Student Worksheet for 1-D Kinematics

After you've worked through the sample problems in the videos, you can work out the problems below to practice doing this yourself. Answers are given on the last page.

Kinematic Equations:
$x_{f}-x_{i}=v_{i} t+1 / 2$ at ${ }^{2} \quad$ OR $\quad d=v_{i}+1 / 2$ at 2
$\mathrm{vf}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{a}\left(\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right) \quad$ OR $\quad \mathrm{Vf}^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{ad}$
$\mathrm{X}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}=1 / 2\left(\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{i}}\right) \mathrm{t} \quad$ OR $\quad \mathrm{d}=1 / 2\left(\mathrm{v}_{\mathrm{f}}+\mathrm{v}_{\mathrm{i}}\right) \mathrm{t}$
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+$ at (Where: $\mathrm{t}=$ time, $\mathrm{d}=$ displacement, $\mathrm{x}=$ position, $\mathrm{v}=\mathrm{velocity} \mathrm{a}=$, acceleration, $\mathrm{i}=$ initial, $\mathrm{f}=$ final $)$

Practice Problems:

1. A professional baseball pitcher is trying to get his fastball across home plate as fast as possible, and the plate is 60.5 feet away. If the ball leaves the pitcher's hand at 94 mph and maintains this speed across the plate, how long does it take the ball to cross the plate?
2. A runner warms up by walking 100 meters at $0.5 \mathrm{~m} / \mathrm{s}$, and then runs 100 meters at $9.3 \mathrm{~m} / \mathrm{s}$. What is the runner's average speed?
3. A motocross rider goes up a hill at 30 mph and then returns down the hill at 50 mph . What is the average speed for the trip?
4. A rocket accelerates at 9.6 kph per second. What is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?
5. A snowboarder is attempting to clear a gap after a jump, and it is known that he must be travelling at least 34 mph to clear the gap. If the distance from the start of hill to the jump is 42 yards long, what is the acceleration of the snowboarder if he starts from rest? Please express your answer in $\mathrm{ft} / \mathrm{s}^{2}$. (Hint: 1760 yards = 1 mile)
6. An aircraft landing on an aircraft carrier is assisted in landing on a short runway through the use of cables on the carrier and hooks on the aircraft. If the airplane is flying at a velocity of $322 \mathrm{ft} / \mathrm{s}$ and the aircraft stops in 1.25 seconds, find the acceleration of the aircraft and express the value in g's. (Hint: 1 g in English units is $32.2 \mathrm{ft} / \mathrm{s}^{2}$, so divide your acceleration answer by 32.2)
7. Find the acceleration of a rabbit that increases its speed constantly from 10 to 25 kph in 5 seconds, and then compare it to a bird who speeds up uniformly from rest to 20 kph in the same amount of time.
8. The maximum acceleration for an Amtrak train with passengers is 64 kph per second. If the distance between stops is 1.6 kilometers, what is the maximum speed attained by the train and how much time has passed in between stops?
9. At a construction site, a wrench strikes the ground with a speed of $24 \mathrm{~m} / \mathrm{s}$. From what height was it dropped, and how long did it fall?
10. A penny is dropped from a tall building in New York that is 234 feet tall. If air resistance is ignored, at what speed will the penny hit the ground?
11. A potato is launched vertically into the air and reaches a height of 33.7 m in 2.17 seconds. What was the potato's initial speed? What will be the potato's maximum height?
12. A hammer is dropped from a roof with a height of 12 feet. It is hits the ground and remains in contact with the ground for 0.025 seconds before coming to rest. What is the average acceleration of the hammer during its contact with the ground? Assume the hammer does not bounce on contact with the ground.
13. A bouncy ball is bounced straight up, and has a vertical velocity of $10 \mathrm{~m} / \mathrm{s}$ at height of 75 m above the ground. How long will it take the bouncy ball to come back to the ground and at what speed does the ball hit the ground?
14. A pilot ejects from his aircraft and falls 60 m from the ground without friction. When he opens his parachute, he decelerates at $2.5 \mathrm{~m} / \mathrm{s}^{2}$. The pilot hits the ground at a speed of $4 \mathrm{~m} / \mathrm{s}$. How long was the pilot in the air and at what height did he begin his fall?

