Since
the other triangle in the rectangle also has a right angle on the same
side (the diameter of the circle) then it is also inscribed in the same
circle.

2.6.9 If point P is inside the circle c, then Theorem 2.41 applies.
But, this theorem says that m∠BPA = 1

2(m∠BOA+m∠COD), where

C and D are the other points of intersections of
←→
PA and

←→
PB with

the circle. If P is inside c, then C and D are different points. The
assumption of Theorem 2.42 says that m∠BPA = 1

2m∠BOA. But,
m∠BPA = 1

2(m∠BOA+m∠COD) would then imply that m∠COD =
0, which is impossible as C and D are not collinear with O.

2.6.11 The angle made by BT and l must be a right angle by
Theorem 2.36. Likewise, the angle made by AT and l is a right angle.
Thus, A, T , and B are collinear.

2.6.13 Suppose one of the circles had points A and B on opposite
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sides of the tangent line l. Then AB would intersect l at some point
P which is interior to the circle. But, then l would pass through an
interior point of the circle and by continuity must intersect the circle
in two points which is impossible. Thus, either all points of one circle
are on opposite sides of l from the other circle or are on the same side.

2.6.15 By Theorem 2.36, we have that ∠OAP is a right angle, as
is ∠OBP . Since the hypotenuse (OP ) and leg (OA) of right triangle
∆OAP are congruent to the hypotenuse (OP ) and leg (OB) of right
triangle ∆OBP , then by Exercise 2.2.10 the two triangles are congru-
ent. Thus ∠OPA ∼= ∠OPB.

2.6.17 Let A and B be the centers of the two circles. Construct
the two perpendiculars at A and B to

←→
AB and let C and D be the

intersections with the circles on one side of
←→
AB.

If
←→
CD does not intersect

←→
AB, then these lines are parallel, and the

angles made by
←→
CD and the radii of the circles will be right angles.

Thus, this line will be a common tangent.

Otherwise,
←→
CD intersects

←→
AB at some point P . Let

←→
PE be a tangent

to the circle with center A. Then, since ∆PAC and ∆PBD are similar,

we have AP
BP = AC

BD . Let
←→
BF be parallel to

←→
AE with F the intersection

of the parallel with the circle centered at B. Then, AC
BD = AE

BF . So,
AP
BP = AE

BF . By SAS similarity, ∆PAE and ∆PBF are similar, and so

F is on
←→
PE and ∠PFB is a right angle. Thus,

←→
PE is a tangent to the

circle centered at B.

A T B

C

D

P

E

F

FIGURE 2.7:
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2.7 Project 4 - Circle Inversion and Orthogonality

This section is crucial for the later development of the Poincaré model
of non-Euclidean (hyperbolic) geometry. It is also has some of the most
elegant mathematical results found in the course.
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Analytic Geometry

This chapter is a very quick review of analytic geometry. In succeeding
chapters, analytic methods will be utilized freely.

SOLUTIONS TO EXERCISES IN CHAPTER 3

3.2 Vector Geometry

3.2.1 If A is on either of the axes, then so is B and the distance result
holds by the definition of coordinates. Otherwise, A (and B) are not
on either axis. Drop perpendiculars from A and B to the x-axis at P
and Q. By SAS similarity, ∆AOP and ∆BOQ are similar, and thus

∠AOP ∼= ∠BOQ, which means that A and B are on the same line
←→
AO,

and the ratio of BO to AO is k.
3.2.3 The vector from P to Q is in the same direction (or opposite

direction) as the vector v. Thus, since the vector from P to Q is ~Q− ~P ,
we have ~Q − ~P = tv, for some real number t. In coordinates we have
(x, y)− (a, b) = (tv1, tv2), or (x, y) = (a, b) + t(v1, v2).

3.2.5 By Exercise 3.2.3 the line through A andB can be represented
by the set of points of the form ~A+ t( ~B− ~A). Then, M = 1

2( ~A+ ~B) =
~A + 1

2( ~B − ~A) is on the line through A and B, and is between A and
B. Let A = (x1, y1) and B = (x2, y2), then the distance from A to M
is
√

(x1

2 −
x2

2 )2 + (y12 −
y2
2 )2, which is equal to the distance from B to

M .

19
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3.3 Project 5 - Bézier Curves

3.4 Angles in Coordinate Geometry

3.4.1 Let ~A = (cos(α), sin(α)) and ~B = (cos(β), sin(β)). Then, from
Theorem 3.11 we have cos(α − β) = ~A ◦ ~B, since ~A and ~B are unit
length vectors. The result follows immediately.

3.4.3 By Exercise 3.4.1,

cos(
π

2
− (α+ β)) = cos(

pi

2
) cos(α+ β) + sin(

pi

2
90) sin(α+ β))

= sin(α+ β).

Then, use the formula from Exercise 3.4.2 with the term inside cos
being (pi2 − α) + (−β).

3.5 The Complex Plane

3.5.1

eiθeiφ = (cos(θ) + i sin(θ))(cos(φ) + i sin(φ))

= (cos(θ) cos(φ)− sin(θ) sin(φ)) + i(cos(θ) sin(φ) + sin(θ) cos(φ))

= cos(θ + φ) + i sin(θ + φ)

= ei(θ+φ)

3.5.3 Let z = eiθ and w = eiφ and use Exercise 3.4.1.
3.5.5 The rationalized complex numbers have the form i−12 , i, and

1
10 − i

1
5 .

3.6 Birkhoff’s Axiomatic System for Analytic Geometry

3.6.1 First, if A is associated to xA = tA
√
dx2 + dy2, where A =

(x, y) = (x0, y0) + tA(dx, dy), and B is associated to xB in a similar
fashion, then |xA − xB| = |tA − tB|

√
dx2 + dy2. On the other hand,

d(A,B) =
√

(tAdx− tBdx)2 + (tAdy − tBdy)2 =
√
dx2 + dy2|tA − tB|

3.6.3 Given a point O as the vertex of the angle, set O as the

origin of the coordinate system. Then, identify a ray
−→
OA associated

to the angle θ, with A = (x, y). Let a = || ~A|| =
√
x2 + y2. Then,

sin2(θ) + cos2(θ) = (xa )2 + (ya)2 = x2+y2

a2 = 1.
3.6.5 Discussion question. One idea is that analytic geometry al-

lows one to study geometric figures by the equations that define them.
Thus, geometry can be reduced to the arithmetic (algebra) of equa-
tions.
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Constructions

In this chapter we cover some of the basic Euclidean constructions and
also have a lot of fun with lab projects. The origami project should be
especially interesting, as it is an axiomatic system with which you can
physically interact and explore.

The third section on constructibility may be a bit heavy and ab-
stract, but the relationship between geometric constructibility and al-
gebra is a fascinating one, especially if you have had some exposure
to abstract algebra. Also, any mathematically literate person should
know what the three classical construction problems are, and how the
pursuit of solutions to these problems has had a profound influence on
the development of modern mathematics.

SOLUTIONS TO EXERCISES IN CHAPTER 4

4.1 Euclidean Constructions

4.1.1 Use SSS triangle congruence on ∆ABF and ∆DGH.
4.1.3 Use the SSS triangle congruence theorem on ∆ADE and

∆ABE to show that ∠EAB ∼= ∠BAE.
4.1.5 Use the fact that both circles have the same radius.
4.1.7 Let the given line be l and let P be the point not on l.

Construct the perpendicular m to l through P . At a point Q on m,
but not on l, construct the perpendicular n to m. Theorem 2.7 implies
that l and n are parallel.

4.1.9 On
−−→
BA construct A′ such that BA′ = a. On

−−→
BC construct

C ′ such that BC ′ = b. Then, SAS congruence gives ∆AB′C ′ congruent
to any other triangle with the specified data.

21
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4.2 Project 6 - Euclidean Eggs

Consider the contrast between the method of drawing curves used in
this project and the method of Bézier Curves covered in Chapter 3.

4.3 Constructibility

4.3.1 Just compute the formula for the intersection.
4.3.3 Reverse the roles of the product construction.
4.3.5 For

√
3, use a right triangle with hypotenuse 2 and one side

1. For
√

5, use a right triangle with sides of length 1 and 2.
4.3.7 Consider a

π . This is less than a.
4.3.9 If a circle of radius r and center (x, y) has x not constructible,

then (x, y + r) and (x, y − r) are non-constructible on the circle. We
can use the same reasoning if y is not constructible. If the center
is constructible, then the previous exercise gives at least two non-
constructible points for a circle of radius r whose center is at the origin.
Add (x, y) to these two points to get two non-constructible points on
the original circle.

4.4 Mini-Project: Origami Construction

For this project, you will need a good supply of square paper. Com-
mercial origami paper is quite expensive. Equally as good paper can
be made by taking notepads and cutting them into squares using a
paper-cutter. (Cutting works best a few sheets at a time)

4.3.11 Given AB, we can fold A onto B by axiom O2. Let l be
the fold line of reflection created, and let l intersect AB at C. Then,
since the fold preserves length, we have that AC = CB, and ∠ACE ∼=
∠ECB, as show in Fig. 4.1. The result follows.

