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Our project

Our project

Funded by USDOE, Fusion Energy Science, started 2007.

Rate coefficients for reactions of H and H2 on CHn, C2Hn, C3Hn;
neutral or once charged.

Rovibrational spectra of CH+
n , C2H

+
n , C3H

+
n .

Tools: Potential energy surface fitting; quasiclassical trajectory
calculations; MULTIMODE spectroscopy.

Main challenge: Electronic excited states, surface hopping.
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Potential energy surfaces

Potential energy surfaces

Born-Oppenheimer approach: V = V (X )

X : Collective nuclear coordinates.

V (X ): Total energy; from solution of electronic Schrödinger
equation.

PES V then used for molecular dynamics or quantum mechanics.

Also dipole moment surface (DMS) d(X ), a vector quantity.
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Potential energy surfaces

Sample Bowman Group applications

I CH5, CH+
5 , H+

5

I H3O
−
2 , H4O2, H5O

+
2

I C3H2, C3H3O

I C2H
+
3 , C2H

+
5 (Amit Sharma, Ralf Schneider)

I HONO2, HOONO

I CH3OH, CH3CHO, CHOHCHCHO
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Potential energy surfaces

Choice of coordinates

Considerations

I V is invariant under translation, rotation, reflection. Thus,
3N − 6 independent coordinates.

I V is invariant under permutations of like nuclei.

Use functions of the internuclear distances, r(i , j) = ‖x(i)− x(j)‖.
For example, let y(i , j) = exp(−r(i , j)/λ); hence vector y ∈ Rd ,
d = N(N − 1)/2; and then V = p(y).

Polynomial p must be invariant under permutations of like nuclei.

Important earlier work: [J. N. Murrell et al., Molecular Potential
Energy Functions, Wiley, 1984]. 3- and 4-atom systems.
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Potential energy surfaces

Permutation symmetry group

Say N nuclei, indexed by {i : 1 ≤ i ≤ N}.
Say K different kinds; hence partition N = n1 + . . . + nK .

⇒ Group G = Sym(n1)× · · · × Sym(nK ).

Non-standard representation. Variables y ∈ Rd (d = N(N − 1)/2);
components y(i , j) (i 6= j); y(i , j) = y(j , i). Permutation π ∈ G :

π : (πy)(i , j) = y(π−1i , π−1j)

Need polynomials of y ∈ Rd invariant under
Sym(n1)× · · ·Sym(nK ) acting on Rd .

Dipole moment also requires covariants Rd → RN .

⇒ Invariant theory of finite groups.
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Potential energy surfaces

Invariants of finite groups - Introduction

Easy case: Polynomials on Rn invariant under Sym(n).

Generated by the elementary monomials:

pk(x) =
∑

i

xk
i

Every invariant polynomial f (x) has a unique representation in the
form f (x) = poly(p1(x), . . . , pn(x)).

[Computational cost O(1) per term; compare with O(n!) per term
for symmetrized monomial basis.]

Just as easy: Polynomials on Rn1+...+nK invariant under
Sym(n1)× · · ·Sym(nK ) in the “natural” representation.
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Potential energy surfaces

Invariants of finite groups - General

Not easy: Sym(n1)× · · ·Sym(nK ) in our not so natural
representation on Rd , d = N(N − 1)/2.

Theory for the general case: invariant polynomials for a finite
group G acting on a finite dimensional vector space (say Rn):

[Harm Derksen and Gregor Kemper, Computational Invariant
Theory, Springer Verlag, 2002].

There exists a family of n primary generators, invariant polynomials
pi (1 ≤ i ≤ n), together with a family of secondary generators,
invariant polynomials qα, such that every invariant polynomial
f (x) has a unique representation in the form
f (x) =

∑
α polyα(p1(x), . . . , pn(x))qα(x).
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Potential energy surfaces

Invariants of finite groups - Example

Illustration: Case of G = Sym(2) acting on R2 generated by
inversions: (x , y) 7→ (−x ,−y). May choose p1(x , y) = x2,
p2(x , y) = y2, and q1(x , y) = 1, q2(x , y) = xy . Then:

f (x , y) = poly1(x
2, y2) + poly2(x

2, y2)xy

Example for a molecular group, the X5Y2 molecule.

G = Sym(5)× Sym(2) acting on R21 (21 internuclear distances).
We have 21 primary invariants: 3 of degree 1, 5 of degree 2, 3 of
degree 3, 4 of degree 4, 3 of degree 5, 2 of degree 6 and 1 of
degree 10. The number of secondary invariants at degrees 0..9 is
1, 0, 1, 12, 39, 113, 338, 932, 2402, 5678.
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Potential energy surfaces

MAGMA computer algebra system

Developed at the University of Sydney, and elsewhere.

Includes representation theory of finite groups.

I W. Bosma and J. Cannon: The Magma Handbook, Eight
Volumes, 3100 pages.

I Gregor Kemper and Allan Steel (1997) Some Algorithms in
Invariant Theory of Finite Groups.

Use MAGMA to obtain primary and secondary invariants.

Convert MAGMA output to Fortran code.

Done for all molecular symmetry groups for at most 7 atoms.
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Potential energy surfaces

Many-body expansion

Example for H3C2 complex:

Vall = VH + VC + VH2 + VHC + VC2 + VH3

+VH2C + VHC2 + VH3C + VH2C2 + VH3C2

in which, for example

VH2C =
∑

i ,j∈“H”
i<j

∑
k∈“C”

fH2C(rij , rik , rjk)

and then f (x) = p(y(x))damp(x) and, component-wise, for
example, y(x) = exp(−x/λ)

Coefficients of each such p from weighted least squares.
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Potential energy surfaces

Numerical example

Example, X5Y2 (H5O
+
2 , H5C2, H5C

+
2 ); single expansion.

N = 7, d = 21 (N(N − 1)/2); polynomials up to degree 7.

Using symmetry, approximation space has dimension 8,717.

Without using symmetry, dimension
(28

7

)
, = 1,184,040.

Least squares system: ∼ 50000 equations in ∼ 8717 unknowns.

Can do larger problems using single expansion; 8-atom systems
with sufficient symmetry. Beyond that, always use many-body
expansion.
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MULTIMODE

MULTIMODE

Normal coordinates Qk . Hartree basis from harmonic oscillator
functions φm.

Φn(Q) =
3N−6∏
k=1

φnk
(Qk)

Expansion of the wavefunction:

Ψν =
∑
n

C ν
n Φn(Q)

Expansion of the potential:

V (Q) = V (0)+
∑
k

V
(1)
k (Qk)+

∑
k,l

V
(2)
k,l (Qk ,Ql)+

∑
k,l ,m

V
(3)
k,l ,m(Qk ,Ql ,Qm)+. . .
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Sample applications

Malon-0
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Sample applications

Malon-2
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Malon-4
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Sample applications

Malon-7
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Sample applications

C2H
+
5 min
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Sample applications

C2H
+
5 ts1
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Sample applications

C2H
+
5 ts2
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Sample applications

C2H
+
5 ts3
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Outlook

Secure: Construction of the CmHn, CmH+
n ground state surfaces,

m + n ≤ 8.

More work: MULTIMODE analysis, thermal spectra (not
spectroscopic accuracy).

More work yet: Cross-sections (suitably resolved) on a ground
state surface; e.g., H + C2H+

4 ↔ H2 + C2H+
3 .

Not secure: Excited state surfaces, coupling coefficients, associated
cross sections; e.g., H + C2H+

4 ↔ H+ + C2H4.
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