Student Worksheet for 1-D Kinematics

After you've worked through the sample problems in the videos, you can work out the problems below to practice doing this yourself. Answers are given on the last page.

Kinematic Equations:

$\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}} \mathrm{t}+1 / 2 \mathrm{at}^{2} \quad$ OR $\quad \mathrm{d}=\mathrm{v}_{\mathrm{i}}+1 / 2$ at 2
$\mathrm{vf}^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{a}\left(\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}\right) \quad$ OR $\quad \mathrm{vf}^{2}=\mathrm{v}_{\mathrm{i}}{ }^{2}+2 \mathrm{ad}$
$x_{f}-x_{1}=1 / 2\left(v_{f}+v_{i}\right) t \quad$ OR $\quad d=1 / 2\left(v_{f}+v_{i}\right) t$
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+$ at \quad (Where: $\mathrm{t}=$ time, $\mathrm{d}=$ displacement, $\mathrm{x}=$ position, $\mathrm{v}=\mathrm{velocity}, \mathrm{a}=$ acceleration, $\mathrm{i}=$ initial, $\mathrm{f}=$ final)
Practice Problems:

1. A professional baseball pitcher is trying to get his fastball across home plate as fast as possible, and the plate is 60.5 feet away. If the ball leaves the pitcher's hand at 94 mph and maintains this speed across the plate, how long does it take the ball to cross the plate?
Given: $X_{f}=60.5 \mathrm{ff}$ Find: t

$$
v_{i}=94 \mathrm{mph}
$$

Solution
This kinematic problem involves simply horizontal movement, Using our equations above, we can find out how long it takes.
It should be noted that since our velocity is constant, $a=0$ in the horizontal direction.
$x_{f}-x_{i}=v_{i} t+\frac{1}{2} g t^{2} \quad \begin{array}{ll}\text { lets convert } \\ & \text { velocity to ft/s }\end{array} 94 \frac{\mathrm{mh}}{\mathrm{hr}} \cdot \frac{5280 \mathrm{ft}}{\mathrm{h}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~m}} \cdot \frac{1 \mathrm{~m}}{60 \mathrm{~s}} \quad \mathrm{~V}=138 \mathrm{ft} / \mathrm{s}$
$t=\frac{x_{f}-x_{i}}{v_{i}}$

$$
t=\frac{60.5-0}{138}
$$

$$
t=0.44 \mathrm{~s}
$$

2. A runner warms up by walking 100 meters at $0.5 \mathrm{~m} / \mathrm{s}$, and then runs 100 meters at $9.3 \mathrm{~m} / \mathrm{s}$. What is the runner's average speed?
Given: $x_{1}=160 \quad V_{1}=0.5 \mathrm{~m}$ $X_{2}=100 \quad V_{2}=9.3 \mathrm{M} / \mathrm{s}$

[^0]$V_{\text {avg }}=\frac{\text { total distance }}{\text { total time }}$
3. A motocross rider goes up a hill at 30 mph and then returns down the hill at 50 mph . What is the average velocity for the trip?
Given: $V_{1}=30 \mathrm{mph}$ find: Vars
$$
v_{2}=50 \mathrm{mph}
$$

Solution Kinematic problem that can be found using simple armanetic

$$
V_{\text {avg }}=\frac{30 \mathrm{mph}}{2}+50 \mathrm{mph}, \mathrm{Vavg}=40 \mathrm{mph}
$$

4. A rocket accelerates at 9.6 kph per second. What is its acceleration in $\mathrm{m} / \mathrm{s}^{2}$?

Given: $a=9.6 \frac{\mathrm{Km}}{\mathrm{hr} . \mathrm{s}} \quad$ Find: a in $\mathrm{m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& \text { Solution } \begin{array}{l}
\text { using our conversion transfers and our knowledge of units, this } \\
\text { problem can also be solved with algebra. }
\end{array} . \begin{array}{l}
\text { ald }
\end{array} \text { 隹 }
\end{aligned}
$$