A

B

C

l

D

FIGURE 4.1:



Constructions � 23

4.3.13 Since the reflection fold across t preserves length, we have
PR = P ′R. Also, the distance from a point to a line is measured along
the perpendicular from the point to the line. Thus, the distance from R
to l is equal to P ′R. Thus, the distance from R to P equals the distance
from R to l and R is on the parabola with focus P and directrix l.

An interesting extra credit problem for this construction would be
to show that t is tangent to the parabola at R. One proof is as follows:

Suppose t intersected at another point R′ on the parabola. Then,
by definition, R′ must have been constructed in the same way that R
was, so there must be a folding (reflection) across t taking P to some

point P ′′ on l such that
←−→
P ′′R′ is perpendicular to l at P ′′, and intersects

t at R′. Then, by a triangle argument, we can show that
←−→
PP ′ and

←−→
PP ′′

must both be perpendicular to t at R and R′. Since perpendiculars are
unique, we must have that R = R′.

(To show, for example, that
←−→
PP ′ is perpendicular to t at R, we can

easily show that ∆PQR ∼= ∆P ′QR by using the angle- and distance-
preserving properties of reflections, and then use a second congruent

triangle argument to show that
←−→
PP ′ crosses t at right angles.)
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Transformational
Geometry

In this chapter we make great use of functional notation and somewhat
abstract notions such as 1 − 1 and onto, inverses, composition, etc.
You may wonder how such computations are related to geometry, but
that is the very essence of the chapter—that we can understand and
investigate geometric ideas with more than one set of foundational
lenses.

With that in mind, we will make use of synthetic geometric tech-
niques where they are most elegant and can aid intuition, and at other
times we will rely on analytical techniques.

SOLUTIONS TO EXERCISES IN CHAPTER 5

5.1 Euclidean Isometries

5.1.1 Define the function f−1 by f−1(y) = x if and only if f(x) = y.
Then, f−1 is well-defined, as suppose f(x1) = f(x2) = y. Then, since
f is 1− 1 we have that x1 = x2. Since f is onto, we have that for every
y in S there is an x such that f(x) = y. Thus, f−1 is defined on all
of S. Finally, f−1(f(x)) = f−1(y) = x and f(f−1(y)) = f(x) = y. So,
f ◦ f−1 = f−1 ◦ f = idS .

Suppose g was another function on S such that f ◦ g = g ◦ f = idS .
Then, g ◦ f ◦ f−1 = f−1, or g = f−1.

5.1.3 Since g−1 ◦ f−1 ◦ f ◦ g = g−1 ◦ g = id and f ◦ g ◦ g−1 ◦ f−1 =
f ◦ f−1 = id, then g−1 ◦ f−1 = (f ◦ g)−1.

5.1.5 Let f be an isometry and let c be a circle centered at O
of radius r = OA. Let O′ = f(O) and A′ = f(A). Let P be any

25
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point on c. Then, O′f(P ) = f(O)f(P ) = OP = r. Thus, the image
of c under f is contained in the circle centered at O′ of radius r. Let
P ′ be any other point on the circle centered at O′ of radius r. Then,
Of−1(P ′) = f−1(O′)f−1(P ′) = O′P ′ = r. Thus, f−1(P ′) is a point on
c and every such point P ′ is the image of a point on c, under the map
T .

5.1.7 Label the vertices of the triangle A, B, and C. Then, consider
vertex A. Under an isometry, consider the actual position of A in the
plane. After applying the isometry, A might remain or be replaced by
one of the other two vertices. Thus, there are three possibilities for the
position occupied by A. Once that vertex has been identified, consider
position B. There are now just two remaining vertices to be placed in
this position. Thus, there are a maximum of 6 isometries. We can find
6 by considering the three basic rotations by 0, 120, and 240 degrees,
and the three reflections about perpendicular bisectors of the sides.

5.1.9 First, we show that f is a transformation. To show it is 1−1,
suppose f(x, y) = f(x′, y′). Then, kx+a = kx′+a and ky+b = ky′+b.
So, x = x′ and y = y′.

To show it is onto, let (x′, y′) be a point. Then, f(x
′−a
k , y

′−b
k ) =

(x′, y′).
f is not, in general, an isometry, since if A = (x, y) and B = (x′, y′)

then f(A)f(B) = kAB.
5.1.11 Let ABC be a triangle and let A′B′C ′ be its image under

f . By the previous exercise, these two triangles are similar. Thus, there
is a k > 0 such that A′B′ = kAB, B′C ′ = kBC, and A′C ′ = kAC.

Let D be any other point not on
←→
AB. Then, using triangles ABD and

A′B′D′ we get that A′D′ = kAD.

Now, let DE be any segment with D not on
←→
AB. Then, using

triangles ADE and A′D′E′ we get D′E′ = kDE, since we know that
A′D′ = kAD.

Finally, let EF be a segment entirely on
←→
AB, and let D be a point

off
←→
AB. Then, using triangles DEF and D′E′F ′ we get E′F ′ = kEF ,

since we know that D′E′ = kDE.
Thus, in all cases, we get that f(A)f(B) = kAB.

5.2.1 Mini-Project:Isometries Through Reflection

In this mini-project, you will be led through a guided discovery of the
amazing fact that, given any two congruent triangles, one can find a
sequence of at most three reflections taking one triangle to the other.
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5.2.1 First of all, suppose that C and R are on the same side of←→
AB. Then, since there is a unique angle with side AB and measure

equal to the measure of ∠BAC, then R must lie on
−→
AC. Likewise, R

must lie on
−−→
BC. But, the only point common to these two rays is C.

Thus, R = C.

If C and R are on different sides of
←→
AB, then drop a perpendicular

from C to
←→
AB, intersecting at P . By SAS, ∆PAC and ∆PAR are con-

gruent, and thus ∠APR must be a right angle, and R is the reflection

of C across
←→
AB.

5.2.3 If two triangles (∆ABC and ∆PQR) share no point in com-
mon, then by Theorem 5.6 there is a reflection mapping A to P , and
by the previous exercise, we would need at most two more reflections
to map ∆Pr(B)r(C) to ∆PQR.

5.2.2 Reflections

5.2.5
5.2.7 Let G be the midpoint of AB. Then ∆AED ∼= ∆BCD by

SAS and ∆AGD ∼= ∆BGD by SSS. Thus,
←→
DG is the perpendicular

bisector of AB, and reflection across
←→
DG takes A to B. Also,

←→
DG must

bisect the angle at D and by the previous exercise the bisector is a
line of reflection. This proof would be easily extendable to regular n-
gons, for n odd, by using repeated triangle congruences to show the
perpendicular bisector is the angle bisector of the opposite vertex.

A B

E
C

D

G

FIGURE 5.1:

5.2.9 Suppose that a line of symmetry l for parallelogram ABCD
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is parallel to side AB. Then, clearly reflection across l cannot map A
to B, as this would imply that l is the perpendicular bisector of AB.

If reflection mapped A to C, then l would be the perpendicular
bisector of a diagonal of the parallelogram. But, since l is parallel to
AB, this would imply that the diagonal must be perpendicular to AB
as well. A similar argument can be used to show that the other diagonal
(BD) must also be perpendicular to AB. If this were the case, one of
the triangles formed by the diagonals would have angle sum greater
than 180 degrees, which is impossible.

Thus, reflection across l must map A to D, and l must be the
perpendicular bisector of AD. Clearly, using the property of parallels,
we get that the angles at A and D in the parallelogram are right angles.

5.2.11 Let r be a reflection across
←→
AB and let C be a point not on←→

AB. Then, r(C) is the unique point on the perpendicular dropped to
←→
AB at a point P on this line such that CP = r(C)P , with r(C) 6= C.
Now, r(r(C)) is the unique point on this same perpendicular such that
r(C)P = r(r(C))P , with r(r(C)) 6= r(C). But since r(C)P = CP and
C 6= r(C), then r(r(C)) = C. But, then r ◦ r fixes three non-collinear
points A, B, and C, and so must be the identity.

5.2.13 Let A and B be distinct points on l. Then, rm ◦ rl ◦
rm(rm(A)) = rm(rl(A)) = rm(A) and likewise, rm ◦ rl ◦ rm(rm(B)) =
rm(B). Thus, the line l′ through rm(A) and rm(B) is fixed by rm◦rl◦rm
and this triple composition must be equivalent to reflection across l′.

5.3 Translations

5.3.1 There are few examples in nature that have perfect translational
symmetry. One example might be the atoms in a crystal atomic lattice.
But there are some partial examples, like the legs on a millipede.

5.3.3 Since (r2 ◦ r1) ◦ (r1 ◦ r2) = id, and (r1 ◦ r2) ◦ (r2 ◦ r1) =
id, then r2 ◦ r1 is the inverse of r1 ◦ r2. Also, if T has translation
vector v, then T (x, y) = (x, y) + v. Let S be the translation defined by
S(x, y) = (x, y) − v. Then, S ◦ T (x, y) = ((x, y) + v) − v = (x, y) and
T ◦ S((x, y)− v) + v = (x, y). Thus, S is the inverse to T .