5. A snowboarder is attempting to clear a gap after a jump, and it is known that he must be travelling at least 34 mph to clear the gap. If the distance from the start of hill to the jump is 42 yards long, what is the acceleration of the snowboarder if he starts from rest? Please express your answer in $\mathrm{ft} / \mathrm{s}^{2}$. (Hint: 1760 yards $=1$ mile)

$$
\text { Given: } \begin{aligned}
V & =34 \mathrm{mph} \\
\delta & =42 \text { yards }
\end{aligned}
$$

We are not given time, so we need an equation without t and we should convert to feets and seconds to ensure unit transfer
$V=34 \frac{\mathrm{~m}}{\mathrm{hr}} \cdot \frac{1760 \text { yards }}{\mathrm{m}} \cdot \frac{3 f t}{\text { word }} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~m}} \cdot \frac{1 \mathrm{~m}}{605} \quad V=50 \mathrm{ft} / \mathrm{s} \quad X_{f}=42$ yards $\times 3$ feet
Now using
$V_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right)$ we can get $a=\frac{V_{f}^{2}}{2 x_{f}} a=\frac{(50)^{2}}{2(126)} a=10 \mathrm{ft} / \mathrm{s}^{2}$
where $v_{i}=0$ $x_{i}=0$
6. An aircraft landing on an aircraft carrier is assisted in landing on a short runway through the use of cables on the carrier and hooks on the aircraft. If the airplane is flying at a velocity of $322 \mathrm{ft} / \mathrm{s}$ and the aircraft stops in 1.25 seconds, find the acceleration of the aircraft and express the value in g's. (Hint: 1 g in English units is $32.2 \mathrm{ft} / \mathrm{s}^{2}$, so divide your acceleration answer by 32.2)

$$
\text { Given: } V_{:}=322 \mathrm{ft} / \mathrm{s} \quad V_{4}=0 \quad \text { Find: } a
$$

$$
t=1.25 \mathrm{~s}
$$

Solution (Because we only have $V \$ t$ and we dort know distance, sur best bet is using $v_{f}=v_{i}+a t$. Then after solving for a, we divide by gravities acceleration to get the $\#$ of g 's

$$
\begin{array}{ll}
v_{f}=v_{i}+a t & 0=322+a(1.25) \quad a=\frac{32}{1.25} \quad a=-258 / s^{2} \\
g_{s}^{\prime}=\frac{a}{-32.2} & g_{s}^{\prime}=\frac{-258}{-32,2} \quad g_{s}^{\prime}=8<8 \text { tines the } \\
\text { accel. due to gravity }
\end{array}
$$

7. Find the acceleration of a rabbit that increases its speed constantly from 10 to 25 kph in 5 seconds, and then compare it to a bird who speeds up uniformly from rest to 20 kph in the same amount of time.

Given:

$$
v_{1 i}=10 \mathrm{kph} \quad v_{2 i}=0 \quad t=5 \mathrm{~s} \quad \text { find: } a_{1} a_{2}
$$

$$
V_{1_{f}}^{1_{i}}=25 \mathrm{kPh} \quad V_{2 f}^{2}=20 \mathrm{KPh}
$$

Solution using $v_{f}=v_{i}+a t$; we can find both a_{1}, and a_{2}. For convinience, lets convert time to hours

$$
t=54 \cdot \frac{1 \mathrm{~N}}{608} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{w}} \quad t=0.0022 \text { hours }
$$

Rabbit

(C) 2014 Supercharged Science
8. The maximum acceleration for an Amtrak train with passengers is 64 kph per second. If the distance between stops is 1.6 kilometers, what is the maximum speed attained by the train and how much time has passed in between stops?

$$
\begin{aligned}
a v e n: a & =-64 \frac{\mathrm{k}}{\mathrm{hr} \cdot \mathrm{~s}} \\
d & =1.6 \mathrm{~km} \quad \text { Find: V max and } t \\
a & =-64 \neq \frac{\mathrm{kg}}{\mathrm{hr} \cdot \mathrm{~s}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{kh}} \cdot \frac{1 \mathrm{ht}}{60 \mathrm{mh}} \cdot \frac{1 \mathrm{me}}{60 \mathrm{~s}} \\
d & =1600 \mathrm{~m}
\end{aligned}
$$