5.3.5 Represent T1 and T2 in coordinate form.
5.3.7 Let (x,K) be a point on the line y = K. If T is a translation

with translation vector v = (0,−K), then, by Exercise 5.3.3, T−1 has
translation vector of −v = (0,K). Thus, T−1 ◦ rx ◦ T (x,K) = T−1 ◦
rx(x, 0) = T−1(x, 0) = (x,K). So, T−1 ◦rx ◦T fixes the line y = K and
so must be the reflection across this line. The coordinate equation for r
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is given by T−1 ◦ rx ◦T (x, y) = T−1 ◦ rx(x, y−K) = T−1(x,−y+K) =
(x,−y + 2K). So, r(x, y) = (x,−y + 2K).

5.3.9 Let T be a translation with (non-zero) translation vector
parallel to a line l. Let m be perpendicular to l at point P . Let n be
the perpendicular bisector of PT (P ), intersecting PT (P ) at point Q.
Then, rn, reflection about n maps P to T (P ). Consider rn◦T . We have
rn◦T (P ) = P . Let R 6= P be another point on m. Then, PRT (R)T (P )
is a parallelogram, and thus ∠PRT (R) and ∠RT (R)T (P ) are right
angles. Let S be the point where n intersects RT (R). Then, ∠RSQ
is also a right angle. Also, by a congruent triangle argument, we have
RS ∼= ST (R), and so n is the perpendicular bisector of RT (R) and
rn ◦T (R) = R. Since rn ◦T fixes two points on m we have rn ◦T = rm,
or T = rn ◦ rm.

T(P)Pl

m

Q

n

R T(R)S

FIGURE 5.2:

5.4 Rotations

5.4.1 First,

T−1 ◦Rotφ ◦ T (C) = T−1 ◦Rotφ ◦ T (x, y)

= T−1 ◦Rotφ(0, 0)

= T−1(0, 0)

= (x, y)

= C

Suppose T−1◦Rotφ◦T fixed another point P . Then, Rotφ◦T (P ) =
T (P ), which implies that T (P ) = (0, 0), or P = T−1(0, 0) = (x, y) = C.
Thus, T−1 ◦ Rotφ ◦ T must be a rotation. What is the angle for this
rotation? Consider a line l through C that is parallel to the x-axis.
Then, T will map l to the x− axis and Rotφ will map the x-axis to a
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line m making an angle of φ with the x-axis. Then, T−1 will preserve
this angle, mapping m to a line making an angle of φ with l. Thus, the
rotation angle for T−1 ◦Rotφ ◦ T is φ.

5.4.3 A book on flowers or diatoms (algae) would be a good place
to start.

5.4.5 By the preceding exercise, the invariant line must pass
through the center of rotation. Let A be a point on the invariant line.

Then, RO(A) lies on
←→
OA and OA ∼= ORO(A). Either A and RO(A) are

on the same side of O or are on opposite sides. If they are on the same
side, then A = RO(A), and the rotation is the identity, which is ruled
out. If they are on opposite sides, then the rotation is 180 degrees. If
the rotation is 180 degrees, then for every point A 6= O we have that A,

O, and RO(A) are collinear, which means that the line
←→
OA is invariant.

5.4.7 Suppose R(m) is parallel to m. Let O be the center of rota-
tion. If m passes through O, then R(m) also passes through O, which
contradicts the lines being parallel. So, we assume m does not pass
through O. Let A,B be two points on m and construct AR(A). If the
angle ∠BAO is a right angle, then ∠R(B)R(A)R(O) is also a right
angle, and the rotation angle must be 180 degrees, which is impossible.

So, WLOG we assume that
∠BAO is less than a right angle.
Drop a perpendicular from O to
m at D. Since R is an isometry
, then ∆DAO ∼= ∆R(D)R(A)O
and the vertical angles at O
are congruent, which means A,
O, and R(A) are collinear. This
would mean the rotation angle is
180 degrees, which is impossible.

So, m and R(m) intersect at a point P .
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Drop perpendiculars from O to
m and R(m) at A and B. Note
that A 6= P , as if A = P then m
and R(m) would coincide. Thus,
OBPA is a quadrilateral. Let θ
be the rotation angle. Since the
sum of the angles in a quadrilat-
eral is 360 degrees, then ∠BPA
must have measure 180− θ. But,
then the vertical angle at P has
measure 180−m∠BPA = θ.

5.4.9 Let R1 and R2 be two rotations about P . Let l and m be
the lines of reflection for R1. By Theorem 5.15 we can choose m as a
defining line of reflection for R2 and there is a unique line n such that
R2 = rn ◦ rm. Then, R2 ◦R1 = rn ◦ rm ◦ rm ◦ rl = rn ◦ rl, which is again
a rotation about P .

5.4.11 If r1 ◦ R = r2, then R = r1 ◦ r2. Thus, the lines for r1
and r2 must intersect. If they intersected at a point other than the
center of rotation for R, then R would fix more than one point, which
is impossible.

5.4.13 Let m =
←→
AB. Then, we can choose lines l and n such that

HA = rm ◦ rl and HB = rn ◦ rm. Note that l and n are both perpen-
dicular to m and thus parallel. Then, HB ◦ HA = rn ◦ rl, which is a
translation parallel to l.

5.5 Project 7 -Quilts and Transformations

This project is another great opportunity for the future teachers in the
class to develop similar projects for use in their own teaching. One idea
to incorporate into a high school version of the project is to bring into
the class the cultural and historical aspects of quilting.

5.6 Glide Reflections

5.6.1 As with translations, it will be hard to find a perfect example of
a glide symmetry in nature. But, the are many plants whose branches
alternate in a glide fashion.

5.6.3 Suppose m is invariant. Then, the glide reflection can be
written as G = TAB ◦ rl = rl ◦ TAB. If G(G(m)) = m, then (TAB ◦
rl) ◦ (rl ◦ TAB)(m) = T2AB(m) = m. So, m must be parallel or equal
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to l, if it is invariant under T2AB. Suppose m is parallel to l. Then,
TAB(m) = m. So, G(m) = rl ◦ TAB(m) = rl(m). But, reflection of a
line m that is parallel to l cannot be equal to m. Thus, the only line
invariant under the glide reflection is l itself.

5.6.5 The glide reflection can be written as G = TAB◦rl = rl◦TAB.
So, G ◦G = (TAB ◦ rl) ◦ (rl ◦ TAB) = T2AB.

5.6.7 The set does not include the identity element.
5.6.9 The identity (rotation angle of 0) is in the set. The com-

position of two rotations about the same point is again a rotation by
Exercise 5.4.8. The inverse to a rotation is another rotation about the
same point by Exercise 5.4.7. Since rotations are functions, associativ-
ity is automatic.

5.6.11 A discussion and diagram would suffice for this exercise.
5.6.13 Rotations and translations are defined as the product of

two reflections. The identity can also be written as the product of a
reflection with itself. These are then both direct and even. Glides and
reflections can be written as the product of three or one reflections.
These are then odd and opposite.

5.7 Structure and Representation of Isometries

This section is a somewhat abstract digression into ways of representing
transformations and of understanding their structure as algebraic ele-
ments of a group. An important theme of the section is the usefulness
of the matrix form of an isometry, both from a theoretical viewpoint
(classification), as well as a practical viewpoint (animation in computer
graphics).

Matrix methods (and thus transformations) are used heavily in the
field of computer animation. There are many excellent textbooks in
computer graphics that one could use as reference for this purpose. For
example, the book by F.S. Hill listed in the bibliography of the text is
a very accessible introduction to the subject.

5.7.1 Let G1 = Tv1 ◦ rl1 and G2 = Tv2 ◦ rl2 be two glide reflections.
If G1 ◦ G2 is a translation, say Tv, then, since G1 ◦ G2 = Tv = (Tv1 ◦
rl1) ◦ (rl2 ◦ Tv2), then Tv−v1−v2 = rl1 ◦ rl2 and thus l1||l2.

On the other hand, if the lines are parallel, then G1 ◦G2 = (Tv1 ◦
rl1) ◦ (rl2 ◦ Tv2) = Tv1 ◦ Tv ◦ Tv2 , for some vector v.

If the lines intersect, then the composition of rl1 with rl2 will be a
rotation, say R, and G1 ◦G2 = (Tv1 ◦ rl1) ◦ (rl2 ◦ Tv2) = Tv1 ◦R ◦ Tv2 .
This last composition yields a rotation, by Theorem 5.20
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5.7.3 First, f ◦ rm ◦ f−1(f(m)) = f(m), so f(m) is a fixed line for
f ◦rm◦f−1. Also, (f ◦rm◦f−1)2 = f ◦rm◦f−1◦f ◦rm◦f−1 = id. Thus,
f ◦ rm ◦f−1, which must be a reflection or glide reflection from looking
at Table 5.3, is a reflection. Since it fixes f(m) it must be reflection
across f(m).

5.7.5 Using the previous exercises we have f ◦ rm ◦ TAB ◦ f−1 =
f ◦ rm ◦ f−1 ◦ f ◦ TAB ◦ f−1 = rf(m) ◦ Tf(A)f(B).

5.7.7 Rotation of (x, y) by an angle φ yields (x cos(φ) −
y sin(φ), x sin(φ) + y cos(φ)). Multiplying x+ iy by cos(φ) + i sin(φ)
yields the same point. Translation by v = (v1, v2) yields (x+v1, y+v2).
Adding v1+iv2 to x+iy yields the same result. Finally, reflection across
x is given by rx(x, y) = (x,−y). Complex conjugation sends x+ iy to
x− iy. Clearly, this has the same effect.

5.7.9 Tv◦Rβ(z) = (eiβz)+v. To find the fixed point, set (eiβz)+v =
z and solve for z.

5.8 Project 8 - Constructing Compositions

The purpose of this lab is to make concrete the somewhat abstract
notion of composition of isometries. In particular, by carrying out the
constructions of the lab, you will see how the conditions on composi-
tions of rotations found in Table 5.3 arise naturally.

If you have difficulty getting started with the first proof, think
about how we can write a rotation as the composition of two reflections
through the center of rotation. Note that the choice of reflection lines
is not important one can choose any two lines as long as they make
the right angle, namely half the desired rotation angle.
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Symmetry

This chapter is quite algebraic in nature—focusing on the different
discrete symmetry groups that arise for frieze patterns and wallpaper
patterns.

SOLUTIONS TO EXERCISES IN CHAPTER 6

6.1 Finite Plane Symmetry Groups

6.1.1 Flowers and diatoms make good examples.
6.1.3 The dihedral group of order 5. This has order 10, and there

can be at most 10 symmetries. (Use an argument like that used in the
preceding exercise)

6.1.5 By the previous exercise there are at most 2n symmetries.
Also, by the work done in Section 5.4 we know there are n rotations,
generated by a rotation of 360

n , that will be symmetries. Let r be a
reflection across a perpendicular bisector of a side. This will be a re-
flection, as will all n compositions of this reflection with the n rotations.
This gives 2n different symmetries

6.1.7 The number of symmetries is 2n. The only symmetries that
fix a side are the identity and a reflection across the perpendicular
bisector of that side. The side can move to n different sides. Thus, the
stated product is 2n as claimed.

6.2 Frieze Groups

6.2.1 Since γ2 = τ , then < τ, γ,H > is contained in < γ,H >. Also, it
is clear that< γ,H > is contained in< τ, γ,H >. Thus,< τ, γ,H >=<
γ,H >.

35
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6.2.3 Let ru and ru′ be two reflections across lines perpendicular
to m. Then, the composition ru ◦ ru′ must be a translation, as these
lines will be parallel. Thus, ru ◦ ru′ = T k for some k, and ru′ = ru ◦T k.

6.2.5 Consider g2. This must be a translation, so g2 = Tkv for some
k where Tv is the fundamental translation. Then, g = Tk

2 v
◦rm, where m

is the midline. Suppose k
2 is an integer, say k

2 = j. Then, since T(v−jv)
is in the group, we have T(v−jv) ◦ g = T(v−jv) ◦ Tk

2 v
◦ rm = Tv ◦ rm is

in the group.
Otherwise, k

2 = j + 1
2 for some integer j. We can find T−jv in the

group such that T−jv ◦ g = T v
2
◦ rm is in the group.

6.2.7 The composition rv ◦ ru must be a translation. Also, if rv ◦
ru(A) = rv(A) = C, then the translation vector must be ~AC. But, the
length of AC is twice that of AB. So, we get that 2 ~AB = k′v for some
k′. Now, either k′ is even or it is odd. The result follows.

6.2.9 From Table 5.3 we know that τ ◦ H or H ◦ τ is either a
translation or a rotation, so it must be either τk for some k or HA for
A on m. Thus, any composition of products of τ and H can be reduced
ultimately to a simple translation or half-turn, or to some τ j ◦HB or
HB ◦τj , which are both half-turns. Thus, the subgroup generated by τ
and H cannot contain rm or ru or γ and none of < τ, rm > or < τ, ru >
or < τ, rm > can be subgroups of < τ,H >.

6.2.11 The compositions τk◦rm or rm◦τk generate glide reflections
with glide vectors kv. The composition of τ with such glide reflections
generates other glide reflections with glide vectors (k+j)v. The compo-
sition of rm with a glide in the direction ofm will generate a translation.
Thus, compositions of the three types of symmetries—glides, rm, and
τk—will only generate symmetries within those types. Thus, < τ, γ >
cannot be a subgroup of < τ, rm >, since γ has translation vector of v2
which cannot be generated in < τ, rm >. Also, neither < τ, ru > nor
< τ,H > can be subgroups of < τ, rm >.

6.2.13 First Row: < τ >, < τ, γ >. Second Row: < τ, γ,H >,
< τ, ru >. Third Row: < τ, rm, H >, < τ,H >. Last Row: < τ, rm >.

6.3 Wallpaper Groups

6.3.1 The first is rectangular, the second rhomboidal, and the third is
square.

6.3.3 The translation determined by f2 will be in the same direc-
tion as T , so we do not find two independent directions of translation.

6.3.5 The lattice for G will be invariant under rotations about
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points of the lattice by a fixed angle. By the previous problem, these
rotations must be half-turns. By Theorem 6.18 the lattice must be
Rectangular, Centered Rectangular, or Square.

6.3.7 Let C be the midpoint of the vector v = ~AB, where v is one

of the translation vectors for G. Let m1 be a line perpendicular to
←→
AB

at A. Then, Tv = rm1
◦ rm′

1
where m′1 is a line perpendicular to

←→
AB

at the midpoint of AB. But since rm1
is in G, then rm1

◦ Tv = rm′
1

is in G. Likewise, we could find a line m′2 perpendicular to the other
translation vector w = ~AC at its midpoint, yielding another reflection
rm′

2
. The formulas for these two reflections are rm′

1
= rm1

◦ Tv and
rm′

2
= rm2

◦ Tw.
6.3.9 In the preceding exercise, we saw that the group of symme-

tries can be generated from reflections half-way along the translation
vectors. Thus, if we reflect the shaded region, we must get another part
of the pattern. Thus, three reflections of the shaded area will fill up
the rectangle determined by v and w and the rest of the pattern will
be generated by translation.

6.3.11 If A = lv + mw and B = sv + tw, then 0 ≤ s, t ≤ 1.
The length between A and B is the length of the vector ~B −A =
(s − l)v + (t −m)w. This length squared is the dot product of ~B −A
with itself, i.e., (s− l)2(v • v) + 2(s− l)(t−m)(v •w) + (t−m)2(w •w).
If v • w > 0, then this will be maximal when both (s− l) and (t−m)
are maximal. This occurs when (s − l) = 1 and (t − m) = 1, which
holds only if s = 1 = t and l = m = 0. If v • w < 0, we need (s− l) to
be as negative as possible, and (t−m) to be as positive as possible (or
vice-versa). In either case, we get values of 0 or 1 for s, t, l, and m.

6.3.13 A single straight line would have translational symmetries
of arbitrarily small size.

6.5 Project 9 - Constructing Tessellations

Tiling is a fascinating subject. If you would like to know more about
the mathematics of tiling, a good supplementary source is Tilings and
Patterns, by Grunbaum and Shephard.

A modern master of the art of tiling is M.C. Escher. A good resource
for his work is Doris Schattschnieders book M. C. Escher, Visions of
Symmetry.
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Hyperbolic Geometry

The discovery of non-Euclidean geometry is one of the most impor-
tant events in the history of mathematics. Much more time could be
spent on telling this story, and, in particular, the history of the col-
orful figures who co-discovered this geometry. The book by Boyer and
Merzbach, and the University of St. Andrews web site, both listed in
the bibliography of the text, are excellent references for a deeper look
at this history. Greenberg’s book is also an excellent reference.

SOLUTIONS TO EXERCISES IN CHAPTER 7

In section 7.2 we see for the first time the relevance of our earlier dis-
cussion of models in Chapter 1. The change of axioms in Chapter 7
(replacing Euclid’s fifth postulate with the hyperbolic parallel postu-
late) requires a change of models. As you work through this section,
it is important to recall that, in an axiomatic system, it not impor-
tant what the terms actually mean; the only thing that matters is the
relationships between the terms.

We introduce two different models at this point to help you recog-
nize the abstraction that lies behind the concrete expression of points
and lines in theses models.

7.2.2 Mini-Project: The Klein Model

It may be helpful to do the constructions (lines, etc) of the Klein model
on paper as you read through the material.

7.2.1 Use the properties of Euclidean segments.

39
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7.2.3 The special case is where the lines intersect at a boundary
point of the Klein disk. Otherwise, use the line connecting the poles of
the two parallels to construct a common perpendicular.

7.3 Basic Results in Hyperbolic Geometry

In this section it is important to note the distinction between points at
infinity and regular points. Omega triangles share some properties of
regular triangles, like congruence theorems and Pasch-like properties,
but are not regular trianglesthus necessitating the theorems found in
this section.

7.3.1 Use the interpretation of limiting parallels in the Klein model.
7.3.3 First, if m is a limiting parallel to l through a point P , then

rl(m) cannot intersect l, as if it did, then r2l (m) = m would also inter-
sect l. Now, drop a perpendicular from rl(P ) to l at Q, and consider
the angle made by Q, rl(P ), and the omega point of rl(m). If there
were another limiting parallel (n) to l through rl(P ) that lies within
this angle, then by reflecting back by rl we would get a limiting parallel
rl(n) that lies within the angle made by Q, P and the omega point of
l, which is impossible. Thus, rl(m) must be limiting parallel to l and
reflection maps omega points to omega points, as rl maps limiting par-
allels to l to other limiting parallels. Also, it must fix the omega point,
as it maps limiting parallels on one side of the perpendicular dropped
to l to limiting parallels on that same side.