First, unit conversion

$$
a=-18 \mathrm{~m} / \mathrm{s}^{2}
$$

negative because
Now we find

$$
\begin{aligned}
& \text { Now we find } V \text { using } \\
& V_{f}^{2}=V_{i}^{2}+2 a d \quad V_{i}=\sqrt{-2(-18)(1600)} \quad \begin{array}{l}
\text { Now we find } t \\
\text { using } \\
V_{f}^{0}=v_{i}+a t \\
\text { where } V_{f}=0 \\
\text { so } V_{i}=\sqrt{-2 a d} \quad t=\frac{-240}{-18} \\
t=\frac{-V_{i}}{a}
\end{array} \quad \begin{array}{l}
t=240 \mathrm{~m} / \mathrm{s}
\end{array} \quad \begin{array}{l}
t=13.33 \mathrm{~s}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { we are slowing } \\
& \text { down }
\end{aligned}
$$

9. At a construction site, a wrench strikes the ground with a speed of $24 \mathrm{~m} / \mathrm{s}$. From what height was it dropped, and how long did it fall?

$$
\begin{aligned}
& \text { dropped, and how long did it fall? } \\
& \text { Given: Find: } \delta \text { and } t \\
& V_{i}=0 \\
& V_{f}=24 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Because we are dropping something, $a=-9.81 \mathrm{~m} / \mathrm{s}^{2}$, which will help us find d and then t now we have el, a, $3 v$, lets get

$$
\begin{aligned}
& t=\frac{1}{2}\left(V_{f}+V_{i}\right) t \text { so } t=\frac{2 d}{v_{f}+V_{i}} \\
& t=\frac{2(29)}{24+0} \quad t=2.4 \mathrm{~s}
\end{aligned}
$$

10. A penny is dropped from a tall building in New York that is 234 feet tall. If air resistance is ignored, at what speed will the penny hit the ground?

$$
a=m-32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

Using $V_{f}^{2}=V_{i}^{2}+2 a d$ where $V_{i}=0 \quad$ (dropped $=$ started from rest) we can find V_{f}

$$
V_{f}=\sqrt{2 a d} .
$$

$$
V_{f}=\sqrt{2(32.2)(234)} \quad V_{f}=123 \mathrm{ft} / \mathrm{s} .
$$

11. A potato is launched vertically into the air and reaches a height of 33.7 m in 2.17 seconds. What was the potato's initial speed? What will be the potato's maximum height?
Given: $a=-9.81 \mathrm{~m} / \mathrm{s}^{\mathrm{s}} \quad d=33.7 \mathrm{~m} \quad t=2.17 \mathrm{~s} \quad$ Find: V_{i} and $y_{\max }$
First, lets answer the easy part and find our initial velocity since we know t, d, and a

$$
\begin{aligned}
& d=v_{i} t+\frac{1}{2} a t^{2} \\
& v_{i}=\frac{d-\frac{1}{2} a t^{2}}{t} \\
& v_{i}=\frac{(33.7)-\frac{1}{2}(-9.81)(2.17)^{2}}{2.17} \\
& v_{i}=26 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now we need max height, and we know max height is where the potato no longer has any any velocity
so our $V_{f}=0$ we can use $V_{f}^{2}=V_{i}^{2}+2 a d$ and solve for d

$$
\begin{aligned}
& \text { ind solve for } d \\
& v_{f}^{2}-v_{i}^{2}=2 a d \Rightarrow d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a} \\
& d=\frac{(0)^{2}-(26)^{2}}{2(-9.81)} \quad \delta=34.5 \text { meters }
\end{aligned}
$$

12. A hammer is dropped from a roof with a height of 12 feet. It is hits the ground and remains in contact with the ground for 0.025 seconds before coming to rest. What is the average acceleration of the hammer during its contact with the ground? Assume the hammer does not bounce on contact with the ground.
Given: $a_{1}=-32.2 \mathrm{ft} / \mathrm{s}^{2} \quad t_{2}=0.02 \mathrm{~s} \mathrm{~s} \quad d=12 \mathrm{ft}$. Find: a_{2}

$$
V_{1 i}=0 \mathrm{ft} / \mathrm{s}
$$

Th is is a 2 step problem, we need the velocity right before impact so we can then solve for the acceleration.