7.3.5 Let P be the center of rotation and let l be a line through
P with the given omega point Ω. (Such a line must exist as Ω must
correspond to a limiting parallel line m, and there is always a limiting
parallel to m through a given point P ) Then, we can write R = rn ◦ rl
for another line n passing through P . But, since rl fixes Ω, and R does
as well, then, rn must fix Ω. But, if n and l are not coincident, then
n is not limiting parallel to l and thus cannot have the same omega
points as l. By the previous exercise, rn could not fix Ω. Thus, it must
be the case that n and l are coincident and r is the identity.

7.3.7 Let PQΩ be an omega triangle and let R be a point interior to

the triangle. Drop a perpendicular from Q to
←→
PΩ at S. Then, either R

is interior to triangle QPS, or it is on
←→
QS, or it is interior to ∠QSΩ. If

it is interior to ∆QPS it intersects
←→
PΩ by Pasch’s axiom for triangles.

If it is on
←→
QS it obviously intersects

←→
PΩ. If it is interior to ∠QSΩ, it

intersects
←→
PΩ by the definition of limiting parallels.
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FIGURE 7.1:

7.3.9 Let l be the line passing through R. Then, either l passes
within Omega triangle PRΩ or it passes within QRΩ. In either case,
we know by Theorem 7.5 that l must intersect the opposite side, i.e. it
must intersect PΩ or QΩ.

7.3.11 Suppose we had another segment P ′Q′ with P ′Q′ ∼= PQ and

let l′ be a perpendicular to P ′Q′ at Q′. Let
←−→
P ′R′ be a limiting parallel

to l′ at P ′. Then, by Theorem 7.8, we know that ∠QPR ∼= ∠Q′P ′R′
and thus, the definition of this angle only depends on h, the length of
PQ.

7.3.13 Suppose a(h) = a(h′) with h 6= h′. We can assume that
h < h′. But, then the previous exercise would imply that a(h) > a(h′).
Thus, if a(h) = a(h′) then h = h′.

7.4 Project 10 - The Saccheri Quadrilateral

As you do the computer construction of the Saccheri Quadrilateral,
you may experience a flip of orientation for your construction when
moving the quad about the screen. The construction depends on the
orientation of the intersections of circles and these may switch as the
quad is moved. A construction of the Saccheri quad that does not
have this unfortunate behavior was searched for unsuccessfully by the
author. A nice challenge problem would be to see if you can come up
with a better construction. If you can, the author would love to hear
about it!

7.5 Lambert Quadrilaterals and Triangles

7.5.1 Referring to Figure 7.6, we know ∆ACB and ∆ACE are congru-
ent by SAS. Thus, ∠ACB ∼= ∠ECA. Since ∠ACD ∼= ∠FCA, and both
are right angles, then ∠BCD ∼= ∠FCE. Then, ∆BCD and ∆FCE are
congruent by SAS. We conclude that BD ∼= FE and the angle at E is
a right angle.
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7.5.3 Create two Lambert quadrilaterals from the Saccheri quadri-
lateral, and then use Theorem 7.13.

7.5.5 Since the angle at O is acute, then OAA′ and OBB′ are
triangles. Also, since OA < OB, then A is between O and B, and
likewise A′ is between O and B′. Thus, the perpendicular n at A to←→
AA′ will enter ∆OBB′. By Pasch’s axiom it must intersect OB′ or

BB′. It cannot intersect OB′ as n and
←−→
OB′ must be parallel. Thus, n

intersects BB′ at C. Then, A′ACB′ is a Lambert Quadrilateral and
B′C > A′A. Since C is between B and B′ we have B′B > A′A.

7.5.7 Let m be right limiting parallel to l at P and let P ′ be a
point on m to the right of P (i.e. in the direction of the omega point).
Let Q and Q′ be the points on l where the perpendiculars from P and
P ′ to l intersect l.

We claim that m∠QPP ′ < m∠Q′P ′R where R is a point on m to
the right of P ′. If these angles were equal we would have PQ ∼= P ′Q′ by
Exercise 7.3.11, and thus QPP ′Q′ would be a Saccheri quadrilateral,
which would imply that ∠Q′P ′R is a right angle, which is impossible.
If m∠QPP ′ > m∠Q′P ′R, then PQ < P ′Q′ by Exercise 7.3.12, which
would imply that we could find a point S on P ′Q′ with PQ = Q′S,
yielding Saccheri quadrilateral PQQ′S. Then, ∠PSQ′ must be acute,
which contradicts the Exterior angle theorem for ∆PSP ′.

P

P’

Q Q’

R

l

m

S

FIGURE 7.2:

Thus, m∠QPP ′ < m∠Q′P ′R, and the result follows from Exer-
cise 7.3.12.

7.5.9 If they had more than one common perpendicular, then we
would have a rectangle.

7.5.11 Suppose Saccheri Quadrilaterals ABCD and EFGH have
AB ∼= EF and ∠ADC ∼= ∠EHG. If EH > AD then we can find I
on EH and J on FG such that EI ∼= FJ ∼= AD. Then, by repeated
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application of SAS on sub-triangles of ABCD and EIJF we can show
that these two Saccheri Quadrilaterals are congruent. But, this implies
that the angles at H and I in quadrilateral IHGJ are supplementary,
as are the angles at G and J , which means that we can construct a
quadrilateral with angles sum of 360. This contradicts Theorem 7.15,
by considering triangles created by a diagonal of IHGJ .

A B

D

C

E F

H

GI

J

FIGURE 7.3:

7.5.13 No. To construct a scale model, we are really constructing a
figure similar to the original. That is, a figure with corresponding angles
congruent, and length measurements proportional by a non-unit scale
factor. But, AAA congruence implies that any such scale model must
have lengths preserved.

7.6 Area in Hyperbolic Geometry

In this section we can refer back to the mini-project we did on area in
Chapter 2. That discussion depended on rectangles as the basis for a
definition of area. In hyperbolic geometry, no rectangles exist, so the
next best shape to base area on is the triangle. This explains the nature
of the theorems in this section.

7.6.1 Let J be the midpoint of A′′B and suppose that
←→
EF cuts

A′′B at some point K 6= J . Then, on
←−→
E′′K we can construct a second

Saccheri Quadrilateral by the method of dropping perpendiculars from

B and C to
←−→
E′′K. Now, BC is the summit of the original Saccheri

Quadrilateral BCIH and the new Saccheri Quadrilateral. Thus, if n is

the perpendicular bisector of BC, then n meets
←−→
E′′F and

←−→
E′′K at right

angles. Since E′′ is common to both curves, we get a triangle having
two right angles, which is impossible.
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7.6.3 This question can be argued both ways. If we could make
incredibly precise measurements of a triangle, then we could possibly
measure the angle sum to be less than 180. However, since the universe
is so vast, we would have to have an incredibly large triangle to measure,
or incredibly good instruments. Also, we could never be sure of errors
in the measurement overwhelming the actual differential between the
angle sum and 180.

7.7 Project 11 - Tiling the Hyperbolic Plane

A nice artisitic example of hyperbolic tilings can be found in M. C. Es-
chers Circle Limit figures. Consult Doris Schattschnieders book M. C.
Escher, Visions of Symmetry for more information about these tilings.
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Elliptic Geometry

Hyperbolic and Elliptic geometry are the fundamental examples of
non-Euclidean geometry. The connection between the three geometries
—Euclidean, Hyperbolic, and Elliptic —and the three possible parallel
properties —1, > 1, or 0 parallels through a point to a given line —is
one of the most interesting and thought-provoking ideas in geometry.

SOLUTIONS TO EXERCISES IN CHAPTER 8

8.2 Perpendiculars and Poles in Elliptic Geometry

8.2.1 Referring to Figure 8.1, we know ∆ACB and ∆ACE are congru-
ent by SAS. Thus, ∠ACB ∼= ∠ECA. Since ∠ACD ∼= ∠FCA, and both
are right angles, then ∠BCD ∼= ∠FCE. Then, ∆BCD and ∆FCE are
congruent by SAS. We conclude that BD ∼= FE and the angle at E is
a right angle.

45
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FIGURE 8.1:

8.2.3 By Exercise 8.2.2 we can create a Saccheri quadrilateral from
the Lambert quadrilateral. Since the summit angles in the Saccheri
quadrilateral will equal the fourth (non-right) angle in the Lambert
quadrilateral, the result follows.

8.2.5 Since there are two perpendiculars from n that meet at O,
then by the work in this section, all perpendiculars to n meet at O and
O is the polar point.

8.3 Project 12 - Models of Elliptic Geometry

All of the projects in Chapter 8 use the software program Geom-
etry Explorer. If you are not already using this program, go to
http://www.gac.edu/ hvidsten/geom-text for instructions on how to
download and use this software.