$$
\begin{aligned}
& v_{f}^{2}=v_{i}^{2}+2 a_{i} \\
& v_{f}^{2}=0+2(-32.2)(12)
\end{aligned}
$$

$V_{f}=-28 \mathrm{ft} / \mathrm{s}$
Now we have the velocity when the hammer hits the ground. Now using our time increment and knowing our new $v_{i}=-288^{f t} / \mathrm{s}$ and we end at

$$
V_{f}=-\sqrt{2(32.2)(12)}
$$ rest $\left(v_{f}=0\right)$ we can use $v_{f}=v_{i}+a t$

$$
\begin{aligned}
& a=\frac{v_{f}-v_{i}}{t} \quad a=\frac{0-(-28)}{0.025} \\
& a=11.20 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

13. A bouncy ball is bounced straight up, and has a vertical velocity of $10 \mathrm{~m} / \mathrm{s}$ at height of 75 m above the ground. How long will it take the bouncy ball to come back to the ground and at what speed does the ball hit the ground?
Given: $V_{i}=10 \mathrm{~m} / \mathrm{s} \quad d=75 \mathrm{~m} \quad a=-9.81 \mathrm{~m} / \mathrm{s}^{2} \quad$ Find: V_{f} and t
First we need to find the max height of the ball on its way up
$v_{f}{ }^{2}=v_{i}{ }^{2}+2 a d$
$d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}$
$d=\frac{0^{2}-(10)^{2}}{2(-9.81)}$
$d=5.1 \mathrm{~m}$
So our final distance

$$
\text { is } 75 m+5.1 m=80.1 \mathrm{~m}
$$

Now we use the Same
equation to find V_{f} Now we can find

$$
v_{f}^{2}=v_{i}^{2}+2 a d
$$

$$
V_{f}=\sqrt{0^{2}+2(9.81)(80.1)}
$$

$$
V_{f}=40 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& t=\frac{v_{f}-v_{i}}{a} \\
& t=\frac{40-0}{9.81} \\
& t=4.04 \mathrm{~s}
\end{aligned}
$$

14. A pilot ejects from his aircraft and falls 60 m from the ground without friction. When he opens his parachute, he decelerates at $2.5 \mathrm{~m} / \mathrm{s}^{2}$. The pilot hits the ground at a speed of $4 \mathrm{~m} / \mathrm{s}$. How long was the pilot in the air and at what height did he begin his fall?
Given: $d_{1}=60 \mathrm{~m} a_{1}=2.5 \mathrm{~m} / \mathrm{s}^{2} \quad$ Find: tend d for the trip
Three Part Problem, first lets find the time before the parachute is deployed. Assume $v_{i}=0$ when he ejects from the plane
$d=y_{i}^{0}+\frac{1}{2} a t^{2}$
$t=\sqrt{\frac{2 d}{a}}$
$t=\sqrt{\frac{2(60)}{9.81}}$
$t=3.5 \mathrm{~s}$
$V_{f}=V_{i}+a t$
$t=\frac{V_{f}-V_{i}}{a}$
Now we get
distance
$V_{f}=0+9.81(3.5) \cdot t=\frac{4-34}{-2.5}$
$t=12 \mathrm{~s}$
Now we can find
the time taken to so our total $d=53 \mathrm{~m}$
reach the ground time is So we started
Now we need
the velocityat
using $V_{i}=34 \mathrm{~m} / \mathrm{s}$
$V_{f}=4 \mathrm{~m} / \mathrm{s}$
$t=15.5 \mathrm{~s}$ from
this point of
Parachute deployment
© 2014 Supercharged Science

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$
Neutron mass, $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$
Electron mass, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
Speed of light, $\quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Electron charge magnitude, $\quad e=1.60 \times 10^{-19} \mathrm{C}$
Coulomb's law constant, $\quad k=1 / 4 \pi \varepsilon_{0}=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Universal gravitational constant,
$G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

UNIT	meter,	m	kelvin,	K	watt,	W	degree Celsius,
	kilogram,	kg	hertz,	Hz			
	second,	S	newton,	N	coulomb,	C	
	ampere,	A	joule,	J	J	ohm,	V

PREFIXES		
Factor	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES								
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1	
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0	
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	

The following conventions are used in this exam.
I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
II. Assume air resistance is negligible unless otherwise stated.
III. In all situations, positive work is defined as work done on a system.
IV. The direction of current is conventional current: the direction in which positive charge would drift.
V. Assume all batteries and meters are ideal unless otherwise stated.

ADVANCED PLACEMENT PHYSICS 1 EQUATIONS, EFFECTIVE 2015

MECHANICS	ELECTRICITY	
$\begin{array}{ll} v_{x}=v_{x 0}+a_{x} t & a=\text { acceleration } \\ A & =\text { amplitude } \end{array}$	$\left\|\vec{F}_{E}\right\|=k\left\|\frac{q_{1} q_{2}}{r^{2}}\right\| \quad \begin{aligned} & A=\text { area } \\ & F=\text { force } \end{aligned}$	
$\begin{array}{ll} x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2} & d=\text { distance } \\ E=\text { energy } \end{array}$	$\begin{array}{ll} I=\frac{\Delta q}{1+} & I \end{array}$	
$\begin{array}{ll}v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) & f=\text { frequency } \\ F=\text { force }\end{array}$	Δt $P=$ power $q=$ charge	
$\cdots \begin{array}{ll} \\ \vec{F} & \vec{F}_{\text {net }} \\ I & =\text { rotational inertia }\end{array}$	$R=\frac{\rho \ell}{A}$ $R=$ resistance	
$\begin{array}{ll} \vec{a}=\frac{\sum^{F}}{m}=\frac{F_{n e t}}{m} & K=\text { kinetic energy } \\ k=\text { spring constant } \end{array}$	$I=\frac{\Delta V}{R} \quad \begin{array}{ll} r=\text { separation } \\ t & =\text { time } \end{array}$	
$\left\|\vec{F}_{f}\right\| \leq \mu\left\|\vec{F}_{n}\right\| \quad \begin{aligned} L & =\text { angular momentum } \\ \ell & =\text { length } \end{aligned}$	$\begin{array}{ll} P=I \Delta V & V=\text { electric potential } \\ \rho & =\text { resistivity } \end{array}$	
$\begin{array}{ll} a_{c}=\frac{v^{2}}{r} & m=\text { mass } \\ P=\text { power } \end{array}$	$R_{s}=\sum_{i} R_{i}$	
$\vec{p}=m \vec{v} \quad p=$ momentum	$\frac{1}{R_{p}}=\sum \frac{1}{R_{i}}$	
$\begin{array}{ll} \vec{p}=m \vec{v} & r=\text { radius or separation } \\ & T=\text { period } \end{array}$	$\overline{R_{p}}=\sum_{i} \overline{R_{i}}$	
$\begin{array}{ll} K=\frac{1}{2} m v^{2} & V \\ & V=\text { volume } \\ v & =\text { speed } \end{array}$	WAVES	
$\Delta E=W=F_{\\|} d=F d \cos \theta \quad \begin{aligned} & v=\text { speed } \\ & W=\text { work done on a system } \\ & x=\text { position } \end{aligned}$	$\begin{array}{ll} \lambda=\frac{v}{f} & =\text { frequency } \\ v & =\text { speed } \\ \lambda & =\text { wavelength } \end{array}$	
	GEOMETRY AND TRIGONOMETRY	
$\begin{array}{rlrl} \theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} & \mu & =\text { coefficient of friction } \\ \theta & =\text { angle } \end{array}$	Rectangle $A=$ area $A=b h$ $C=$ circumference	
$\omega=\omega_{0}+\alpha t \quad \begin{array}{ll} \rho=\text { density } \\ \tau=\text { torque } \end{array}$	Triangle $\quad$$V=$ volume $S=$ surface area	
$x=A \cos (2 \pi f t) \quad \omega=\text { angular speed }$	$\begin{array}{ll} A=\frac{1}{2} b h & b=\text { base } \\ h & =\text { height } \end{array}$	
$\vec{\alpha}=\frac{\sum \vec{\tau}}{I}=\frac{\vec{\tau}_{n e t}}{I} \quad \Delta U_{g}=m g \Delta y$	Circle $\quad \ell=$ length $w=$ width	
$\tau=r_{\perp} F=r F \sin \theta \quad T=\frac{2 \pi}{\omega}=\frac{1}{f}$	$\begin{aligned} & A=\pi r^{2} \\ & C=2 \pi r \end{aligned}$	
$L=I \omega \quad \omega \quad \begin{aligned} & \text { a }\end{aligned}$	Rectangular solid Right triangle	
$\Delta L=\tau \Delta t \quad T_{s}=2 \pi \sqrt{\frac{m}{k}}$	$V=\ell w h \quad c^{2}=a^{2}+b^{2}$	
$K=\frac{1}{2} I \omega^{2} \quad T_{p}=2 \pi \sqrt{\frac{\ell}{g}}$	Cylinder $V=\pi r^{2} \ell$ $\begin{aligned} & \sin \theta=\frac{a}{c} \\ & \cos \theta=\frac{b}{c} \end{aligned}$	
$\left\|\vec{F}_{s}\right\|=k\|\vec{x}\| \quad\left\|\vec{F}_{g}\right\|=G \frac{m_{1} m_{2}}{r^{2}}$	$S=2 \pi r \ell+2 \pi r^{2} \quad \cos \sigma-\bar{c}$	
$\begin{array}{ll} U_{s}=\frac{1}{2} k x^{2} & \|\stackrel{T}{ } g\|-0 \\ \rho=\frac{m}{2} & \vec{g}=\frac{\vec{F}_{g}}{m} \end{array}$	Sphere $V=\frac{4}{3} \pi r^{3}$ $S=4 \pi r^{2}$	
$U_{G}=-\frac{G m_{1} m_{2}}{r}$	b	