8.4 Basic Results in Elliptic Geometry

8.4.1 Consider the line OR. This line must intersect l at some point Q.
Also, it is perpendicular to l at Q, for if it were not perpendicular, then
at Q we could construct the perpendicular which must pass through
the polar point O. But, then we would have two lines through O and
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Q. Since OR is perpendicular to l at Q, then the distance from Q to
O is the polar distance q. There is a unique point along OR in the
direction of R that is at this distance. Thus, R must be equal to Q and
Ris on l.

8.4.3 Suppose the polar points were the same. Then, by Exer-
cise 8.4.1 points that are a distance of q away from this common polar
would have to be on l and also on m. Thus, the two lines must be
identical. The line through the two polar points will be perpendicular
to both lines by Exercise 8.4.2.

8.4.5 The exterior of a circle is the set of points whose distance to
the center is larger than the radius. If the radius is equal to the polar
distance then the circle is a line and the center of the circle is the polar
point of the circle/line. The interior is defined, but would be all of the
elliptic plane, as the distance from a point to another point is at most
the polar distance (the length of an entire line is 2q, so the length of
any subset (segment) is at most q).

8.4.7 The rotation R is made of two reflections rm and rm where
m and n are lines passing through O. If P is a point on l, then for
P ′ = rm(P ), we have that the length of OP (= q) is equal to the length
of OP ′, as rm fixes O and preserves length. Thus, by Exercise 8.4.1 we
have that P ′ is on l. A similar argument shows that rn(P ′) is also on
l. Thus, R(P ) = rn(rm(P )) is on l.

8.4.9 We can assume that R1 = rn ◦ rp and R2 = rp ◦ rm are
the two rotations. (This is similar to the work done in Chapter 5 on
compositions of transformations). Then, R1 ◦ R2 = rn ◦ rm. If n = m
then the composition is the identity, which is a rotation of 0 degrees.
If n 6= m, then we know that m and m must intersect at a point O.
Then, R1 ◦ R2 = rn ◦ rm is a composition of reflections with a fixed
point and thus is a rotation.

8.5 Triangles and Area in Elliptic Geometry

8.5.1 Divide the quadrilateral into two triangles and use Theorem 8.9.
8.5.3 If they had more than one common perpendicular, then we

would have a rectangle.

8.5.5 Suppose that the intersection of
←→
EF with AˆB is not the mid-

point. Connect G to the midpoint K of AˆB and construct a second
Saccheri quadrilateral B. Let M be the midpoint of BC. We know that
the line joining the midpoints of a Saccheri quadrilateral is perpendic-
ular to the base and summit. (Exercise 8.2.1) Thus, the perpendicular
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n of BC at M will meet both bases of the quadrilaterals at right angles
– it will be a common perpendicular. Thus, point G must be the polar
point of n (Exercise 8.2.5). But, this is impossible, as the intersection
of n with the bases of the Saccheri quadrilaterals happens at the mid-
points of the bases and these points cannot be a distance q from G (Q
being the polar distance).

8.6 Project 13 - Elliptic Tiling

This project uses the software program Geometry Explorer. If you are
not already using this program, go to http://www.gac.edu/ hvidsten/geom-
text for instructions on how to download and use this software.
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Projective Geometry

Projective geometry is the natural culmination of a study of geome-
try that proceeds from Euclidean to non-Euclidean geometries. While
much of the material in this chapter is much more opaque than in pre-
vious chapters, the beauty and elegance realized from abstraction can
(hopefully) shine through.

SOLUTIONS TO EXERCISES IN CHAPTER 9

9.2 Project 14 - Perspective and Projection

9.3 Foundations of Projective Geometry

9.3.1 Suppose the lines are l and m. If they both pass through points
P and Q, then by axiom A1 the two lines must be the same line.

9.3.3 By the previous exercise, we know that an Affine geometry
must have at least four distinct points, say P , Q, R, and S. For each
pair of points, we have a unique line, by axiom A1. A quick check of
every pairing of one of the six lines with a point not on that line shows
that axiom A2 is satisifed. Thus, for these four points and six lines, all
three axioms are satisfied.

9.3.5 Let P be a point. By axiom P3 there must be two other points

Q and R such that P , Q, and R are non-collinear. Then, l =
←→
PQ and

m =
←→
PR are two distinct lines. Now, Q and R define a line n by axiom

P1, and this line is different than l or m. By axiom P4, n must have a

third point, say S. Then,
←→
PS exists and is distinct from both

←→
PQ and←→

PR.
9.3.7 It is clear that the example satisfies P3 and P4. Checking all

pairs of points and lines will suffice for P1 and P2.

49
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9.3.9 Since Axioms P(n)1 and P(n)2 exactly match P1 and P2,
then P1 and P2 are satisfied. P(n)3 guarantees the existence of three
non-collinear points, so Axiom P3 is satisfied.

Let P , Q, R, and S be the four points guaranteed by Axiom P(n)3.

Then,
←→
PQ,

←→
PR ,

←→
PS,

←→
QR,

←→
QS and

←→
RS must be distinct lines. Suppose

there were a line m with only two points A and B. Since m intersects←→
PQ and

←→
PR, then either one of A or B is P , or A is on one of the lines

and B is on the other.
Suppose A = P . Now m intersects

←→
QR and

←→
QS at a point other

than P , so B = Q. Then, m =
←→
PQ. But, we know that

←→
PQ must have

a third point as it must intersect
←→
RS at a point other than P or Q. So,

A 6= P .

Suppose A is on
←→
PQ and B is on

←→
PR. Since m must intersect

←→
QR at

some point, then A is on
←→
QR or B is on

←→
QR. Then, A = Q and B = R.

Then, m =
←→
QR. But, we know that

←→
QR must have a third point as it

must intersect
←→
PS at a point other than Q or R. So, it cannot be the

case that A is on
←→
PQ and B is on

←→
PR.

We conclude that there cannot be a line with only two points. A
similar proof (simpler) shows that there cannot be a line with only one
point.

9.3.11 Since Moulton lines are built from pieces of Euclidean lines,
then P3 and P4 follow immediately.

For P2, any pair of Moulton lines that are standard Euclidean lines
will either intersect in the regular Euclidean plane or will intersect at a
point at infinity. For other Moulton lines, if the two lines are defined by
different slopes m1 and m2, then consider the regular Euclidean lines
of those slopes. Either those lines will intersect in the region x ≤ 0 or
x > 0. Since the Moulton “pieces” defining the line have the same slope,
then the Moulton lines with slopes m1 and m2 will also intersect where
the Euclidean lines did. The case left is the case where the Moulton
lines have the same slope. In this case, they intersect at the point at
infinity. So, P2 holds.

For P1, let A and B be two point in the plane. If A and B are both
in the left half-plane (x ≤ 0) we just find the line y = m′x+ b joining
them and define y = 2m′x + b in the right half-plane (x > 0) to get
the Moulton line incident on A and B. A similar construction works if
A and B are both in the right half-plane (x > 0).

If A is in the left half-plane and B in the right, but A is above
or at the same level as B, then the slope of the line joining the two
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points is negative or zero, and the Moulton line is just the Euclidean
line incident on the points.

The only case left is where A is in the left half-plane and B in the
right, and A is below B. It is clear from the hint that the fraction

slope(
←→
BY )

slope(
←→
AY )

range from 0 to infinity as Y ranges from Y1 to Y0. Thus,

by continuity there is a Y value where this fraction is equal to 2. Let

m = slope(
←→
BY ). This will generate the unique Moulton line from A to

B.

9.4 Transformations in Projective Geometry and Pappus’s Theorem

9.4.1 Closure: Let π1 and π2 be projectivities. Then, each is con-
structed from a composition of perspectivities. The composition of π1
with π2 will again be a composition of perspectivities and thus is a
projectivity.

Associativity: This is automatic (inherited) from function com-
position.

Identity: A perspectivity from a pencil of points back to itself
(or pencil of lines back to itself) is allowed, and thus the identity is a
projectivity.

Inverses: Given any basic perspectivity from, say a pencil of points
on l to a pencil of points on l′, will have its inverse be the revers map-
ping from the pencil at l′ to the pencil at l. Since a projectivity is the
composition of perspectivities, then the inverse will be the composition
of inverse perspectivities (in reverse order).

9.4.3 Dual to Theorem 9.6: Let a,b,c be three distinct lines
incident on point P and a′, b′, and c′ be three distinct lines incident
on point P ′, with P 6= P ′. Then, there is a projectivity taking a,b,c to
a′,b′,c′.

Dual to Corollary 9.7: Let a,b,c and a′, b′, and c′ be two sets of
distinct lines incident on point P . Then, there is a projectivity taking
a,b,c to a′,b′,c′.

9.4.5 Let π1 and π2 be projectivities having the same value on
points A, B, and C on l. Then π1 ◦π−12 will leave the points A, B, and
C on l invariant. By P7, π1 ◦ π−12 = id, or π1 = π2.

9.4.7 Consider a projectivity of pencils of points from line l to
line l′. Theorem 9.6 gives us a construction for a projectivity as the
composition of two perspectivities if l 6= l′. If l = l′, then let A, B,
and C be projectively related to A′, B′, and C ′ on l′. Let m be a line
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not identical to l and P a point not on m. Let π be the perspectivity
defined by center P and line m. Let X, Y , and Z be the points on m
that are perspective from P to A′, B′, and C ′. Then, by Theorem 9.6
we can find a sequence of two perspectivities taking A, B, and C to
X, Y , and Z. Then, π maps X, Y , Z to A′, B′, C ′.

9.4.9 WLOG assume A = A′. Then, P = AB · A′B′ = A and
R = AC ·A′C ′ = A. Clearly, there is a line defined on P , Q, and R as
P = R.

B

C

O

B’
C’

A=A’=P=R

Q

B

C

O

B’
C’

A=A’=P=R

Q

FIGURE 9.1:

9.5 Models of Projective Geometry

9.5.1 P1: Given two “regular” points (x1, y1, 1) and (x2, y2, 1), the
Euclidean line defined by these points will be the only line so defined
in the plane z = 1, and thus will be the unique projective line on these
points. Given (x, y, 1) and a point at infinity (x′, y′, 0). there is a unique

line through (x, y, 1) with slope y′

x′ . This is the projective line through
the points. Given two points at infinity, the line at infinity is the only
line through these points.

P2: For two regular lines in the plane z = 1, there is only one point
of intersection. For a regular line l and the line at infinity, let y

x be the
slope of l, Then, the point (x, y, 0) is the point at infinity that is on l.

P3: (1, 0, 1), (0, 1, 1) and (1, 1, 1) are not collinear.
P4: Every regular line clearly has at least three points. The line at

infinity contains an infinite number of points of the form (x, y, 0).
9.5.3 All points at infinity must lie on the line at infinity. Points at

infinity are of the form (x, y, 0) where both x and y cannot be simul-
taneously zero. Let [u, v, w] be the coordinate for the line at infinity.
Then ux+ vy + 0w = 0 for all choices of x and y. Clearly, u = v = 0.
Since the coordinate vector for a line cannot be the zero vector, then
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w 6= 0. Thus, [0, 0, 1] must be the homogeneous coordinates for the line
at infinity.

9.5.5 Let P = (x1, y1, 1) and Q = (x2, y2, 1). Let x = x2 − x1 and
y = y2 − y1. Then, the point (x, y, 0) will be the point at infinity, as it
points (as a vector) in the direction of the slope of the line.

9.5.7 Let P , Q, R, and S be the points of the first complete
quadrangle. Let X1 = (1, 0, 0), X2 = (0, 1, 0), X3 = (0, 0, 1) and
X4 = (1, 1, 1). By Theorem 9.24 there is a unique collineation π1 taking
P to X1, Q to X2, R to X3 and S to X4. Let P ′, Q′, R′, and S′ be
the points of the second complete quadrangle. Then, there is a unique
collineation π2 taking P ′ to X1, Q′ to X2, R′ to X3 and S′ to X4.
Then, π−12 ◦ π1 will take P , Q, R, and S to P ′, Q′, R′, and S′.

Suppose there was another collineation π′ taking P , Q, R, and S
to P ′, Q′, R′, and S′. Then, π2 ◦ π′ takes P to X1, Q to X2, R to X3

and S to X4. Uniqueness implies that π1 = π2 ◦ π′ or π′ = π−12 ◦ π1.
9.5.9 Let A be the collineation and let P and Q be distinct points

on l. Let l′ be the line that is the image of l under A. Let P ′ and Q′

be distinct points of l′. Given X on l, we have X = αP + βQ. Also,
AX = α′P ′ + β′Q′. Now,

AX = A(αP + βQ)

= αAP + βAQ

= α(λ1P
′ + λ2Q

′) + β(µ1P
′ + µ2Q

′)

= (αλ1 + βµ1)P ′ + (αλ2 + βµ2)Q′

Thus,

(
α′

β′

)
=

[
λ1 µ1

λ2 µ2

](
α
β

)
9.5.11 Let X = (x, y, 0) be the homogeneous coordinates for an

ideal point. A collineation can be represented by

A =

 a b c
d e f
g h i


Then, AX = (α, β, gx + hy + 0). This must again be an ideal point
by Exercise 9.5.11. So, gx + hy = 0 for all choices of x and y. Then,
x = 0 = y. For A to be non-singular i 6= 0. Then, 1

iA will be equivalent
to A as a collineation and will have third row equivalent to [0 0 1].
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9.6 Project 15 - Ratios and Harmonics

9.7 Harmonic Sets

9.7.1 For the quadrangle, ABCD let E = AB · CD, F = AC · BD,
and G = AD ·BC.

A

B

C

D

E

F

G

FIGURE 9.2:

Consider a line through two of the diagonal points, say the line EF .
Suppose A was on EF . Then, F is on AE = AB. But, this implies that
D is on AB, which contradicts the fact that A, B, and D must be non-
collinear. A similar argument will show that EF cannot intersect any
of the other three points B, C, or D. Similarly, the result holds for EG
and FG.

9.7.3 Let O be the intersection of FF ′ and HH ′. Then, the per-
spectivity from O maps EF to E′F ′, thus maps l to l′. (See Fig. 9.3)
The perspectivity maps E,F , and H to E′, F ′, and H ′. Let I ′′ be th
image of I under this perspectivity. Then, by Corollary 9.31 we have
that H(E′, F ′;H ′, I ′′). But, by Theorem 9.29 we know that the fourth
point in a harmonic set is uniquely defined, based on the first three
points. Thus, I ′ = I ′′.
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F’
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FIGURE 9.3:

9.7.5 Let A,B,C, and D have parametric homogeneous coordinates
(α1, α2), (β1, β2), (γ1, γ2) and (δ1, δ2). We can assume that the homo-
geneous parameters for the four points are equivalently (α, 1), (β, 1),
(γ, 1) and (δ, 1), where α = α1

α2
, β = β1

β2
, γ = γ1

γ2
, and δ = δ1

δ2
. From

Theorem 9.33 we have

R(A,B;C,D) =
dd(A,C) dd(B,D)

dd(B,C) dd(A,D)

=
(γ − α)(δ − β)

(γ − β)(δ − α)

If we do a replacement using α = α1

α2
, β = β1

β2
, γ = γ1

γ2
, and δ = δ1

δ2
. we

get

R(A,B;C,D) =
(γ1γ2 −

α1

α2
)( δ1δ2 −

β1

β2
)

(γ1γ2 −
β1

β2
)( δ1δ2 −

α1

α2
)

=

1
γ2α2

(γ1α2 − γ2α1) 1
δ2β2

(δ1β2 − δ2β1)
1

γ2β2
(γ1β2 − γ2β1) 1

δ2α2
(δ1α2 − δ2α1)

=
(γ1α2 − γ2α1)(δ1β2 − δ2β1)

(γ1β2 − γ2β1)(δ1α2 − δ2α1)

9.7.7 Use the coordinates for A, B, C, and D as set up in Theo-
rem 9.33. Let D′ have coordinates (δ′, 1). Then,

R(A,B;C,D) =
(γ − α)(δ − β)

(γ − β)(δ − α)

= R(A,B;C,D′)

=
(γ − α)(δ′ − β)

(γ − β)(δ′ − α)
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Thus,
δ′ − β
δ′ − α

=
δ − β
δ − α

. Or, (δ′ − β)(δ − α) = (δ − β)(δ′ − α). So,

−δ′α− δβ = −δ′β − δα. Thus, δ′(α− β) = δ(α− β) and δ′ = δ.
9.7.9 Let the parametric coordinates of A, B, C, D, and E be

(α, 1), (β, 1), (γ, 1), (δ, 1), and (ε, 1). Then,

R(A,B;C,D)R(A,B;D,E) =
(γ − α)(δ − β)

(γ − β)(δ − α)

(δ − α)(ε− β)

(δ − β)(ε− α)

=
(γ − α)(ε− β)

(γ − β)(ε− α)

= R(A,B;C,E)

9.7.11 If the coordinates for A and C are α and γ then the coor-

dinates for B would be β =
α+ γ

2
. Then, for a fourth point D with

coordinate δ we have

R(A,C;B,D) =
(β − α)(δ − γ)

(β − γ)(δ − α)

=
(γ−α2 )(δ − γ)

(α−γ2 )(δ − α)

= − δ − γ
δ − α

If D has coordinates of the point at infinity, then the cross-ratio will
be equal to −1 and the four points will form a harmonic set.

9.8 Conics and Coordinates

9.8.1 According to Theorem 9.12 the projectivity defining the conic is
equivalent to the composition of two perspectivities. The proof is by
contradiction. Suppose that the line AB corresponded to itself under
the projectivity. Interpret Lemma 9.10 as a statement about the pencils
of points on l, m, and n. The dual to this lemma would be:

”Given three pencils of lines at P , R, and Q with P 6= Q, suppose
there is a projectivity taking the pencil at P to the pencil at Q. If
l = PQ is invariant under the projectivity, then, then the pencil at P
is perspective to the pencil at Q.”

In the case of the exercise, the line l would be AB. If AB it is
invariant, then by the lemma the projectivity is a perspectivity. This
implies that the point conic is singular.

9.8.3 Suppose the conic is defined by pencils of points at A and
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B. Let C, D, E, and F be four other distinct points on the conic. By
Theorem 9.41, we know that no subset of three of A, B, C, D, E,
and F are collinear. Thus, by Theorem 9.42, the points P , Q, and R
defined in the theorem are collinear. If we switch A with C, B with D,
and E with F , then the points P , Q, and R are unchanged as points
of intersection. Thus, they remain collinear. So, by Theorem 9.42, the
point conic is defined by pencils at C and D.