ADVANCED PLACEMENT PHYSICS 2 EQUATIONS, EFFECTIVE 2015

CONSTANTS AND CONVERSION FACTORS	
Proton mass, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$ Neutron mass, $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$ Electron mass, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$ Avogadro's number, $N_{0}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$ Universal gas constant, $\quad R=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ Boltzmann's constant, $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	Electron charge magnitude, $\quad e=1.60 \times 10^{-19} \mathrm{C}$ 1 electron volt, $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$ Speed of light, $\quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\begin{array}{r}\text { Universal gravitational } \\ \text { constant, }\end{array} \quad G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$ Acceleration due to gravity at Earth's surface, $\quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
1 unified atomic mass unit, Planck's constant, Vacuum permittivity, Coulomb's law constant, Vacuum permeability, Magnetic constant, 1 atmosphere pressure,	$\begin{aligned} 1 \mathrm{u} & =1.66 \times 10^{-27} \mathrm{~kg}=931 \mathrm{MeV} / \mathrm{c}^{2} \\ h & =6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \\ h c & =1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}=1.24 \times 10^{3} \mathrm{eV} \cdot \mathrm{~nm} \\ \varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\ k=1 / 4 \pi \varepsilon_{0} & =9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\ \mu_{0} & =4 \pi \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A} \\ k^{\prime}=\mu_{0} / 4 \pi & =1 \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A} \\ 1 \mathrm{~atm} & =1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.0 \times 10^{5} \mathrm{~Pa} \end{aligned}$

UNIT	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
	second,	s	newton,	N	volt,	V	degree Celsius,	${ }^{\circ} \mathrm{C}$
	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	H		

PREFIXES		
Factor	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES								
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1	
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0	
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	

The following conventions are used in this exam.
I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
II. In all situations, positive work is defined as work done on a system.
III. The direction of current is conventional current: the direction in which positive charge would drift.
IV. Assume all batteries and meters are ideal unless otherwise stated.
V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

[^0]: $t_{1}=200 \mathrm{~s}$

 $\frac{\text { leg } 1}{\delta=\frac{1}{2}\left(v_{4}+v_{i}\right) t} 2(100)$
 s