9.8.5 If they intersected in five or more points, they would have to
be the same conic, by Theorem 9.45.

9.8.7 Re-write the equations as: 2(x2 − 2xz + z2) + 4y2 + 10yz +
10z2 = 0. Let x′ = x− z. Then, we get 2x′2 + 4y2 + 10yz + 10z2 = 0.
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Fractal Geometry

Much of the material in this chapter is at an advanced level, especially
the sections on contraction mappings and fractal dimension—Sections
10.5 and 10.6. But this abstraction can be made quite concrete by the
computer explorations developed in the chapter. In fact, the computer
projects are the only way to really understand these geometric objects
on an intuitive level.

SOLUTIONS TO EXERCISES IN CHAPTER 10

10.3 Similarity Dimension

The notion of dimension of a fractal is very hard to make precise. In this
section we present one simple way to define dimension, but there are
also other ways to define dimension as well, each useful for a particular
purpose and all agreeing with integer dimension, but not necessarily
with each other.

10.3.1 Theorem 2.27 guarantees that the sides of the new triangles
are parallel to the original sides. Then, we can use SAS congruence to
achieve the result.

10.3.3 At each successive stage of the construction, 8 new squares
are created, each of area 1

9 the area of the squares at the previous
stage. Thus, the pattern for the total area of each successive stage of

59
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the construction is

l = 1− 1

9
− 8

81
− 64

93
− . . .

= 1− 1

9

∞∑
k=0

(
8

9

)k
= 1− 1

9

1

1− 8
9

= 1− 1

= 0

Thus, the area of the final figure is 0.
10.3.5 The similarity dimension would be log(4)

log(3) .
10.3.7 Split a cube into 27 sub-cubes, as in the Menger sponge

construction, and then remove all cubes except the eight corner cubes
and the central cube. Do this recursively. The resulting fractal will have
similarity dimension log(9)

log(3) , which is exactly 2.

10.4 Project 16 - An Endlessly Beautiful Snowflake

If students want a challenge, you could think of other templates based
on a simple segment, generalizing the Koch template and the Hat tem-
plate from exercise 10.4.4.

10.6 Fractal Dimension

Sections 10.5 and 10.6 are quite “thick” mathematically. To get some
sense of the Hausdorff metric, you can compute it for some simple
pairs of compact sets. For example, two triangles in different positions.
Ample practice with examples will help you get a feel for the mini-max
approach to the metric and this will also help you be successful with
the homework exercises.

10.6.1 A function f is continuous if for each ε > 0 we can find
δ > 0 such that |f(x) − f(y)| < ε when 0 < |x − y| < δ. Let S be a
contraction mapping with contraction factor 0 ≤ c < 1. Then, given ε,
let δ = ε (if c = 0) and δ = ε

c (if c > 0).
If c = 0 we have 0 = |S(x)− S(y)| ≤ |x− y| < δ = ε.
If c > 0, we have |S(x)− S(y)| ≤ c|x− y| < c εc = ε.
10.6.3 Property (2): Since dH(A,A) = d(A,A), and since

d(A,A) = max{d(x,A)|x ∈ A}, then we need to show d(x,A) = 0.



Fractal Geometry � 61

But, d(x,A) = min{d(x, y)|y ∈ A}, and this minimum clearly occurs
when x = y; that is, when the distance is 0.

Property (3): If A 6= B then we can always find a point x in A that
is not in B. Then, d(x,B) = min{d(x, y)|y ∈ B} must be greater than
0. This implies that d(A,B) = max{d(x,B)|x ∈ A} is also greater
than 0.

10.6.5 We know that

d(A,C ∪D) = max{d(x,C ∪D)|x ∈ A}
= max{min{d(x, y)|x ∈ A and y ∈ C or D}}
= max{min{min{d(x, y)|x ∈ Ay ∈ C},min{d(x, y)|x ∈ A, y ∈ D}}}
= max{min{d(x,C), d(x,D)}|x ∈ A}

The last expression is clearly less than or equal to max{d(x,C)|x ∈
A} = d(A,C) and also less than or equal to max{d(x,D)|x ∈ A} =
d(A,D).

10.6.7 There are three contraction mappings which are used to
construct Sierpinski’s triangle. Each of them has contraction scale fac-
tor of 1

2 . Thus, we want (12)D+(12)D+(12)D = 1, or 3(12)D = 1, Solving

for D we get D = log(3)
log(2) .

10.7 Project 17 - IFS Ferns

Do not worry too much about getting exactly the same numbers for the
scaling factor and the rotations that define the fern. The important idea
is that you get the right types of transformations (in the correct order of
evaluation) needed to build the fern image. For exercise 10.7.5 it may be
helpful to copy out one piece of the image and then rotate and move
it so it covers the other pieces, thus generating the transformations
needed.

10.9 Grammars and Productions

This section will be very different from anything you have done before,
except for those who have had some computer science courses. The
connection between re-writing and axiomatic systems is a deep one.
One could view a theorem as essentially a re-writing of various symbols
and terms used to initialize a set of axioms. Also, turtle geometry is
a very concrete way to view re-writing and so we have a nice concrete
realization of an abstract idea.
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10.9.1 Repeated use of production rule 1 will result in an expression
of the form anSbn. Then, using production rule 2, we get anbn.

10.9.3 The level 1 rewrite is +RF − LFL − FR+. This is shown
in Fig. 10.1. The level 2 rewrite is +−LF +RFR+FL−F −+RF −
LFL−FR+F +RF −LFL−FR+−F −LF +RFR+FL−+. This is
shown in Fig. 10.2. For the last part of the exercise, the students should
recognize that all interior “lattice” points (defined by the length of one
segment) are actually visited by the curve. Thus, as the level increases
(and we scale the curve back to some standard size) the interior points
will cover space, just as the example in section 9.9 did.

FIGURE 10.1:

FIGURE 10.2:

10.10 Project 18 - Words Into Plants

Grammars as representations of growth is an idea that can be tied in
nicely with the notion of genetics from biology. A grammar is like a
blueprint governing the evolution of the form of an object such as a
bush, in much the same way that DNA in its expression as proteins
governs the biological functioning of an organism.
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Sample Lab Report

Pollie Gonn
MCS 303 Project 0
September 12, 2003
The Amazing Pythagorean Theorem

Introduction
The Pythagorean Theorem is perhaps the most famous theorem

in geometry, if not in all of mathematics. In this lab, we look at one
method of proving the Pythagorean Theorem by constructing a special
square. Part I of this report describes the construction used in the proof
and Part II gives a detailed explanation of why this construction works,
that is why the construction generates a proof of the Pythagorean
theorem. Finally, we conclude with some comments on the many proofs
of the Pythagorean Theorem.

Part I:
To start out our investigation of the Pythagorean Theorem, we

assume that we have a right triangle with legs b and a and hypotenuse
c. Our first task construction is that of a segment sub-divided into two
parts of lengths a and b. Since a and b are arbitrary, we just create a
segment, attach a point, hide the original segment, and draw two new
segments as shown.

A CB
a b

FIGURE A.1:
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Then, we construct a square on side a and a square on side b. The
purpose of doing this is to create two regions whose total area is a2+b2.
Clever huh? Constructing the squares involved several rotations, but
was otherwise straightforward.

A CB
a b

D E

F G

FIGURE A.2:

The next construction was a bit tricky. We define a translation from
B to A and translate point C to get point H. Then, we connect H to D
and H to G, resulting in two right triangles. In part II, we will prove
that both of these right triangles are congruent to the original right
triangle.

A CB
a b

D
E

F G

H

FIGURE A.3:

Next, we hide segment BC and create segments BH and HC. This
is so that we have well-defined triangle sides for the next step - rotating
right triangle ADH 90 degrees about its top vertex, and right triangle
HGC -90 degrees about its top vertex.
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A CB
a

D
E

F G

H

FIGURE A.4:

Part II:
We will now prove that this construction yields a square (on DH) of

side length c, and thus, since the area of this square is clearly equal to
the sum of the areas of the original two squares, we have a2 + b2 = c2,
and our proof would be complete. By SAS, triangle HCB must be
congruent to the original right triangle, and thus its hypotenuse must
be c. Also, by SAS, triangle DAH is also congruent to the original
triangle, and so its hypotenuse is also c. Then, angles AHD and CHG(=
ADH) must sum to 90 degrees, and the angle DHG is a right angle.
Thus, we have shown that the construction yields a square on DH of
side length c, and our proof is complete.

Conclusion:
This was a very elegant proof of the Pythagorean Theorem. In re-

searching the topic of proofs of the Pythagorean Theorem, we discov-
ered that over 300 proofs of this theorem have been discovered. Elisha
Scott Loomis, a mathematics teacher from Ohio, compiled many of
these proofs into a book titled The Pythagorean Proposition, published
in 1928. This tidbit of historical lore was gleaned from the Ask Dr.
Math website
(http://mathforum.org/library/drmath/view/62539.html). It seems
that people cannot get enough of proofs of the Pythagorean Theorem.
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